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Abstract

Guttmann and Enting [Phys. Rev. Lett. 76 (1996) 344–347] proposed the examination of
anisotropic generating functions as a test of the solvability of models of bond animals. In this article
we describe a technique for examining some properties of anisotropic generating functions. For
a wide range of solved and unsolved families of bond animals, we show that the coefficients ofyn

is rational, the degree of its numerator is at most that of its denominator, and the denominator is
a product of cyclotomic polynomials. Further, we are able to find a multiplicative upper bound for
these denominators which, by comparison with numerical studies [Jensen, personal communication;
Jensen and Guttmann, personal communication], appears to be very tight. These facts can be used to
greatly reduce the amount of computation required in generating series expansions. They also have
strong and negative implications for the solvability of these problems.
 2003 Elsevier Science (USA). All rights reserved.

1. Introduction

1.1. Lattice animals

The enumeration of lattice animals is arguably one of the most famous problems in
combinatorics and is of considerable importance in the study of lattice models in statistical
physics and theoretical chemistry. Considering the intensive study that these models have
been subjected to over their 40+ year history, it is perhaps a little surprising that the number
of rigorous results is very small, and that the number of models that have been solved
exactly, either implicitly or explicitly, is yet smaller.
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Fig. 1. Three basic types of lattice objects (from left to right): polyominoes, site animals and bond animals.
Polyominoes and site animals are equivalent under lattice duality; the polyomino and site animal depicted here
are equivalent to one another.

There are three basic types of lattice objects; polyominoes, site animals and bond
animals. A polyomino is a finite connected set of lattice faces (orcells), a site animal
is a connected set of lattice vertices (orsites) and a bond animal is a connected set of
lattice edges (orbonds); all are defined up to translation (if two animals are equal under
some translation, then we consider them to be the same animal). By replacing each cell
of a polyomino with a site at its centre, one obtains an equivalent site animal on the dual
lattice andvice versa(see Fig. 1). In this paper we will only study bond animals on the
square lattice. We will write “animal” to mean “square lattice bond animal.”

The fundamental question in the study of animals is “How many animals are there that
containn bonds?” Let us denote the answer to this question bycn. It is not difficult to
computecn for smalln, either with a pencil and paper or with a computer and a compiler,
simply by listing every animal withn bonds. In principle one can do this for anyn, but
it quickly becomes obvious thatcn is growing rapidly withn and so the time it takes to
compute it is also growing rapidly withn. It can be shown using a concatenation argument
[15] that the limit

lim
n→∞(cn)

1/n = µ

exists, and so the number of animals grows exponentially withn (i.e.,cn ∼ Aµn, with sub-
exponential corrections). So although brute force methods1 always work, they are not very
satisfactory, and so are not normally considered to be a solution.

More mathematically appealing are solutions in the form of (non-trivial) expressions
for cn, a recurrence forcn that can be computed quickly, or (as we will concentrate on
here) an expression for the generating function,

∑
cnx

n. Let us consider the enumeration
of two families of bond animals: self-avoiding polygons and staircase polygons.

Example 1 (Staircase polygons). An animal is astaircase polygonif each row and column
of the animal contains exactly 2 bonds, and further the lower and upper edges are directed
paths (taking only north and east steps) that intersect exactly twice.

This model is well understood and we are able to computecn in a several different
(equivalent) ways:

1 For example, methods of the form: (1) inputn, (2) list every animal withn bonds, (3) output the length of
the list.
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Fig. 2. A staircase polygon (left) and a self-avoiding polygon (right).

• the coefficient:cn = 1
n+1

(2n
n

)
,

• the generating function:
∑

n�1 cnx
n = (1− 2x − √

1− 4x)/(2x),
• cn satisfies(n + 1)cn − (4n− 2)cn−1 = 0, with c0 = 0 andc1 = 1.

Exact solutions (such as above) are only known for those models with severe topological
restrictions: spiral walks (see [1], for example), three choice polygons [6], a number of
families of column-convex polygons (see [2], for example), and three-dimensional convex
polygons [3]. For other problems we have to use brute force, or other algorithms that are
still exponential in time.

Example 2 (Self-avoiding polygons). An animal is aself-avoiding polygon(SAP) if it is the
embedding of a simple closed loop into the square lattice (the vertices of the underlying
graph are all of degree 2). Despite a great deal of effort over many years, no non-trivial
expression for the number of SAPs with 2n bonds is known. Nor do we have a non-
trivial expression for the corresponding generating function, nor do we know a non-trivial
recurrence satisfied by these numbers.

There are a number of other interesting animal models (general bond animals, bond
trees, directed bond animals, and self-avoiding walks,. . . ) that have proved to be equally
difficult to count. To date, the best way of computingcn for these models is thefinite-
lattice methodwhich is an algorithm that requires exponential time and space, but is still
exponentially faster than brute-force methods (see, for example, [7–9]).

The history of lattice animal enumeration suggests that attempts to findcn for general
families of animals are very likely to be frustrated. Rather than embarking on a (probably
doomed) effort to find a solution, we seek to examine some of the properties of the solution.
To do this we examineanisotropic generating functions; in particular, one observes
a marked difference in the “structure” of the coefficients of anisotropic generating functions
for solved and unsolved models [10,11]. The main task of this paper is to explain this
structure and explore some of its consequences.

1.2. Anisotropic generating functions

The isotropic generating function of a family of animals enumerates the animals
according to the total number of bonds. Theanisotropicgenerating function, on the other
hand, distinguishes between horizontal and vertical bonds. For a given bond animalB,
we denote the number of horizontal (respectively vertical) bonds it contains by|B|⇔
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(respectively|B|�). Generally speaking, it is not difficult to extend isotropic techniques
(be they exact solutions or numerical expansions) to the anisotropic case, so one can obtain
the anisotropic generating function without having to do too much more work.

Let G be a set of bond animals on the square lattice, and let us count the elements ofG
anisotropicallyby forming theanisotropicgenerating function:

gf (G) =
∑
Q∈G

x |Q|⇔y |Q|� =
∞∑

n,m=0

cn,m xnym,

wherecn,m is the number of elements ofG containing exactlyn horizontal bonds andm
vertical bonds.2 In the work that follows we write this generating function as a power series
in y with coefficients that are series inx. Writing Gn = {Q ∈ Gn: |Q|� = n} we have:

gf (G)(x, y) =
∑
n=0

yn
∑
Q∈Gn

x |Q|⇔ =
∑
n=0

Hn(x)y
n.

The coefficient ofyn in the above generating function,Hn(x), is the horizontal bond
generating function of all animals inG containingn vertical bonds (the setGn).

In some sense, the anisotropic generating function is a more manageable object than the
isotropic. Splitting the set of animalsG, into separate simpler subsets,Gn, gives us smaller
pieces, each of which is easier to study than the whole. If one seeks to compute or even just
understand theisotropicgenerating function then one must somehow examineall possible
topologies or configurations3 that can occur inG—it is perhaps for this reason that the
only families of bond animals that have been solved are those with severe topological
restrictions (such as column-convex polygons). On the other hand, if we examine the
generating function ofGn, then the number of different configurations that can occur is
always finite. For example, consider self-avoiding polygons with 2n vertical bonds. If
n = 1 all configurations are rectangles. Ifn = 2, then all configurations are vertically
and horizontally convex, while ifn = 3 all configurations are verticallyor horizontally
convex. The anisotropy allows one to study the effect that these configurations have on the
generating function in a more controlled manner.

Similarly, instead of trying to study the properties of the whole (possibly unknown)
generating function the anisotropy breaks the generating function into separate simpler
pieces,Hn(x), that can be calculated exactly for smalln. By studying the properties of
these coefficients, particularly their singularities, we can obtain some idea of the properties
of the generating function as a whole.

2 If we are considering a set of polygons, then the numbers of vertical and horizontal bonds are always even
numbers, and so rather introducing extraneous factors of 2 we will enumerate families of polygons according
to their horizontal and verticalhalf-perimeters(being exactly half the number of horizontal and vertical bonds).
Rather than defining different notation for polygons we will simply take|B|⇔ and|B|� to mean the horizontal
and vertical half-perimeters when discussing a set of polygons.

3 We are being deliberately imprecise here—we will be more precise below.
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1.3. Some examples

Let us consider the anisotropic generating functions of staircase polygons and self-
avoiding polygons. However, before we do so, we need to define the family of
polynomials that appear throughout the following work—in particular, we will show
that the coefficients,Hn(x), can be expressed in terms of rational functions of the form
xk/(1− xk), and so the factors of the denominators arecyclotomic polynomials.

Definition 1. The cyclotomic polynomials, Ψk(x), are the factors of the polynomials
(1− xn). In particular,(1− xn) =∏

k|n Ψk(x).
The first few cyclotomic polynomials are underlined below.

Ψ1: (1− x) = (1 − x),

Ψ2:
(
1− x2)= (1− x)(1 + x),

Ψ3:
(
1− x3)= (1− x)

(
1 + x + x2),

Ψ4:
(
1− x4)= (1− x)(1+ x)

(
1 + x2),

Ψ5:
(
1− x5)= (1− x)

(
1 + x + x2 + x3 + x4),

Ψ6:
(
1− x6)= (1− x)(1+ x)

(
1+ x + x2)(1 − x + x2).

We callΨk(x) thekth cyclotomic polynomial, and say that it itsorder is k. For any given
integers{αi}i�1, the we have the following factorisation

∏
n=1

(
1− xn

)αn =
∏
n=1

∏
k=n/d

Ψk(x)
αn =

∏
k=1

Ψk(x)
∑

d=1αdk .

Example 3 (Staircase polygons). The anisotropic generating function of staircase poly-
gons4 is known in closed form [16]:

P(x, y) = 1

2

(
1− x − y −

√
(1− x − y)2 − 4xy

)
.

ExpandingP(x, y) as a power series iny gives:

P(x, y) = x

1− x
y + x

(1− x)3
y2 + x(1+ x)

(1− x)5
y3 + x(1+ 3x + x2)

(1− x)7 y4

+ x(1+ 6x + 6x2 + x3)

(1− x)9 y5 + · · · .

4 Since this is a family of polygons the generating function enumerates anisotropichalf-perimeter; the
coefficient ofxmyn is the number of staircase polygons with 2m horizontal bonds and 2n vertical bonds.
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The coefficients,Hn(x), have the following properties:

• Hn(x) is a rational function ofx;
• the degree of the numerator ofHn(x) is (n− 1), for all n � 2;
• the denominator ofHn(x) is (1− x)2n−1;
• the coefficients of the numerators are positive, symmetric and unimodal.

Many other polygons models for which a closed form solution is known (such as the
subsets of column-convex polygons) have similar properties (though the symmetry of
numerator coefficients is lost in some cases) [4].

Similar properties have also been observed in three choice polygons and staircase
polygons with a single staircase hole [4]—for these models no closed form solution exists,
but their series expansion can be computed in polynomial time [6].

Example 4 (Self-avoiding polygons). The generating function of self-avoiding polygons,
P(x, y), remains elusive, and so its coefficients must be computed either by brute-force or
the finite-lattice method. ExpandingP(x, y) as a power series iny, one observes [13] that
the coefficients,Hn(x), (which have been computed up to ordern = 14) have the following
properties:

• Hn(x) is a rational function ofx;
• the degree of the numerator ofHn(x) is equal to the degree of its denominator;
• the coefficients of the numerators are positive and unimodal, but not symmetric;
• if we write the denominator ofHn(x) asDn(x), then the first ten are:

D1(x) = (1− x),

D2(x) = (1− x)3,

D3(x) = (1− x)5,

D4(x) = (1− x)7,

D5(x) = (1− x)9(1+ x)2,

D6(x) = (1− x)11(1+ x)4,

D7(x) = (1− x)13(1+ x)6(1+ x + x2),
D8(x) = (1− x)15(1+ x)8(1+ x + x2)3,
D9(x) = (1− x)17(1+ x)10(1+ x + x2)5,
D10(x) = (1− x)19(1+ x)12(1+ x + x2)7(1+ x2).

This suggests that a new cyclotomic factor enters every third coefficient. Further, it
enters with exponent 1, and increases by 2 in each subsequent coefficient (with the
exception of(1+ x) which has exponent 1 less than this pattern predicts).
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Many other unsolved animal models (such as directed bond animals and lattice trees)
display similar properties [10,11,13,14].

The denominator structure of self-avoiding polygons is starkly different to that of the
previous (solvable) example. The denominators of staircase polygons contain only a single
cyclotomic factor,(1− x), and soHn(x) contains only a finite number of poles asn → ∞.
On the other hand, if one extrapolates from the observed pattern of self-avoiding polygon
denominators, then every cyclotomic factor will appear eventually, and soHn(x) has
a dense set of poles on|x| = 1 asn → ∞.

The observation of this demarcation between the properties of solved and unsolved
families of bond animals led Guttmann and Enting [11] to propose it as a (numerical)
test of thesolvability of a model.5 In particular, if a function,P(x, y), has coefficients
whose poles form a dense set on|x| = 1, then the function is not a member of the
most common functions of mathematics and physics—differentiably-finitefunctions (see
[17,24]). In contrast, the generating functions of most solved models are differentiably-
finite. The techniques described in this paper form the basis of a proof that the anisotropic
generating function of self-avoiding polygons is not D-finite—this will be discussed in
another paper [21] (see also [22]); this result is also being extended to other models
[19,20].

The remainder of this paper is concerned with proving some of these observed
properties of the coefficients,Hn(x).

In Section 2 we develop a technique, which we callharuspicy, that shows how the
set of bond animals may be partitioned into equivalence classes, so that each class has a
simple rational generating function whose singularities are related to the horizontal bond
configurations in the elements of the class. As a direct consequence of this one can show
thatHn(x) is rational, that the degree of its numerator is at most that of its denominator,
and that its denominator is a product of cyclotomic polynomials.

In Section 3 we demonstrate how particular configurations of horizontal bonds give
rise to the cyclotomic factors in the denominators of the coefficients of the anisotropic
generating function, and then apply this result to a number of solved and unsolved
models.

In Section 4 we prove a multiplicative upper bound for the denominator ofHn(x) for
a wide range of families of bond animals—that is, we find a sequence of polynomials,
{Bn(x)}n�0, such that the denominator ofHn(x) dividesBn(x). This upper bound may be
used to greatly reduce the amount of computation required in computer-aided expansions
of anisotropic generating functions—specifically it shows thatHn(x) may be computed
exactly from the firstO(n3) terms of its expansion.

5 Similar patterns have also been observed in the thermodynamic functions of the Ising and Potts models
[10,11]. Such functions can be interpreted as enumerating families of graphs on the square lattice with
complicated weights; the weights can be negative and the graphs can be disconnected. We hope to extend the
techniques described in this paper to these problems.
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2. Haruspicy

The technique we shall describe below allows us to determine properties of generating
functions; both those known in closed form and those for which exponential time
algorithms remain the best approach. This technique works by examining of horizontal
bond configurations within specially chosen lattice animals and so we have used the word
“haruspicy” to describe it. Haruspicy (pronounced “he′r vspIsi”) is the art of divination by
the examination of the forms and shapes of the organs of animals [5], and so seemed an
appropriate term.

Let us start by considering the set of all self-avoiding polygons containing 2 vertical
bonds; this is simply the set of all rectangles of height 1, and its horizontal half-perimeter
generating function isx/(1− x) (see Fig. 3).

The smallest polygon (or the minimal polygon) in this set is the unit square. We can then
obtain the other polygons from the unit square by “stretching” or “growing” the horizontal
bonds (see Fig. 4). The unit square has generating function simply given byx, stretching
the horizontal bonds to lengthn gives ann by 1 rectangle that contributesxn to the
generating function. Summing over all possible “stretches” gives

∑
n�1 x

n = x/(1− x)

as required.
By reversing the stretching process, we can think of squashing the rectangles into shorter

and shorter rectangles until we reach the unit square. This squashing process gives a (total)
order on this set. The smallest element of this set under this order is the unit square.
This idea can be extended to other animals, and we will introduce two different ways of
“squashing” general animals. By examining the contents of these “squashed” animals and
“stretching” them we can determine certain properties of anisotropic generating functions.

2.1. Columns, sections and partial orders

Definition 2. We will define acolumnof a given animal to be the horizontal bonds within
a single horizontal lattice spacing of the animal. See Fig. 5. If the column containsk

horizontal bonds we say it is ak-column. The number ofk-columns in an animal,A, is
denoted byγk(A).

Fig. 3. Self-avoiding polygons containing exactly 2 vertical bonds. The horizontal half-perimeter generating
function of this set isx/(1− x).

Fig. 4. Stretching or growing the horizontal bonds of the unit square will give any self-avoiding polygon with 2
vertical bonds.
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Fig. 5. A 4-column of a bond animal.

Fig. 6.Section lines(the heavy dashed lines) split the animal (in this example it is a polygon) intopages. Each
column in a page is asection. This polygon is split into 3 pages, each containing 2 sections. 10 vertical bonds lie
between pages and 4 vertical bonds lie within the pages.

Definition 3. We construct thesection linesof an animal in the following way. Draw
horizontal lines from the extreme left and the extreme right of the lattice towards the animal
so that the lines run through the middle of each lattice cell. The lines are terminated when
they first touch a vertical bond (see Fig. 6).

Cut the lattice along each section line from infinity until it terminates at a vertical bond.
Then from this vertical bond cut vertically in both directions until another section line is
reached. In this way the animal is split intopages(see Fig. 6); we consider the vertical
bonds along these vertical cuts to liebetweenpages, while the other vertical bonds lie
within the pages.

We call asectionthe set of horizontal bonds within a single column of a given page.
Equivalently, it is the set of horizontal bonds of a column of an animal between two
neighbouring section lines. A section withk horizontal bonds is ak-section. The number
of k-sections in an animal,A, is denoted byσk(A).

Definition 4. We say that a column is aduplicate columnif the column immediately on its
left (without loss of generality) is identical and there are no vertical bonds between them
(see Fig. 7). We similarly define aduplicate section.

One can squash or reduce animals bydeletionof duplicate columns by slicing the animal
on either side of the duplicate column, removing the column and recombining the animal,
as illustrated in Fig. 7. By reversing the column deletion process we defineduplicationof
a column. We definesection-deletionandsection-duplicationin an analogous manner.
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Fig. 7. Surgery. The process of column deletion. The two indicated columns are identical. Slice either side of the
duplicate and separate the polygon into three pieces. The middle piece, being the duplicate, is removed and the
remainder of the polygon is recombined. Reversing the steps leads to column duplication.

Fig. 8. PolygonA is reduced by a sequence of column deletions to polygonB (which is column-minimal) and
a sequence of section deletions to polygonC (which is section-minimal).B can be reduced toC by section
deletions, and hence is not section-minimal.

Using column- and section-deletion we can define two relations,�c and�s , on the set
Gn of animals withn vertical bonds.

Definition 5. For any two animalsP,Q ∈ Gn, we define the binary relations�c and�s by
stating that:

• P �c Q if P = Q or P can be obtained fromQ by a sequence of column-deletions,
and

• P �s Q if P = Q or P can be obtained fromQ by a sequence of section-deletions.

See Fig. 8 for example.

From this definition we immediately obtain the following lemma

Lemma 1. The binary relations�c and�s are partial orders on the set of animals.

Proof. Let A, B, andC be animals. A partial order must be reflexive, anti-symmetric and
transitive. We state the proof for�c—the proof for�s is identical.

Reflexive.By definitionA �c A.
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Anti-symmetric.If A �c B, then eitherA = B or |A|⇔ < |B|⇔. Similarly if B �c A then
eitherA = B or |A|⇔ > |B|⇔. Hence ifA �c B andB �c A thenA = B.

Transitive. If A �c B then there exists a sequence of column-deletions that takesB to A.
Similarly if B �c C, then there exists another sequence of column-deletions that
takesC toB. Concatenating these gives a sequence of column-deletions that takes
C to A, and henceA �c C. ✷

The first fact we can establish about these partial orders is to show that one implies the
other:

Lemma 2. Consider two bond animalsA andB then

A �c B ⇒ A �s B.

The converse is false.

Proof. Consider a duplicate column inB. The sections within this column must also
be duplicate sections. The animal obtained by deleting column, can also be obtained by
deleting the sections within the column. Hence if we obtainA from B by a sequence of
column-deletions, then it can also be obtained by some sequence of section-deletions.

One can readily construct examples to show that the converse of this statement false.
Consider animalsB andC in Fig. 8. It is the case thatC �s B, butC ��c B. ✷
2.2. Minimal animals and equivalence relations

If we take an animal and start to remove duplicate columns then we cannot reduce
the animal to nothing. At some point we must reach an animal that contains no duplicate
column. This animal we call a column-minimal animal. A little more formally we may
write:

Definition 6. A column-minimal animal, A, is an animal such that for all animalsB
satisfyingB �c A, thenB = A. I.e.,A cannot be reduced any further. We define asection-
minimal animalin a similar way.

It is natural to ask that ifA reduces to a column-minimal animalB and to a section-
minimal animalC by some sequences of column- and section-deletions (respectively) then
what is the relation betweenB andC?

Lemma 3. If an animal,P , is section-minimal then it is also column-minimal. The converse
is false.

Proof. Consider the contrapositive of this statement. If an animal,P , is not column-
minimal, then there existsQ such thatQ �c P . By Lemma 2,Q �s P , and soP is not
section minimal. The animals depicted in Fig. 8, show that the converse of the lemma is
false. ✷
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Consider an animalC that reduces to some column-minimal animalA by some
sequence of column deletions. The next lemma tells us thatA is in fact unique.

Lemma 4. Every animalC reduces by column-deletions to a unique column-minimal
animal. Similarly every animal reduces by section-deletions to a unique section-minimal
animal. The column-minimal animal and section-minimal animal reached fromC need not
be the same.

Proof. The columns of any animal,C, can be encoded (from left to right) as a sequence of
columns,(cα1

1 , c
α2
2 , . . . , c

αj

j ), wherecαi

i indicatesαi repetitions of the columnci . Enforcing
the additional constraint thatci �= ci+1 will ensure the uniqueness of theαi . Removing
all duplicate columns will reduceC to some animalA, that is encoded by the sequence
(c1

1, c
1
2, . . . , c

1
j ). Clearly this is unique.

To prove the same result for section-deletion we note that section-deletion does not
delete pages, nor does it move sections between pages, and so one can apply the above
idea to the sections within each page of the animal.✷

Since every animal reduces to a unique minimal element by column deletion (or section
deletion), the set of animals can be written as the disjoint union of posets, each of which
contains a single minimal animal. Using this idea we can construct two equivalence
relations on the set of animals:

Definition 7. We say that two animals,A andB, arecolumn-equivalentif both A andB

reduce to the same column-minimal animal. In this case we writeA ≈c B. Similarly we
say that two animals,A andB, aresection-equivalentif both A andB reduce to the same
section-minimal animal. In this case we writeA ≈s B. See Fig. 9 for examples of column-
and section-equivalence.

Lemma 5. Column-equivalence and section-equivalence are equivalence relations.

Proof. It follows almost directly from the definitions that column- and section-equivalence
are reflexive, symmetric and transitive.✷

Fig. 9. The top two animals are column-equivalent (and so also section-equivalent), while the bottom two are
section-equivalent butnot column-equivalent.
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Definition 8. Using the column- and section-equivalence relations, one can partition the
set of animals into equivalence classes each of which can be characterised by the column-
minimal (or section-minimal) animal within the class. We refer to the equivalence class
of a column-minimal (respectively section-minimal) animal,A, as thecolumn-expansion
(respectivelysection-expansion) of A. We write:

Xc(A) = {B ∈ G | A �c B}, (1)

Xs (A) = {B ∈ G | A �s B}. (2)

Note that all the elements in such an expansions must have the same number of vertical
bonds. We write the horizontal bond generating function of the expansion of a minimal
element,A, as

Gc(A) =
∑

B∈Xc(A)

x |B|⇔ if A is column-minimal, (3)

Gs(A) =
∑

B∈Xs (A)

x |B|⇔ if A is section-minimal. (4)

SinceGn is partitioned into equivalence classes, its generating function,Hn(x), can be
written as the sum of the generating function of each equivalence class.

Lemma 6. Let Mc andMs be the sets of column-minimal animals and section-minimal
animals(respectively) of Gn, then

Hn(x) =
∑
B∈Gn

x |B|⇔ =
∑

A∈Mc

Gc(A) =
∑

A∈Ms

Gs(A).

Proof. Since each animal inGn is an element in the expansion of exactly one minimal
animal the result follows. ✷

Let us consider a set of bond animals,Gn, the elements of which contain exactlyn
vertical bonds. We now ask how many equivalence classes (or minimal animals) are inGn.
The exact number depends upon the family of animals under consideration, but we can
show that it is finite.

Lemma 7. If Gn is a set of animals withn vertical bonds, then the set of minimal elements
in Gn (w.r.t. either partial order) is finite.

Proof. By Lemma 3 every section-minimal animal is column minimal, so it suffices to
prove the above lemma for column-minimal animals. We first show that all column-
minimal animals withn vertical bonds have finite height and width.

Let P be a column-minimal animal inGn. ObviouslyP cannot contain more thann
rows. Since there are no duplicate columns inP , between each pair of columns ofP there
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Fig. 10. Two pairs of consecutive columns are highlighted in this column-minimal animal. Between such
consecutive columns there must be either a vertical bond (left) or a vertex of degree 1 (right).

must either be a vertical bond, or at least one horizontal bond must terminate, leaving
a vertex of degree 1. See Fig. 10.

Let us bound the number of vertices of degree 1. If there are no vertical bonds, then
there can be at most 2 vertices of degree 1. Each vertical bond can be attached to at most
4 lines of horizontal bonds. Hence there can be at most 4 vertices of degree 1 connected
to each vertical bond (by lines of horizontal bonds). ConsequentlyP can contain at most
4n+ 2 vertices of degree 1—if the vertical bonds are connected together, then this number
will be lower, but we only require a rough bound. Between each pair of columns there
must be either one of these vertices or a vertical bond, so the number of columns inP is
bounded by 5n+ 1. We shall refine this in Section 4.

Hence every minimal animal inGn fits inside a box of heightn and width 5n+ 1. Since
there are only a finite number of bonds inside this box there can be only a finite number of
column-minimal animals. ✷
2.3. Dense families of animals and generating functions

Consider again the set of all self-avoiding polygons containing 2 vertical bonds. Clearly
the column- and section-minimal animal is the unit square. The equivalence class of this
animal is the original set, and so has generating functionx/(1− x).

If we now consider the set of polygons having only 2 vertical bonds and odd horizontal
half-perimeter, the minimal element is the same, but now the generating function is
x/(1− x2). Worse still is the subset of polygons which have 2 vertical bonds andprime
horizontal half-perimeter; it still has the same minimal element, but has a very complicated
generating function. To avoid these possibilities we restrict ourselves todensefamilies of
animals.

Definition 9. A set of animals,G is denseif it is closed under column- and section-deletion.

Most families of animals that are studied on the square lattice are dense, though
some types of restricted self-avoiding walks [12,23] are not (e.g., the anti-spiral walk).
Self-avoiding polygons on thehexagonal latticeare often considered (particularly for
the purpose of computer aided enumeration) as polygons on the square lattice with the
additional restriction that vertical bonds can only be placed according to a brick-work
pattern—i.e., every second vertical edge is disallowed (see Fig. 11). Removing a duplicate
column from such a polygon gives a polygon that violates the brick-work rule, and hence
this family of animals is not dense. It should be possible to adapt the haruspicy techniques
to animals on the brick-work lattice by requiring duplicate sections and columns be
removed in pairs.
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Fig. 11. The highlighted columns in the left hand polygon are duplicates. Removing one of the duplicate columns
results in the polygon on the right which has a vertical bond where there is no edge on the brick-work lattice.

If we restrict ourselves to the examination of dense families of animals, then the
generating functions of equivalence classes are simple rational functions.

Lemma 8. If P is a column-minimal(respectively section-minimal) animal in a dense
family of animals then its expansion has the following generating function:

Gc(P ) =
∏
k

(
xk

1− xk

)γk(P )

(5)

(
respectively Gs(P ) =

∏
k

(
xk

1− xk

)σk(P ))
. (6)

Proof. We state the proof for column-minimal animals. LetP be a column-minimal
animal; it can be encoded as a sequence of columns(c1, . . . , cj ), with ci �= ci+1. Since

P is part of adensefamily of animals, given anyα = (α1, . . . , αj ) ∈ Z
+j there exists an

animalQ encoded by a sequence of columns(c
α1
1 , . . . , c

αj

j ).
So

Xc(P ) =
⋃
α

{
c
α1
1 , . . . , c

αj

j

}
,

Gc(P ) =
∏
i

∑
αi

(
x |ci |⇔)αi =

∏
i

x |ci |⇔
1− x |ci |⇔ , (7)

where|ci |⇔ is the number of horizontal bonds inci . The result follows. The proof for
Gs(P ) can be constructed in a similar way; instead of treating the animal as a whole, one
considers the section configurations in each page in turn.✷

Directly from this we can deduce some of the properties of the coefficient ofyn in the
anisotropic generating function of a dense set of animals:

Theorem 9. If P(x, y) =∑
n�0Hn(x)y

n is the anisotropic generating function of some
dense family of animals,G, then

• Hn(x) is a rational function;
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• the degree of the numerator ofHn(x) cannot be greater than the degree of its
denominator; and

• the denominator ofHn(x) is a product of cyclotomic polynomials.

Proof. From Lemma 6,Hn(x) is the sum of the generating functions of the expansions of
each of the minimal elements inGn. Lemmas 7 and 8 imply that this sum is a finite sum of
rational functions with the desired properties. The result follows.✷

In the next section we further refine the above theorem to give more detailed information
concerning the denominator factors, and then apply this to a number of models, both solved
and unsolved.

3. Denominator factors and applications

3.1. The denominator ofHn(x)

We can sharpen Theorem 9 to determine which cyclotomic factors can appear in the
denominator ofHn(x) by noting that the denominator ofGs(A) can only contain the
cyclotomic factorΨk(x) if A contains aK-section, whereK is some integer multiple ofk.

Theorem 10 (Poles, columns, and sections).If Hn(x) has a denominator factorΨk(x),
thenGn must contain a column-minimal animal containing aK-column for someK ∈ Z

+
divisible byk. Further if Hn(x) has a denominator factorΨk(x)

α , thenGn must contain
a column-minimal animal that containsα columns that areK-columns for some(possibly
different) K ∈ Z

+ divisible byk.
Similar results hold fork-sections and section-minimal animals.

Proof. The proof is identical for both partial orders. We state it here for section-minimal
animals. LetM = {Mi} be the set of section-minimal animals∈ Gn.

Hn(x) =
∑
i

Gs(Mi) =
∑
i

∏
K

(
xK

1− xK

)σK(Mi)

=
∑
i

x |Mi |⇔ ∏
k

Ψk(x)
−∑d σkd (Mi)

= 〈some polynomial inx〉∏
k Ψk(x)µk

,

whereµk � maxi{∑d σkd(Mi)}—this is an inequality since the numerator and denomina-
tor could share common cyclotomic factors. Consequently, if there is no minimal element
Mi containing aK-section (for someK divisible byk) thenµk = 0, and the denominator
cannot containΨk(x).

Similarly, if for all Mi ∈ M the sum,
∑

d�1σkd(Mi) < α, (i.e., there is no minimal
animal that containsα or more columns that areK-columns forK divisible by k) then
µk < α. ✷
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Using the above theorem we can bound which cyclotomic factors may occur in the
denominator ofHn(x). More specifically, we can find a bound on the maximum order of
cyclotomic factors appearing in the denominator ofHn(x), by finding the highest order
section or column appearing in a minimal animal inGn. The next lemma tells us which of
the two partial orders will give the tighter bound.

Corollary 11 (Denominators with�s and�c). Let G be a dense family of animals, and
let Mc (respectivelyMs ) be the set of column-minimal(respectively section-minimal)
animals ofGn. Let

c = max
{
k
∣∣ ∃A ∈Mc with γk(A) > 0

}
and

s = max
{
k
∣∣ ∃A ∈Ms with σk(A) > 0

}
.

Thens � c. Moreover, ifΨk is a factor of the denominator ofHn(x) thenk � s.

Proof. According to Theorem 10, if there is a factor ofΨk(x) in the denominator ofHn(x),
then there must be a minimal animal that has aK-section (for someK divisible by k).
Take a section-minimal animal,A, with ans-section. SinceA is section-minimal, it is also
column-minimal, and so contains a column with at leasts horizontal bonds, sos � c. ✷

If we can show that no animal inGn contains a column or section with more thank

horizontal bonds, then Corollary 11 implies that the denominator ofHn(x) can only contain
cyclotomic factors of order� k. Further, it implies that if we wish to attempt to find such a
bound, it is better to find the maximum number of horizontal bonds occurring in a section
(the numbers), rather than the maximum number of horizontal bonds in a column (the
numberc), sinces � c, and gives tighter bounds on the order of the cyclotomic factors that
can occur.

To illustrate Corollary 11, consider the polygons in Fig. 12 enumerated by their hori-
zontal half-perimeters. One can see that

Xs (P ) =Xc(P ) � Xc(Q) � Xc(R)

and hence

Gs(P ) = Gc(P ) + Gc(Q) + Gc(R),

Fig. 12. PolygonsP , Q, andR (from left to right) are all column-minimal, butQ andR reduce toP under�s .
So whileP contains only 1-sections, all contain 1 and 2 columns.
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where

Gs(P ) = x3

(1− x)3 , Gc(P ) = x3

(1− x)2(1+ x)
,

Gc(Q) = x4

(1− x)3(1+ x)
, Gc(R) = x4

(1− x)3(1+ x)
.

So the column-minimal polygonssuggestthe existence of a higher order cyclotomic
factor,(1 + x), which the section-minimal polygon does not. Summing over all minimal
diagramswill give the same generating function, but there will bemorecancellations using
column-minimal animals.

3.2. Applications

Theorem 10 tells us that if there is no animal inGn that contains ak section (or
a K-section for anyK being an integer multiple ofk), then the denominator ofHn(x)

does not contain a factor ofΨk(x). Further, if there is nominimal animalthat containsα
k-sections inGn (or a total ofα K-sections for anyK being an integer multiple ofk), then
the denominator ofHn(x) cannot contain a factor ofΨk(x)

α . In the following corollary we
apply this idea to a number of solved and unsolved families of animals.

Corollary 12. We have the following results on the coefficient denominators in the
anisotropic generating functions of various families of dense animals:

• The coefficient ofyn in the anisotropic generating function of any subset of column
convex polygons can only contain denominator factors(1− x).

• The coefficient ofyn in the anisotropic generating function of any subset of row convex
polygons can only contain denominator factors(1− x).

• The coefficients ofyn in the anisotropic generating function of3-choice polygons can
only contain denominator factors(1− x) and(1+ x).

• For any dense family of animals(such as bond animals or lattice trees) containingn
vertical bonds,Gn, the horizontal bond generating functionHn(x), cannot contain the
denominator factorΨk(x) if n < 2k − 2.

• The exponent ofΨk(x) in the denominator ofH2k−2(x) is at mostk.

Proof. We claim that all of the above families of animals are dense, and this fact may be
easily checked. We proceed by showing how many vertical bonds are required to construct
an animal that contains a given number ofk-sections, and then the results follow by
application of Theorem 10.

Consider the polygons given in Fig. 13.

• Column convex polygons by definition can only have 2 horizontal bonds in each
column and hence only contain 1-sections.

• Row convex polygons containingk rows, can havek-columns, but they are restricted
to only have 1-sections due to row convexity.
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Fig. 13. A column convex polygon, a row-convex polygon and a 3-choice polygon.

Fig. 14. A single 6-section requires 10 vertical bonds. Between the left of the rightmost 6-section and the right
of the leftmost 6-section there can be at most 12 vertices of degree 1, but at least two of these are required to
connect the left of the animal to its right.

• Each column of a 3-choice polygon can contain at most 4 horizontal bonds, and so all
3-choice polygons contain only 1- and 2-sections.

Consider the animals drawn in Fig. 14.

• To construct ak-section, at least 2k−2 section lines need to be blocked, each requiring
a single vertical bond.

• An animal containing ak-section and exactly 2k − 2 vertical bonds must be of height
k − 1. In such an animal if twok-sections are in adjacent columns they must be
identical, and so the animal is not section-minimal.
From thek − 1 vertical bonds on the left (and similarly on the right) there can be at
mostk lines of horizontal bonds towards the right (and left). One of these lines from the
left must connect to one of the lines from the right, leaving 2k − 2 lines of horizontal
bonds that can terminate in a vertex of degree 1. Hence between the vertical bonds on
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the left of thek-section and those on the right, there can be at most 2k − 2 degree one
vertices.
Between each pair of columns there must be at least one of these degree 1 vertices, so
there can be a total of 2k−1 sections (between the vertical bonds). Not all of these can
bek-sections, since if twok-sections are next to each other there will be no degree 1
vertex between them. So there can bek k-sections, withk − 1 not-k-sections between
them. ✷

The above corollary does not address the problem of finding a bound on the exponent of
Ψk(x) in the denominator ofHn(x) for generaln andk. This requires considerably more
work and is the subject of the following section.

4. Bounding denominators and a weak half solution of bond animals

We are able to find a multiplicative upper bound for the denominator of general bond
animals, by finding upper bounds for the exponents of its cyclotomic factors. In a future
paper we will also do this for self-avoiding polygons (see also [22]). This multiplicative
upper bound actually determines a little over half of the unknowns in the generating
function and so can be considered, in some very weak sense, to give a little over half
a solution of this problem.

4.1. Bounding denominators

The main result of this subsection is to prove the following multiplicative upper bound
on the denominator ofHn(x) (which we denoteDn(x)) in the anisotropic generating
function of bond animals:

Dn(x)

∣∣∣∣∣
(
Ψ1(x)

3n+1
�n/2�+1∏

k=2

Ψk(x)
2n−3k+4

)
. (8)

We obtain this bound by applying Theorem 10; the exponent ofΨk(x) in Dn(x) must be
less than the maximum number ofK-sections (whereK is a multiple ofk) that may occur
in a section-minimal animal withn vertical bonds. We treat the casesk = 1 andk � 2
separately:

• The exponent ofΨ1(x) is bounded above by the maximum total number of sections in
a section-minimal animal. We find this bound by first finding the number of pages, and
then the number of sections that may lie in these pages. Maximising this number gives
the bound.

• For k � 2 we use a similar idea, but it is complicated by two extra conditions. Firstly
that a page containing ak-section must contain at leastk − 1 rows and so not all pages
may containk-sections, and secondly that the maximum number of sections in a page
is greater than the maximum number ofk-sections in a page.
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We start by finding the number of pages in an animal with a given numbers of rows with
one vertical bond and a given number of rows with two or more vertical bonds.

Lemma 13. The maximum number of pages in an animal is(3R1 + 4R2 + 1), whereR1
is the number of rows containing a single vertical bond, andR2 is the number of rows
containing two or more vertical bonds. Consequently an animal withV vertical bonds can
contain at most(3V + 1) pages.

Further2(R1 + R2) + 2 of these pages lie “outside” vertical bonds(i.e., only touching
vertical bonds on one side), leaving(R1 + 2R2 − 1) that lie between vertical bonds.

Proof. An animal with no vertical bonds contains a single page, while a single row animal
contains 4 pages if it contains 1 vertical bond, or 5 pages otherwise (see Fig. 15). We
proceed by appending rows to the animal (see Fig. 16).

By appending a row with 1 vertical bond, two new pages are created (to the left and right
of the bond), while one existing page may be split in two—increasing the total number of
pages by at most 3. Similarly by appending a row with 2 or more vertical bonds, two new
pages are created (to the left and right of the vertical bonds that block the section lines),
while two existing pages may be split in two—increasing the total number of pages by at
most 4. Hence the total number of pages is at most 3R1 + 4R2 + 1. We note that the total
number of pages will be less than this if vertical bonds (blocking section lines) have the
same horizontal ordinate. The total number of pages is maximised when no row contains
more than a single vertical bond.

Fig. 15. The number of pages in a bond animal of height 0 or 1. We note that the rightmost animal contains four
pages that lie “outside” the animal and only a single page lying between vertical bonds.

Fig. 16. Appending a row with a single vertical bond adds 2 new pages and splits an existing page (middle
diagram). Appending a row with two or more vertical bonds, adds 2 new pages and splits 2 existing pages
(bottom diagram). If the new vertical bonds have the same horizontal ordinate as those in the previous row, then
less new pages will be created.
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Between two (vertically) consecutive section-lines there is always a page to the extreme
left of the animal, and another to the extreme right. The number of such pages equal to
twice the number of rows in the animal plus two, i.e., 2(R1 + R2) + 2. ✷
Lemma 14. A section-minimal animal withV vertical bonds contains at most2(V + 1)
vertices of degree1 and at most(3V + 1) sections. This bound is tight since we can
construct a section-minimal animal withV vertical bonds and(3V + 1) 1-sections.

Proof. We prove this by determining the number of pages and the number of vertical bonds
and vertices of degree 1 that may lieinsidethese pages, and sobetweensections.

• Assume that the animal containsR1 rows containing 1 vertical bond andR2 rows
containing 2 or more vertical bonds, and hence contains at most 3R1 + 4R2 + 1 pages.

• An animal with no vertical bonds is simply a horizontal line and so contains 2 vertices
of degree 1. Consider constructing an animal by attaching new vertical bonds to an
existing animal. Each new vertical bond can be connected to at most 4 vertices of
degree 1, however in order to be connected to the rest of the animal, one of these
vertices must be connected to another vertex of degree 1 on the animal. Hence adding
a new vertical bond creates at most 2 new vertices of degree 1.

• Let the number of vertical bonds in this animal isV = R1 + 2R2 + M, of which at
mostM do not block section lines, and so may lie inside pages.

• Such an animal can be “completed” by appending horizontal bonds to its left and right
(see Fig. 17) so that it has 2(R1 + R2 + 1) vertices of degree 1 lying to the extreme
left or right of a row. Hence of the maximum possible 2V + 2 = 2R1 + 4R2 + 2M + 2
vertices of degree 1, at most 2R2 + 2M may lie between sections (not at the extreme
end of a row). If there were an animal with more than this number, then by completing
it one could obtain an animal with more than 2V + 2 vertices of degree 1, giving
a contradiction.

• Consider a page in a section-minimal animal. Between two sections in this page
there must be either a vertical bond, or a vertex of degree 1 (otherwise there would
be duplicate sections). Hence if a page containsc vertical bonds andd vertices of
degree 1, then it can contain at mostc + d + 1 sections.

• If a section-minimal animal containsn pages, withci vertical bonds anddi vertices
of degree 1 in pagei, then it contains at most

∑n
i=1(ci + di + 1) sections. Hence

a section-minimal animal contains 3R1 + 4R2 + 1 pages, withM vertical bonds and
2R2 + 2M vertices of degree one lying inside these pages, then it can contain at most
3R1 + 6R2 + 3M + 1 = 3V + 1 sections.

Fig. 17. Any section-minimal animal (left) can be “completed” (right) so that it has 2(R1 + R2 + 1) vertices of
degree 1 lying to the extreme left or right of a row.
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Fig. 18. By concatenating “I”-shaped configurations of bonds we obtain a section-minimal animal withV

vertical bonds and 3V + 1 sections. This shows that the bound obtained in Lemma 14 is tight.

• By concatenating “I”-shaped configurations of bonds (each containing a single
vertical bond) we can construct a section-minimal animal withV vertical bonds and
3V + 1 1-sections. This construction is shown in Fig. 18.✷

These lemmas are sufficient to bound the exponent ofΨ1(x) in the denominator of
Dn(x). We now move onto the analogous result for generalΨk(x). Since ak-section
contains at least(k − 1) rows, we need to find the number of pages that contain at least
(k − 1) rows, and hence may containk-sections.

We determine the number of pages that contain at least(k − 1) rows, by considering
how many pages lie to the left (or right) of the leftmost (or rightmost) such page.

Lemma 15. Consider a section-minimal animal,A, that contains a page of heighth � 1.
To the left(right) of the leftmost(rightmost) such page, there must be at leasth vertical
bonds.

Further it is always possible to construct a second animal,B, fromA, such that there
are h − 1 pages lying between it and theh vertical bonds to its left(right). This does not
alter the total number of vertical bonds, nor the number of rows with one vertical bond,
nor the number of rows with two or more vertical bonds.

Proof. Without loss of generality, let us consider the pages and bonds to the left of the
leftmost page of heighth. Let us denote the page byP . Since every section-line must be
blocked, the number of vertical bonds to the left ofP must be equal to its height (this was
described in the proof of Corollary 12).

See Fig. 19. Remove all of the animal lying in the rows to the left ofP . Since this
portion of the animal is bounded above and below by section-lines, this can be done without
changing the rest of the animal. We now replace the deleted part of the animal with a new
configuration of bonds that containsh − 1 pages, that preserves connectivity, minimality,
the total number of vertical bonds, the number of rows with 1 vertical bond, and the number
of rows with two or more vertical bonds.

The configuration of bonds we add is a staircase-like configuration and is illustrated in
Fig. 20. This configuration containsh − 1 pages, ensures connectivity and preserves the
number of rows with two or more vertical bonds. The number of rows with one vertical
bond is also conserved since each row incident onP must contain at least two vertical
bonds.

To conserve the total number of vertical bonds we append a sequence of cells to the
bottom row of the staircase (see rightmost illustration in Fig. 20) the total number of
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Fig. 19. If an animal contains a page of heighth, then one can construct a second animal that hash − 1 pages to
the left of the left-most such page. Start by deleting all of the animal to the left of the leftmost page of heighth.
Then attach a staircase configuration (as described in the proof of Lemma 15 and Fig. 20) to the left of the page
of heighth.

Fig. 20. Constructing a “staircase” to be attached to a page of heighth. There areh−1 pages between the vertical
bonds and the page of heighth. In order to conserve the number of vertical bonds one can attach a row of cells
(as shown in the rightmost figure). All of these cells lie in the page of height 1 and so do not alter the number of
pages.

vertical bonds can be conserved and at the same time the number of pages will remain
h−1. The sections in the page of height 1 are separated by vertical bonds, while every other
page in the staircase contains only a single section, and so minimality is conserved.✷

Using the above lemma we are able to determine how many pages in an animal have
height at least(k − 1) and so may containk-sections. We are also able to determine the
maximum number of vertical bonds and vertices of degree 1 lying in these pages. These
facts will be used to determine the maximum number ofk-sections in a section-minimal
animal.

Lemma 16. Since an animal containing ak-section must have at least(k − 1) rows with
two or more vertical bonds, consider a section minimal animal which containsR1 rows
with a single vertical bond,(k − 1+R2) rows with2 or more vertical bonds and a total of
(R1 + 2k − 2+ R2 + M) vertical bonds. Then

• this animal contains at most(R1 + 2R2 + 1) pages that may containk-sections, and
• these pages contain at most2(R2 + M + k − 1) vertices of degree1, andM vertical

bonds.
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Proof.

• By Lemma 13, such an animal contains at most 3R1 + 4(k − 1) + 4R2 + 1 pages, of
which at mostR1 + 2(k − 1)+ 2R2 − 1 lie between vertical bonds and so may contain
k-sections.

• Of this maximum ofR1 + 2k + 2R2 − 3 pages, no animal may have more than
R1 + 2R2 + 1 pages of height� (k − 1). If there were such an animal, then by
Lemma 15 one can construct a new animal from this one such that it has at least(k−2)
pages to the left of the leftmost such page, and similarly to the right of the rightmost
page. This would give a total of more thanR1 + 2(k − 1) + 2R2 − 1, contradicting
Lemma 13.

• By Lemma 14, this animal contains at most 2R1+4(k−1)+4R2+2M +2 vertices of
degree 1, of which 2(R1+R2+k) lie outside vertical bonds, leaving 2(k+R2+M−1)
that may lie inside the pages containingk-sections.

• R1+2(k−1)+2R2 vertical bonds must block section-lines, leaving at mostM vertical
bonds that may lie inside pages containingk-sections. ✷.

Using the above lemma, one may determine how many sections lie within pages that
can containk-sections (being those that contain at least(k − 1) rows). One can then obtain
an upper bound on the number ofk-sections, by assuming that all of these sections are
k-sections. A much sharper result, however, may be obtained by noting that in a page
containing a given number of vertical bonds and vertices of degree 1, the maximum number
of k-sections is less than the maximum number of sections.

Lemma 17. A page in a section-minimal animal that containsc vertical bonds andd
vertices of degree1, may contain at most(c + �d/2� + 1) k-sections.

Proof. Two consecutivek-sections in a page of a section-minimal animal, may not be
duplicates, and so must be separated either by a vertical bond, some number of sections
(that are notk-sections) or some number of vertices of degree 1.

• If there are one or more vertical bonds lying between thek-sections, then they will not
be duplicates.

• If there is some number of sections lying between the twok-sections, then all of these
sections must be separated by either a vertical bond, or a vertex of degree 1. Hence
between the twok-sections there must be at least two vertical bonds, two vertices of
degree 1 or one vertical bond and one vertex of degree 1.

• Thek-sections may not be separated by a single vertex of degree 1, since they would
then have different numbers of horizontal bonds and so could not both bek-sections.
Hence there must be at least two vertices of degree 1 between them.

Consequently, between twok-sections in a page, there must either be at least a single
vertical bond, two vertices of degree 1, or a vertical bond and a vertex of degree 1. Hence
the maximum number ofk sections in a page isa + �b/2� + 1. ✷
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If we consider the total number ofK-sections (whereK is any integer multiple ofk)
in a page containingc vertical bond andd vertices of degree 1, then the above lemma
still holdsexceptwhenk = 1, since two such sections need not have the same number of
horizontal bonds. For example, a 2-section and a 1-section may be separated by a single
vertex of degree 1. This is the reason for the different bounds obtained whenk = 1 and
whenk � 2.

We are now in a position to prove an upper bound on the number ofk-sections appearing
in a section-minimal animal with a given number of vertical bonds.

Theorem 18. For fixed k � 2, consider a section-minimal animal withV = (2k − 2 +
R1 + 2R2 + M) vertical bonds, andR1 rows containing a single vertical bond and
(R2 + k − 1) rows containing at least2 vertical bonds. This animal contains at most
(k + R1 + 3R2 + 2M) k-sections.

For fixedV � 2(k − 1) and k � 2 the number ofk-sections is maximised when the
animal has the minimum number of rows—i.e.,R1 = R2 = 0, andM = (V − 2k + 2). The
maximum number ofk-sections in a section-minimal animal withV � (2k − 2) vertical
bonds is(2V − 3k + 4). This bound is tight.

Proof.

• Since there are at mostR1+2R2+1 pages that can containk-sections, and these pages
contain at mostM vertical bonds and at most 2(R2 + k + M − 1) vertices of degree
1 in these pages, there can be at mostM + (R2 + k + M − 1) + (R1 + 2R2 + 1) =
2M + 3R2 + k + R1 k-sections.

• Maximising 2M + 3R2 + k +R1 for fixedk and fixedV = 2(k − 1)+R1 + 2R2 +M,
is equivalent to maximising 2M +3R2 +R1 on the surfaceR1 +2R2 +M = constant,
whereR1,R2,M � 0. This maximum occurs whenR1 = R2 = 0.

• WhenR1 = R2 = 0, thenM = V −2(k−1), and the number ofk-section is 2M + k =
2V − 3k + 4.

• In Corollary 12 it was shown how a section-minimal animal with 2(k − 1) vertical
bonds andk k-sections could be constructed. In Fig. 21 a construction is given of a
section-minimal animal containingk + 2M k-sections andV = 2(k − 1)+M vertical
bonds. ✷

Fig. 21. An animal with 2 2-sections, and another with 3 3-sections. Introducing the highlighted configuration of
bonds increases the number of vertical bonds by 1 and the number ofk-sections by 2.
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In order to apply Theorem 10 to the above result and obtain an upper bound on
the exponent ofΨk(x) in a given denominator, we must take into account the fact that
a k-section, a 2k-section and so on, all contribute a factor ofΨk(x). In order to obtain
a correct bound on the denominator we need a bound on the number ofk-, 2k-, . . . sections
in an animal withV vertical bonds.

As noted above Lemma 17 does break down when considering the maximum such
sections fork = 1, since a 2-section and a 1-section can be separated by a single vertex
of degree 1, and both contribute a factor ofΨ1(x). Fortunately the other lemmas required
to prove the above theorem are not changed by considering the maximum number of such
sections.

Theorem 19. A section-minimal animal withV vertical bonds contains at most(3V + 1)
1-sections. Fork � 2, a section-minimal animal withV � 2(k−1) vertical bonds contains
at most (2V − 3k + 4) k-sections. Consequently the exponents of cyclotomic factors
appearing in the denominators ofHn(x) are bounded above according to:

• the factorΨ1(x) in the denominator ofHn(x) appears with an exponent of at most
3n+ 1, and

• the factor,Ψk(x), in the denominator ofHn(x) appears with an exponent of at most
2n− 3k + 4 ( for k � 2).

Hence the denominator ofHn(x) is bounded above(multiplicatively) by

Dn(x)

∣∣∣∣∣
(
Ψ1(x)

3n+1
�n/2�+1∏

k=2

Ψk(x)
2n−3k+4

)
. (9)

Proof. Apply Theorem 10 to Lemma 14 and Theorem 18.✷
Corollary 20. The denominator ofHn(x) in the generating function ofanydense subset of
bond animals(i.e., closed under section deletion and duplication) is also bounded above
multiplicatively by

Dn(x)

∣∣∣∣∣
(
Ψ1(x)

3n+1
�n/2�+1∏

k=2

Ψk(x)
2n−3k+4

)
. (10)

Proof. If the denominator is not bounded by this expression, then there must be ak andV
such that there exists a section-minimal animal withV vertical bonds that contains more
than 2V −3k+4 k-sections in this dense subset of animals. However this section-minimal
animal would also be section-minimal in the set of all bond animals which contradicts
Theorem 18. ✷

Where such data exists, one can compare numerical expansions with the above bound,
and in the case of bond animals and lattice trees [13] the it appears to be tight (for all
the available coefficients ofy). For other models, such as self-avoiding polygons and
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directed bond animals, the bound is not particularly good, and finding better bounds for
these models will be the subject of future papers [20,21].

4.2. A weak half solution, and easier computation

To recap, the anisotropic generating function can be written as

P(x, y) =
∑
n�0

Hn(x)y
n =

∑
n�0

Nn(x)

Dn(x)
yn,

where the degree of the numerator is no greater than that of the denominator. The above
multiplicative upper bound determines the denominators of these coefficients up to some
product of cyclotomic factors, and hence also gives a bound on the degree of numerators.

We can obtain a rough asymptotic estimate of the degree of the numerator and
denominator as a function ofn by examining the asymptotics of the degree ofΨk(x), which
is given by the Euler totient functionφ(k). It is known [18] that

∑n
k=1φ(k)/k ∼ 6n/π2,

and so the “average”〈φ(k)/k〉 is approximately 6/π2. Using this one can show that the
degree of thenth denominator is asymptotic to 3n3/(4π2).

Thus there are approximately∼ 3n3/(2π2) unknowns in thenth coefficient of
the asymptotic expansion of the generating function. The bound on the denominator
determines half of these, leaving∼ 3n3/(4π2) that must be determined. In this way, it
can be considered in somevery weak sense to be half a solution of the bond animal and
lattice tree problems.

From a computational point of view, the haruspicy technique greatly reduces the
amount of work required to compute anisotropic generating functions. It reaffirms (the well
observed) fact that the coefficients ofy are rational functions ofx, and more importantly,
it bounds the degrees of the numerator and denominator and so bounds the order of the
expansion necessary to fully determine each of these coefficients. Most importantly, it
determines a multiplicative upper bound for the denominator which appears to be quite
tight, and so reduces the number of unknowns (and hence the required expansion order) by
a factor of two.

In problems possessing horizontal-vertical symmetry, still more unknowns can be
determined using thex ↔ y symmetry of the generating function. In particular, if we
know the first(n − 1) coefficients ofy in the asymptotic expansion, then we know the
coefficients ofxnyi for 0 � i < n and hence the firstn coefficients ofx in the expansion
of the coefficient ofyn. These coefficients can be used to determinen unknowns in the
numerator polynomialNn. See [4] for details of this procedure.

A different but related method, has been used to find anisotropic generating functions
(see [4] for example). It works by using certain spatial and functional symmetries
of a problem, together with a knowledge of the denominators of its coefficients, to
determine some or all the unknowns in the numerators. Such techniques have been used in
combinatorics and statistical mechanics, and in certain circumstances yield full and elegant
solutions. Unfortunately it does not appear that they can be applied here.

We also note that it is possible to demonstrate the rationality ofHn(x) by a transfer
matrix method (see [7–9] for example), however the dimensions of the matrix grow
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exponentially with n, and so give a bound on the degree of the numerators and
denominators that is exponential inn, rather than the polynomial bound given here.

5. Conclusions

We have developed new techniques for the examination of anisotropic generating
functions. These techniques allow us to prove a number of observed properties of the
coefficients of bond animal generating functions. It also allows us to find upper bounds for
the exponents of cyclotomic factors appearing in the denominators of these coefficients,
and thus greatly reduce the amount of computation required to obtain anisotropic series
expansions.

We will apply these techniques to other bond animal models, to other families of bond
animals. In particular, it is possible to tighten the bound given in Corollary 20 for specific
families; such results for self-avoiding polygons are currently in preparation [21] and we
are extending to directed bond animals [20].

Perhaps the most interesting extension of this technique is to prove that (in certain cases)
there is no cancellation of cyclotomic factors between the numerator and denominator of
Hn(x), as is suggested by the apparent tightness of the denominator bound. In particular, it
is possible [21,22] to prove a lower bound for the exponent ofΨk(x) in the denominators
of certain coefficients of the self-avoiding polygon generating function. An important
corollary of this result is that this generating function is not differentiably-finite, and hence
distinctly different from almost all solved families of animals.

We also hope that it will be possible to apply some of these techniques to problems in
lattice statistical mechanics, such as Ising-type models of magnets. The thermodynamic
functions in these models can be interpreted as generating functions of bond animals with
complicated weights [25].
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