A Lattice Model for Parallel and Orthogonal (-Sheets using Hydrogen-Like Bonding
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We present results for a lattice model of polymers where the type of (-sheet formation can
be controlled by different types of hydrogen bonds depending on the relative orientation of close
segments of the polymer. Tuning these different interaction strengths leads to low-temperature
structures with different types of orientational order. We perform simulations of this model and so
present the phase diagram, ascertaining the nature of the phases and the order of the transitions

between these phases.

I. INTRODUCTION

The transition of a flexible macromolecular chain from
a random-coil conformation to a globular compact form,
called coil-globule transition, has been a subject of exten-
sive theoretical and experimental studies [1]. Generally,
polymers in a good solvent are modelled by random walks
with short-range repulsion (excluded volume). Polymers
undergoing a coil-globule transition are then modelled
by adding an additional short-range attraction. This
short-range attraction is both due to an affinity between
monomers and solvent molecules, affecting the solvabil-
ity of a polymer, and also due to intra-molecular inter-
actions between different monomers, for example due to
van-der-Waals forces. The canonical lattice model [2, 3]
for this transition is given by interacting self-avoiding
walks, in which self-avoiding random walks on a lat-
tice are weighted according to the number of nearest-
neighbour contacts (non-consecutively visited nearest-
neighbour lattice sites).

In biological systems, e.g. proteins, the question of
focus is usually the ground state of a polymer with a
specified composition rather than the thermodynamic
phase transitions of polymers in solution. Here, the most
relevant contribution to monomer-monomer-interactions
is due to hydrogen bonds. These hydrogen bonds can
only form if neighbouring segments are aligned in certain
ways, resulting in an interaction that is strongly depen-
dent on the relative orientation of segments. This type
of interaction plays a leading role in the formation of sec-
ondary protein structures such as a-helices and (3-sheets
[4]. Recent work [5-8] has focussed on the variety of dif-
ferent protein structures that can be designed when us-
ing various types of hydrogen-like bonding in conjunction
with other types of interactions for finite length polymers.

In this paper, we consider the thermodynamic phase
structure of a lattice polymer model with competing
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types of hydrogen-like bonding, rather than the compli-
cated ground states of short-length configurations.

In [9], Bascle et al introduced a lattice model of poly-
mers interacting via hydrogen bonds, in which hydro-
gen bonds were mimicked by an interaction between
two nearest-neighbour lattice sites which belong to two
straight segments of the polymer. This was treated in the
context of Hamiltonian walks in a mean-field approach,
and they predicted a first-order transition between an
anisotropic ordered phase and a molten phase. Later,
Foster and Seno introduced this type of interaction to a
model of self-avoiding walks [10]. They analyzed it us-
ing transfer-matrix techniques in two dimensions, where
a first-order transition between a folded polymer crys-
tal and a swollen coil was found. Subsequently, a vari-
ant of this model was introduced by Buzano and Pretti
[11], where the interaction is defined between parallel
nearest-neighbour bonds, independent of the straightness
required in [9], arguing that these should better take into
account the contribution of fluctuating bonds, which may
be formed even in relatively disordered configurations.
The authors studied this interacting-bond model and the
one introduced by Foster and Seno on the square and sim-
ple cubic lattice using the Bethe approximation. They
found a first-order transition in the Foster-Seno model
in two and three dimensions, confirming and extending
results in [10]. In contrast to this, they found two tran-
sitions in the interacting-bond model, a second-order -
transition from a swollen coil to a collapsed molten glob-
ule and then a first-order transition to a folded polymer
crystal. In a later paper [12], they introduced a compet-
ing isotropic interaction and studied its effect in three
dimensions using the Bethe approximation. They found
a phase diagram with three different phases (swollen coil,
collapsed molten globule, folded polymer crystal), similar
to that of collapsing semi-stiff polymers [13].

In this work we generalize the Foster-Seno model to
distinguish between nearest-neighbour contacts of paral-
lel and orthogonal straight segments (see Figure 1) and
assign interactions of different strengths to these two
types of contacts, investigating it with Monte-Carlo sim-
ulations using the the FlatPERM algorithm [14]. We
begin by simulating the Foster-Seno model and confirm



the theoretical picture presented above [10, 12]. We then
consider our extended model (in three dimensions). We
find evidence for two differently structured folded phases,
depending on whether the parallel or orthogonal interac-
tions dominate. The transition between the swollen coil
and each of the two collapsed ordered crystals is first-
order. We investigate the structure of these two low-
temperature phases. For strong parallel interactions long
segments of the polymer align, whereas for strong orthog-
onal interactions the polymer forms alternating orthogo-
nally layered g-sheets.

II. MODEL AND SIMULATIONS

A polymer is modelled as an n-step self-avoiding walk
on the simple cubic lattice with interactions —e, and —¢,
for nearest-neighbour contacts between parallel and or-
thogonal straight segments of the walk, as shown in Fig-
ure 1. Here, a segment is defined as a site along with the
two adjoining bonds visited by the walk, and we say that
a segment is straight if these two bonds are aligned. The
restriction of this model to €, = ¢, is the simple gener-
alisation of the Foster-Seno model, which was originally
defined on a square lattice, to three dimensions.
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FIG. 1: (Color online) The two types of nearest-neighbour
contacts between two straight segments of the polymer: or-
thogonal segments (a) with interaction —e,, and parallel seg-
ments (b) with interaction —e,. In two dimensions, only par-
allel interactions are possible.

The total energy for a polymer configuration ¢, with
n 4+ 1 monomers (occupied lattice sites) is given by

En(pn) = —=mp(pn)ep — mo(pn)eo (1)

depending on the number of non-consecutive parallel and
orthogonal straight nearest-neighbour segments m,, and
m,, respectively, along the polymer. For convenience, we
define

51) = ﬁgp and 3, = fBe,, (2)

where 8 = 1/kgT for temperature T and Boltzmann
constant kp. The partition function is given by

Z’rb(ﬁpvﬁo) - Z C7L7mp7mo 66P77Lp+ﬁomo (3)

Mp,Mo

with Cp m, m, being the density of states. We have sim-
ulated this model using the FlatPERM algorithm [14].
The power of this algorithm is the ability to sample
the density of states uniformly with respect to a chosen
parametrisation, so that the whole parameter range is
accessible from one simulation. In practice, we have also
performed multiple independent simulations to further
reduce errors. The natural parameters for this problem
are my and m,, and the algorithm directly estimates the
density of states Cy, i, ,m, for all n < 14, for some fixed
Nmae and all possible values of m,, and m,. Canonical
averages are performed with respect to this density of
states. As we need to store the full density of states,
we only perform simulations up to a maximal length of
Nmaz = 128, due to a memory requirement growing as ns.
To reduce the error, we have taken averages of ten inde-
pendent runs each. Each run has taken approximately 3
months on a 2.8GHz PC to complete.

Fixing one of the parameters 3, and 3, reduces the size
the histogram, and enables us to perform simulations of
larger systems, as the memory requirement now grows
as n?. Fixing 3,, say, the algorithm directly estimates a
partially summed density of states

67L7mp (ﬁo) = Z Cn,'rnp,m,,eﬁomo . (4)

In this way, we can simulate lengths up to 1,4, = 1024
at fixed (,. In a similar fashion, we also consider the
diagonal 3, = 3, = 3, which is equivalent to considering
the partially summed density of states

5n,m - Z Cn,mp,mo . (5)

Mo+mp=m

To reduce the error for our runs up to n = 1024, we have
taken averages of ten independent runs each. Each run
has taken approximately 2 months on a 2.8GHz PC to
complete.

III. RESULTS

Before presenting the findings for our model, we briefly
discuss the results of simulations of the Foster-Seno
model in two dimensions. We find a first-order transi-
tion between a swollen coil and ordered collapsed phase
in agreement with Foster and Seno [10]. Figure 2 shows
the internal density distribution at 8 = (G, = 1.04,
where the specific heat is maximal. This distribution is
clearly bimodal, and finite-size scaling supports the con-
clusion that the transition is first-order. Our estimate of
B. = 1.04 is close to the value 1.00(2) obtained by Foster
and Seno [10] from transfer matrix calculations. The low
temperature phase is an ordered 3-sheet type phase.

For the three-dimensional model, we have explored the
full two-variable phase space (3,,03,) by using a two-
parameter FlatPERM simulation of the model for lengths
up to 128. We performed 10 independent simulations to



ensure convergence and understand the size of the sta-
tistical error in our results. As in previous work [15, 16],
we found the use of the largest eigenvalue of the matrix
of second derivatives of the free energy with respect to
the parameters 3, and (3, most advantageous to show
the fluctuations in a unified manner. Figure 3 displays a
density plot of the size of fluctuations for 0 < 3, 5, < 2.
It suggests the presence of three thermodynamic phases
separated by three phase transition lines meeting at a sin-
gle point. For small values of 3, and 3,, we expect the
model to be in the excluded volume universality class of
swollen polymers, since at 3, = 3, = 0 the model reduces
to the simple self-avoiding walk. The question arises as
to the nature of the phases for large 3, with 3, fixed and
for large (3, with (3, small, and the type of transitions
between each of the phases.

We find evidence for a strong collapse phase transition
when increasing 3, for fixed 3, < 1.38. Corrections to
scaling at lengths n < 128 make it difficult to identify the
nature of the transition. The location of the transition
seems independent of the value of (3, and is located at
Bp ~ 1.25 for length n = 128; this is taken from the
location of the peak of the fluctuations. Since our data
indicate that this transition occurs for 8, < 1.38 at 3, ~
1.25, it follows that the diagonal line 3, = 3, crosses this
transition line. Configurations in the collapsed phase are
rich in parallel contacts; we shall discuss further details
of the collapsed phase below.

The situation changes significantly for 8, 2 1.38.
When we start from the swollen phase at fixed 3, > 1.38
and increase (3, we see evidence for a strong phase tran-
sition to a different collapsed phase, in which orthogonal
contacts are expected to play an important role. Further
increase of 3, leads to another strong transition to the
parallel-contact rich phase. We investigate the transition
between the swollen coil and the orthogonal-contact rich
phase by considering the line 8, = 1.0. Figure 4 shows a
bimodal internal energy distribution at the maximum of
the fluctuations in m, for length n = 128, indicating the
presence of a first-order transition.
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FIG. 2: (Color online) Internal energy density distributions
for the two-dimensional Foster-Seno model at the value of 3
for which the fluctuations are maximal, length 1024.
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FIG. 3: (Color online) This is a density plot of the logarithm
of the largest eigenvalue of the matrix of second derivatives
of the free energy with respect to 3, and (3, at n = 128. The
lighter the shade the larger the value.
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FIG. 4: (Color online) A plot of the internal energy distribu-
tion in m, at B, = 1.0 for length n = 128 at values of 3, for
which the fluctuations in m, are maximal.

Combining the evidence above, we conjecture the
phase diagram shown in Figure 5, having three phases
and three transition lines that meet at a triple point lo-
cated at (G}, 85) ~ (1.25,1.38) for length n = 128. By
considering the location of this point for different lengths
n, we conclude that its estimate is affected by strong
finite-size corrections to scaling.

To further elucidate the nature of the phase transitions
and the structure of the low-temperature phases, we per-
form simulations for larger system sizes for the two lines
Bo = 0 and B, = [, using one-parameter FlatPERM
simulations for lengths up to n = 1024, averaged over
ten independent simulations each. We begin by consid-
ering B, = 0. The peak of the specific heat occurs at
Bp = 0.996 for n = 1024, which we note is shifted away
from the value at length n = 128 and reflects the presence
of strong corrections to scaling. The distribution of m,,
at this point is shown in Figure 6; we observe a clear bi-
modal distribution with well-separated peaks and which
ranges over fourteen orders of magnitude, convincingly
supporting the conclusion of a first-order phase transi-
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FIG. 5: (Color online) This figure represents our conjectured
schematic phase diagram. The phases boundaries are marked
by solid (black) lines. The dashed diagonal (blue) and hori-
zontal (red) lines denote the lines along which we have per-
formed one-parameter simulations.

tion. Similarly, along the line 8 = 3, = [, we find a
single peak of the specific heat, located at 3, = 0.998
for n = 1024. The distribution of m = m, + m,, at this
point displays the same characteristics as the transition
on the line B, = 0 described above. Our investigations
of the transition between the two collapsed phases were
not conclusive, as it is difficult to do simulations at very
low temperatures. While we expect there to be a first
order phase transition between the two collapsed phase
we were unable to verify this.
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FIG. 6: (Color online) Internal energy density distributions
of my, at B, = 0 and B, = 0.996 for length 1024.

To delineate the nature of the two collapsed phases,

we have randomly sampled typical configuration for each:
two of these are shown in Figure 7. In each case we have
used 3, > 0, where parallel contacts are attractive. For
large 3,, we have a parallel contact rich phase, and typ-
ical configurations have lines of monomers arranged in
parallel. In Figure 7, there is a typical configuration for
(Bp = 1.8, 8, = 1.0), which demonstrates these parallel
(B-lines. For large (3,, orthogonal contacts play an impor-
tant role. A typical configuration for (5, = 1.3, 5, = 1.9)
consists of parallel lines arranged in (-sheets, which are
layered orthogonally. The entropy of the phase consist-
ing out of orthogonal (-sheets is lower than the entropy
of the phase consisting out of collection of parallel lines,
which explains why the collapse-collapse transition line
is shifted away from the diagonal. Clearly the formation
of B-sheets is dependent on 3, being positive (attractive
parallel) interactions.
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FIG. 7: (Color online) Typical configurations for the two dif-
ferent collapsed phases, sampled at (8, = 1.3, 3, = 1.9) (a)
and at (8p = 1.8, 8, = 1.0) (b).

In conclusion, we have demonstrated the intriguing
possibility of obtaining (-sheet formations in polymers
which interact in two different ways. Depending on the
modelling of the interactions we distinguish (-sheets that
align parallel or orthogonal to each other, which leads to
two different phases. There remains an interesting theo-
retical question as to the behaviour of the system when
the parallel interactions are repulsive but the orthogonal
interactions are highly attractive.
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