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Abstract. The propertiesof the hulls of directedpercolationclustersare studied. The scaling
and finite-size scalingof many quantitiesaroundthe percolationthresholdp. are derivedand
a novel Monte Carlo algorithm, which is more than twice as fast as the standardalgorithm at
pe, hasbeenformulatedto studytheseproperties.Simulationshavebeenconductedhat enable
an estimationof all the exponentdnvolved. In particular,the centralexponent,x, relatingthe
averagehull lengthof clustersto their mass hasbeenestimatedo be 0.773(4) atthe percolation
threshold.This sameexponents estimatedo be 0.9055) for p < p.. Thus,this secondvalue
shouldhold for directedanimals.

1. Intr oduction

Directedpercolationin two dimensiong1, 2], unsolvedon any regularlattice, remainsan
intriguing exampleof a modelwith critical behaviourthatis simultaneouslyot conformally
invariantandyet apparentlycomplex. Onequestionthathasmadedirectedpercolationto be
anobjectof studyby severaluthorg3-5] hasbeentherationality or otherwiseof its critical
exponents Exponentrationality holdsfor all conformallyinvarianttwo-dimensionamodels
(seefor example[6]). Also, a varied collection of physicalproblems,suchas fluid flow
in porousmedia,epidemics forestfires, Reggeorfield theory, variouschemicalreactions,
and populationdynamicshave kept directedpercolationas a canonicalmodel of studyfor
the past20 years.

Isotropic,or standardpercolationin two dimensiong7, 8] hasbeenextensivelystudied
for many yearsandits critical behaviouris now well understoodevenin the absenceof
a mathematicallyrigoroussolution). Critical exponentsassociatedvith a whole menagerie
of physical quantitieshave beencalculated. Includedin this list is the set of exponents
associatedvith the scalingof the standardproperties,suchas size and numberof clusters
with the length of their externalperimeters(#). Dependingon its precisedefinition the
externalperimeteris known asthe hull. This scalingis in contrastto the moreusualonein
termsof the mass,s (beingnumberof sites),of the clusters.Centralto this collectionis the
exponent,x, that connectsyia scalingrelations,the exponentderivedusing hull lengths
and those using the massas the basic scaling variable. It is definedby the relationship
betweenthe averagehull length of a given massandthat mass:

(h) ~ s* ass — oo (1.1)

andit is clearthat% < x < 1. In fact, it attainsthreedifferentvaluesdependingon whether
the concentrationp, is above,at, or below, the critical concentrationp.,.

1 E-mail address:aleks@maths.mu.oz.au

0305-4470/97/196679+13$19.5@¢) 1997 |IOP PublishingLtd 6679



6680 A L Owczarek et al

N /Occupied origin (seed)

@ Hullste

@ Occupied site

Figure 1. A directedpercolationclusterof masss = 22, hull & = 20, lengthv = 9 andwidth
w=4.

In this paperwe study the hull scaling exponentsfor directed percolationin two
dimensions. In particularwe have estimatedthe value of the exponentx to be 0.773(4)
at p = p.. We notethatthis is closeto the appealingrational g However,for directed
problems, for which conformal invariancedoes not hold, there is no reasonto expect
rationalexponentsandpastexperiencdg9] hasshownthattheseappealingationalfractions
are often just good approximations.In the courseof our calculationswe haveintroduced
severalnovel algorithmsfor simulatingdirectedpercolationclusters. Thesehavea speed
advantageverthetraditionalmethodof simulation. Our resultsaresummarizedn tables3
and4.

This paperis organizedasfollows. In section2 we definethe propertiego be calculated
andreviewtheir associatedcalingtheory. In section3 we introducethe algorithmsutilized
for our simulations. We have set out our resultsand commentedon their accuracyand
precisionin section4, with a brief concludingsummaryfollowing in section5.

2. Definitions and scaling theory

We have considereddirected site percolationon a quadrantof the squarelattice seeded
from a cornerasshownin figure 1. Startingfrom the origin one can producea clusterby
occupyingthe site of the lattice at (x, r) with probability p providedeither(x — 1,7 — 1)
or (x,t — 1) is occupied. This producesa clusterwherethe origin is connectedo each
occupiedsite by a directed path of occupiedsites. The numberof occupiedsitesin the
clusteris denotedby s (andcalledthemass).If anoccupiedsite of the clusteris a perimeter
site (one adjacentto an unoccupiedsite) andif further it can be connectedby a path of
unoccupiedsites (via nearestand next-nearesheighbours)to the edgeof the lattice then
it is deemedto be a hull site of the cluster. Hence,the hull is the externalperimeterof
the clusteritself (whereasoften in percolationtheory the ‘external perimeter’ denotesthe
unoccupiedsitesadjacento the hull). The numberof hull sitesis denotedh.
We definethe normalized cluster number as

Pr(origin € s-cluster
nes. p) = 1ON9 ) (2.1)

N

which is identicalto the definition usedin isotropic percolation.Of course,in a simulation
of this directedpercolationproblemonewould naturally estimateN, = sn, asthe average
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proportion of clustersproducedthat are of mass(size) s. The normalized hull number

ny(h, p) is definedin ananalogousvay. Notethatin our set-upthe probability of obtaining
aclusteris 1. Hence the probabilitythatthe origin belonggo ainfinite clusterP (p) satisfies

P(p)+ Y sng=P(p)+ Y hny=1. (2.2)
s=1 h=1

Canonicalfunctions of interestare the mean cluster size, S(p) and mean hull size, H(p)
which are definedas

*  s%n
S(p) = ZZ;}M (2.3)
s=1 s
andsimilarly
ZZ‘llhznh
H === 2.4
(p) S iy (2.4)

The geometric size of the clustersare also of interest. One wantsto calculatesome
measureof the horizontalandvertical extentof the clusters,suchasthe radiusof gyration.
For easeof calculationwe havesimply chosento useas a measureof the vertical size, v,
the vertical length (or ‘calliper’ length) of the clusterin the variabler (thatis, the value
of ¢ for which thereis at leastone occupiedsite suchthatat ¢ + 1 thereare no occupied
sites). For the horizontal size we have chosenthe maximumwidth, w, of the rows of the
cluster,over all the rows of the cluster(‘calliper width’). We shall usethesesamesymbols
to denotethe averagesover all clustersof masss, thatis v(s, p) and w(s, p), and with
primesfor averageover all clustersof particularhull lengths. Averagesover all clusters
weightedby the the probability of obtainingclustersof masss or hull # aregivenas

Doesq USn
74 === 7 2.5
R > 9
and
’ Zzo—l U/hnh
\% =0 2.6
(p) S g (2.6)

respectivelyfor the vertical size. Similar equationsdefine W (p) in termsof w(s, p) and
W’(p) in termsof w’(s, p). The calliperlengthandwidth shouldalsobe of direct physical
interestwhen modelling a situationwhere the maximumextentof somephysical process,
suchasan epidemic,is important.

Of mostinterestis the scalingin the vicinity of the critical point. The single variable
scalingassumptiorfor the normalizedcluster numbers(see[8] and referencegherein)is
centralto our currentunderstandingf the behaviourof the systemnearthe percolation
thresholdandis given by

ng(s, p)™ s~ " f((p — p)s?). (2.7)

This involves the two basicexponentst ando. For an exactdefinition of the ‘scalesas’
symbol,~, seeBrak and Owczarek[10]. The behaviourof the function f(z) for large
argumentmust matchthe scaling of n, for p away from p.. The function f(z) is non-
zero at the origin. An analogousassumptiorcan be written down for the normalizedhull
numbersas

ni(h, p)> h™7 f'((p = ph™) (2.8)
with the sameconditionson f'.
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To connectthesetwo forms and more preciselytheir exponentsve useequation(1.1)
andthe assumptiorthatthe numberof clusters,N,, countedby sizeis relatedto the number
of clusters,N;, countedby hull lengthwith the following equation:

YN A ON, (2.9)

wherehg is the averagehull size of clustersof masssg. Thatis, the numberof clustersof
size < so &~ numberof clustersof hull < hg. Scalingarguments[11,12] canthenbe used
to showthat
2=t _o _ (2.10)
2—1t o
It is worth noting that this scalinglaw is different to the one that holds in the caseof
isotropic percolation. This is simply becausen directed percolationa single realization
of the systemproducesa single cluster whereasin isotropic percolationit producesa
distribution of clusters. In isotropic percolationonehas (1 — 7)/(1 — t') = o/0’ = x
which hasbeenverified usingMonte Carlo simulations[13].
The exponentsassociatedvith the other quantitieswe definedaboveare

P(p)~Ip—plf  asp—pf (2.11)
S(p) ~ |p = pcl” asp — pe (2.12)
H(p) ~|p — pel” asp — pe (2.13)
Vip)~Ip—pl"’ asp — p, (2.14)
V'(p) ~|p—pli™* asp — p, (2.15)
W(p) ~ |p— pl™~* asp — pe (2.16)
W (p)~Ip—pl"™ asp — pe (2.17)
asfunctionsof p, and
v(s, pe) ~ s ass — oo (2.18)
V'(h, p) ~ ¥ ash — oo (2.19)
w(s, peo) ~ s ass — oo (2.20)
w'(h, pe) ~ h"™* ash — oo (2.21)

asfunctionsof the two sizes.
Theseexponentsare not independentind shouldsatisfy the following relations:

v =, (2.22)
with

V= o and vy =o'y (2.23)
andhence

v = xv| (2.24)

with an analogoussetfor v, andits relatives. Also, other scaling argumentsusing (2.7)
and (2.8) give

and y' = (2.25)
and

B = = . (2.26)
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2.1. Finite-size scaling

In orderto extractvaluesfor the exponentslefinedvia scalingin the concentratiorp, such
as(2.11),it may be advantageout performa finite-sizescalinganalysis,andscaleagainst
a cut-off instead.We havefound it convenientanda good useof the datafor the ordinary
scalinganalysisto fix a cut-off in the mass,or hull length, of the clustersgeneratedso that
s < Smaxs OF I < hmax respectively.We usedthe samedatafor a finite-sizescalinganalysis.

Onecanarmuethatfor afinite systemof maximumsizesmax O Amax thatthe geometric
size measureshouldscalewith the cut-offs as

Vs smad P g ((p — pe)smax’) (2.27)
V' a7 ' (p — p)hmas) (2.28)

whereg and g’ are scalingfunctions,and are expectedto be unimodal: for large enough
‘maximum sizes’plots of V and V' are unimodalwith peaksat ppeax (note that ppeax is a
function of the maximumsize smax Of max). Hence,at p = p., or a p = ppeax We expect

V o~ smaI P (2.29)
V'~ hpax P (2.30)

Again there are analogousequationsfor W and W’ with v, substitutedfor v;. These
equationscan then be usedto analysethe dataproducedin simulationsfor the exponents
associatedvith the meanclusterlengthandwidth.

3. Generation algorithms

We haveusedtwo algorithmsto generatelata. Thefirst is the canonicalMarkov algorithm
which treats two-dimensionaldirected site percolationas a one-dimensionabranching
Markov process. This has beenthe main methodusedin the past, and has proved to
be simple to encodeand fast on execution. To calculatethe hull length, whole clusters
needto be storedand so there are more stringentmemory limitations than with the usual
implementationof this algorithm. Using this algorithm and calculatingthe hull we were
able to simulateclustersof sizes = 217 on a DEC Alpha 250/4/266using approximately
44 MB RAM.

However, we have developedalgorithmsthat generatethe externalhull of a cluster,
andaslittle of the internalstructureasis necessarymakingthemevenfasterthoughmore
difficult to code. The exponentx relating massto hull length scaling (1.1) cannotbe
calculatedfrom thesesimulationsalone.

3.1. Hull algorithms

An algorithmfor isotropicpercolationthatiteratively generateshe externalhull of a cluster
was formulated sometime ago [14, 13]. We shall refer to this as the ZCS algorithm.
Becausehe numberof hull sitesscalesash ~ s*, where% < x < 1, oneexpectsthatin

generals > h, andhencethatthetime takento generate clusterhull is muchlessthanthat
takento generatea full cluster. The ZCS algorithmhasbeenusedto accuratelyestimatep.,.

for isotropicsite percolation[13], andconfirmthe valuesof hull exponentgredictedby the
(isotropic) hull scalinglaw. It was naturalto consideradaptingthe idea of this algorithm
to the caseof directedpercolation.However,as one cansee,below this applicationis not

straightforward.With the additionof someextrapartsthoughthe algorithmcanbe adapted
to the caseof directedsite percolationon the squarelattice.
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Figure 2. Beforethe walker canmoveto the new site it
mustfirst checkto seeif a supportexists(brokencurve).

3.1.1. Asingle-walker algorithmfor directed percolation hulls.  We first describehesingle-
walker algorithm, asits featuresand limitations are reflectedin the two-walker algorithm
we havedevelopedor our study. This single-walker algorithmdescribeghe movementof
a single walker startingfrom the origin, moving anticlockwiselaying down the hull of the
cluster.

Adding anisotropyto the hull walker of ZCS is itself not difficult. However, it is
complicatedby two features.First, the directionsthat the walker is allowedto move from
the current site dependupon the absolutedirection just moved (rather than on only the
relative direction). Secondly,and more significantly is the fact that the hull of a directed
percolationclusteris not necessarilya directedpercolationclusteritself. Thatis to say,in
isotropic percolationthe hull is itself a clusterso the internal structureof the clusterdoes
not matter. Hence,the hull is independenof the internal structureso that eachrealization
of the hull canbe achievedwith the correctprobability by constructingthe hull alone. The
directedpercolationhull structuredependaiponthe internalstructuresinceall sitesmustbe
supported by a directedpath of occupiedsitesfrom the origin to that site. To obtaineach
hull with the correctprobability in a simulationone must excludeinternal configurations
that do not satisfy the definition of directedpercolation. Practically,this meansthat when
the walker is aboutto stepin certain directions(as describedbelow), we must first test
to seeif the site is supported (seefigure 2). The supportof the site is checkedfor, and
generatedby a subroutinecalled orphan.

The orphansubroutinegenerates tree of pseudo-occupie¢hot includedin the cluster
definition) sitesin an attemptto constructa directedpathbackto partof the clusteralready
occupied(suchasthe hull). It doesso by alwaystrying to find the ‘left-most’ suchpath. If
it succeedshat single-directecdpath becomesa designatedart of the directedpercolation
cluster. The restof the generatedree is inaccessiblgo the continuing algorithm, since
it is to the left of the path. If one were to include in the definition of the cluster the
whole generatedree this subroutinewould producenon-directedpercolationclusters. The
pseudositegeneratedare, however,requiredto obtain the correctprobability for a given
hull. As such, this featureis both peculiarand novel but neverthelessrue. A full proof
of the equality of the probabilitiesof generatiorby our algorithm,and by the definition of
directedpercolation,is long andtedious. The essencef the proof utilizes the fact thatany
site not visited by eitheralgorithm canbe arbitrarily designatedhs occupiedor not solong
asthe probability of doing so addsup to 1.

The single-walkeralgorithmgenerates two-dimensionaktructureand naively requires
the whole squarelattice on which to work, thoughmemory managemenproceduressuch
asdatablocking canbe employedto alleviatethis constriction. The algorithmrequiresfour
possiblesite states: blank, vacant, occupied and hull. A blank site is one that has not
yet beenvisited by the algorithm and so could be either vacantor occupied. The orphan
routine setsoccupiedsites as occupied,and the single-walkersetsoccupiedsites as hull.
For simplicity, directionsfrom (x, ¢) to (x’, ¢") will be abbreviatedasin table1.
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Table 1. Directions,their abbreviationsandthe translationgheyrepresenbn the directedsquare

lattice.

Abbreviation  Direction Ax At

dl down-left x' ' =x V=t+1
dr down-right x'=x+1 ¢ =r+1
ul up-left X=x-1 t=t-1
ur up-right x'=x '=r-1

Table 2. Movementtable for the single-walkeralgorithm giving the movementpreferences
(seefigure 3 for an example)andthe requiredtestsfor eachpossiblepreviousmovementgsee
table 1 for abbreviations).The testsare denotedin parenthesedy (b), (s) and (n). The test
(b) is whetheror not the site (in that direction)is blank and thena randomnumbergenerated
between0 and1 is lessthan p; andthe test(s) is whetheror not the site is supportedwhich is
testedby the orphansubroutine.The casewhena testis unnecessaris denotedby (n): trueis
automaticallyreturned.

Directionmoved First Second Third Fourth

down-left di(b) dr(b) ur(n) o
down-right di(b) dr(b) ur(s) ul(n)
up-left ur(s) ul(n) o )
up-right dr(b) ur(s) ul(n) o

Startingfrom the origin the algorithm proceedsasfollows.

(I) Setthe currentsite asthe hull.

(I Rememberinghe direction just moved, makethe next move accordingto table 2.
Usethe row appropriateto the directionjust movedand:

(a) checkto seeif thefirst testis true (thatis, the onein the first column);

(b) if thetestis true proceedto (l11);

(c) if otherwisesetthe testedsite asvacantandrepeat(ll)(a) with the next preference
(nextcolumn).

(1) 1If the walker tries to move in an upwarddirection from the origin the algorithm
terminatesptherwiseexecutethe move andreturnto (1).

Initially it is assumedhat the walker hasmoveddown-left to the origin.

Onlongruns,this algorithmprovedto be slowerthanthe Markov (plus hull walker)near
p.. Closerexaminationof generatedtlustersshowedthat the orphanroutine (seefigure 4)
was ‘overflowing’ whenit was searchingfor supports. It was searchinga very wide area
for supportingsitesand this areawas frequentlyfound to be outsidethe final clusterhull
andat timesit wasapproximatelythe samesize asthe (virtual) clusteritself. This problem
was overcomeby usingtwo walkersin parallel.

3.1.2. The dual-walker algorithm In the dual-walker algorithm two walkers move in
tandem,with one always waiting for the other to catch up. Thus, before anotherstep
downwardsis takenboth are on the samerow. This avoidsthe overflow problemthat the
single walker faced (seefigure 5), as now the only areathat will be searchedy orphan
routinesis strictly betweenthe pathsthe two walkershaveset,i.e. within the cluster.

Both walkersmove in much the sameway as the single walker describedabove, but
now onewalker is left biased(as above),andthe otheris right biased. Similarly thereare
two orphanroutines,oneleft biasedandthe otherright biased.
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Figure 3. Theorderpreferencef movesafteranup-right
stepfor a left-biasedwalker.

Figure 4. The orphan routine can possibly search Figure 5. Whentherearetwo walkersin parallel,the
anywherebetweenthe currently defined hull and the  orphanroutinecanonly searckhstrictly insidethecluster.
right-handboundaryof the lattice.

Also, becausehereis the possibility that both walkersmay be at the samesite at the
sametime thereis a together walker subroutineto accountfor this:

(1) setthe currentsite asthe hull;

(2a) if thereis a blank site dl, occupyit with probability p (setashull) or elsesetit as
vacant;

(2b) if thereis a blank site dr, occupyit with probability p (setashull) or elsesetit as
vacant;

(3a)if the sitesat both dl anddr havenow beenoccupiedthenreturnto the main part
of the dual-walkeralgorithmwith two separatevalkers;

(3b) if only onesite hasbeenoccupiedthen movethereandrepeatfrom 1;

(3c) otherwise, there are no unoccupiedsites below, and so the whole algorithm
terminates.

The dual-walker algorithm proved difficult to encode,but was faster than both the
single-walkerand the Markov (plus hull walker) algorithmswhen simulatingat p.. It was
combinedwith an appropriatememorymanagementode (datablocking [13]) and usedto
generatethe hull-specificdatawhich we analysed.

4. Resultsand discussion

The Markov and dual-walkeralgorithmswere usedto generateclustersat variousvalues
of p and systemsize. One may be temptedto usedatafrom clustersof length lessthan
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somecut-off L to computeexponents.However,thereis a crucial loss of data;if clusters
arelimited by a length L thenthe clusternumbersn,, wheres > L, lose the contribution
of clusterswith lengthgreaterthan L. This leadsto inaccuratedistributionsfor s > L, and
the use of ordinary scalingfor analysisis then inappropriate. Insteadwe set the system
sizein termsof the numberof sites,with maximumclustersize setat smax for the Markov
simulations,and maximumhull size hmax for the dual-walkersimulations.

The comparisonof the speedof the two algorithmsneedscareful analysis. Sincewe
are looking for distributionsof lengthsand widths as well as hulls, we needto compare
the Markov and dual walker whenthey are generatinghe samedistributions. The critical
factorin this comparisoris the hull scalingexponentx. The furtherthe valueof x is from
1, the smallerthe hull of an averageclusterof particular massis, and hencethe greater
the time savedby the dual-walkeralgorithmis. It was found that whenthe cut-offs were
setashimax ~ 25000 andsmax ~ 131072, the algorithmsgeneratedipproximatelythe same
distributions but the dual-walkeralgorithmwasabout2.5 timesasfastasthe Markov (plus
hull finding) algorithm.

Dependingon the algorithm, for eachclusterthe following quantitieswere calculated:

e sizes, the total numberof occupiedsitesin the cluster;

o hull &, the total numberof occupiedsitesin the externalhull asdefinedpreviously;

o ‘calliper’ lengthv, the maximumlengthof the cluster;

o ‘calliper’ width w, the maximumwidth of the rows of the cluster.

Using the Markov algorithm and a simple walk-around-the-hull,clusterswere first
generatedn full and then their hulls determined. This gave distributions of eachof s,
h, v andw. A total of 1.8 x 10° clusterswere generatedat p. using this methodup to
the cut-off of smax = 131072, of which 1.3 x 10° had masslessthat the maximum. By
calculatingthe averagehull length as a function of massthe hull scalingexponentx for
p < pe, p = p. and p > p. was estimated. The unprimedlength scale exponentsp
andv, were also calculated. With the exponentr found directly from the distribution of
mass,theseprovideda checkon our analysedy allowing a comparisornwith recentseries
estimated5]. The dual-walkeralgorithmwasusedto generater, v andw distributionsin
a wide rangeof p, with specialattentionpaid to p.. A total of 4.5 x 10° clusterswere
generatedt p. usingthe dual-walkeralgorithmup to the cut-off of 4y, = 32768 of which
3.3 x 10° hadhull lessthat the cut-off. For the sakeof generalcomparisorthe simulation
of 10° clusterhulls at p = p. with a cut-off of hmax = 32768 took 2.5 CPU hourson a
DEC Alpha 250/4/266.

We have performedseveraldifferentanalysef the data. Ordinary scalingand finite-
size scaling relationsallow us to calculateexponentshy examiningthe behaviourof the
following distributions:

e quantity versushull or clustersizeat p = p., usingordinary scalingsuchas(2.18);

e quantity peakheightversussystemsize, usingfinite-sizescalingsuchas (2.29).

In the ordinary scalinganalysesthe value of p. usedwasthat providedby the precise
seriesestimateof Jensen[5], thatis p. = 0.7054853 (which is more precisethan our
simulationscould achieve).

4.1. Ordinary scaling analysis

From the Markov simulationsdatawe extractedestimatesof the exponentsx at p. and
x below p., ov, ov,, and t using ordinary scalingassumptions.From the dual-walker
simulationwe calculatedestimatef o'v, o’v, andz’. To do this we analysedhe datain
severaldifferentways. Genericallywe calculatedocal exponentestimatedrom (weighted)
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Figure 6. A plot of local estimatesof the exponentx againstl/ log(s), with (95% confidence
interval) error-bars.The horizontalline represent®ur final estimate.

linear regression®n small sectionsof the dataandthen plottedtheseagainstthe reciprocal
of the logarithm of the meanposition of the local regression(for visual purposesonly).
Fortunatelyour estimatesseemedo convepge within the rangesimulatedand so we took a
final estimatefrom the (weighted)averageof the lastfew local exponentestimates We did
not attemptany further extrapolation.Importantto this processvasthe determinatiorof the
rangeoverwhich thelocal exponentestimatesvereessentiallyconstant.In figure 6 we plot
thelocal estimategor the exponentx obtainedby first calculatingthe averagéehull lengthfor
eachvalueof massfrom our simulations thenbinning thoseresultsin logarithmicallyequal
bins of length A In(s) = 0.02, andextractinglocal slopesfrom a weightedlinear regression
of disjoint contiguoussetsof 20 points. In this casewe usedthe lastfive pointsto provide
an estimateof x. We varied the binning size and rangeover which the linear regressions
were calculatedto testthe robustnes®f our estimate. We utilized bin sizesof 0.02,0.05
and 0.4 aswell as simple linear bins of size 1, varying also the numberof bins usedin
the linear regressionso asto makethe error barsreasonable We are thereforeconfident
that our estimatesand associatecerror barsrepresent bestestimatefrom the largestend
of our data. We howeverdo not provide an independenestimateof the systematicerror
but given the trend of the datathis should be less than the statisticalerror quoted. The
exponentestimatebtainedin the aboveway arelisted in table 3.

The accuracyof our methodcan be gaugedby consideringthe estimatesof the mass-
basedexponentsovy, ov; and z, noting that thesewere calculatedfrom the Markov
algorithm simulations. The internal consistencyof theseestimatescan also be gauged
by using scalingrelations. One can obtain an independengestimateof the exponentx by
using relation (2.10) and the pairs of estimatedor ov; andos’v), andov, ando’v,, and
finally T and t’. Thesegive 0.774(9), 0.774(10) and 0.772(14) respectively,which are
clearly consistenwith our direct estimateof 0.773(4).

Below p., & p = 0.65, the exponentx was also estimated(seetable 3). This value
should be the value of x that holds for directed animals since the large s (and so k)
behaviourof clustersare dominatedby directedanimals(analogousassumptionsare true
for percolation:see[8]). The exponentx was also estimatedabovep. at p = 0.715, and
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Table 3. Our bestestimatedor the exponentsbtainedvia a standardscalinganalysisof our

data.
Quantity Exponent Our estimate Seriesresults
(h)(s) for p < p. x 0.905(5) uncalculated
(h)(s) at p, X 0.773(4) uncalculated
v(s, pe) oV 0.680(5) 0.678818(22)
w(s, pc) ovy 0.431(8) 0.429431(14)
ns(s, pe) T 2.1077(13) 2.10825(8)
v'(h, pe) o'y 0.879(4) uncalculated
w'(h, pe) o'vy 0.557(5) uncalculated
nu(h, pe) 14 2.1395(8) uncalculated
25007 System Size
O 30000
& 2000+ 0 20000
2 A 10000
T 1500
c
[
[
= 1000
500 g eV g

Figure 7. Plotsof meanhull size, H, versusp, — p for varioussystemsizes.

was found to be steadilydecreasingas s becamelarger. Given this lack of convegence
we did not attemptto estimatethe value of the exponent.However,abovep., clustersare
expectedo scaleastwo-dimensionabbjects. Consequentlywe expectthe hull to scaleas
the surfaceof a two-dimensionabbject. So we predictthat x will convepge to the surface
valueof 1 in thelarge s limit.

4.2. Finite-size scaling analysis

For the three quantitiesmeanheight V', meanwidth W’ and averagehull A calculated
from the dual-walkeralgorithm,we utilized their peakvaluesto obtainexponentestimates.
Simulationswereconductedn therangep = 0.66—Q07134atvaluesof p spacedn intervals
that varied from 0.0001to 0.0005 dependingon whetherthe simulationswerein the peak
regionor in the shoulders.At eachpoint 5 x 10° clusterswere generated.

We first plotted each quantity for various valuesof cut-off . againstp (see,for
example,figure 7). Using a weightedquadraticfit nearthe peakwe estimatedthe peak
position and value. We note herethat estimatesat differentvaluesof hnax but the same
valuesof p, werecorrelatedn this analysis(aswe usedthe samedatarunsto producethe
estimates) However,our peakvalueswere not so correlatedgiven that the peakpositions
weredistinct and as simulationsat differentvaluesof p wereindependent.

The peakheightswere calculatedfor /imayx = (+/2)" for m = 20, ..., 30 andweighted
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Table 4. Our estimatedfor the exponentobtainedvia finite-size scaling (FSS)analysisof the
data. Thesecanbe comparedvith estimatesalculatedrom scalingrelationsand our estimates
from the ordinary scalinganalysisin section4.1.

Quantity  Exponent FSSestimate Scalingestimate

Vihma () —flo’ 072(2) 0.740(6)
W' (hmax) vy —B)o’ 0.408(12) 0.418(5)
H(hmay  V'0’ 0.85(2) 0.8605(8)

0.4

Collapsed Distributions

0.3

9(2)

0.2

0.1

Figure 8. A plot of the scalingfunction g(z) associateavith the meanhull H(p; hmax) against
the variablez = h‘,’n'ax(p — pe)- The valuesof hmax usedwere 5000, 10000, 20000, 30000.
Note that the maximumvaluesof |p — p.|, ratherthanz, for eachplot werethe same.

linear regressionwas performedover those points and subsetsfixed at the large end of
the datarange. There seemedo still be significantsystematictrendsin the dataand the
statisticalerrorswerelarge. Our finite-sizescalingestimatesand estimatesalculatedfrom
our ordinary scalinganalysisaboveand appropriatescalingrelations,are givenin table4.

While theseestimatesare not as preciseor stableas thoseobtainedfrom the ordinary
scalinganalysistheyareneverthelessonsistentvith them. Usingthe peakheightexponent
estimatesye haveillustratedthe goodness-of-fiproducedby plotting the scalingfunction
g(z) of the meanhull A (seefigure 8) usingdatafrom different cut-offs.

5. Conclusions

This studyhasestimatedraluesfor the exponentsassociateavith the scalingof the standard
propertiesof directedpercolationclusterhulls by meansof Monte Carlo simulations. We
havefoundaninternally consistensetof values thatarealsoconsistentvith seriesestimates
of the massscalingexponents:the comparisonmadepossibleby scalingrelationsand an
estimateof the connectingexponentx betweerthetwo setsof exponentsFurthermorethis
connectingexponentx is closeto the rational % thoughwe expectfurther analysisof this
problemto excludethis value. This is intriguing from the point of view of a possibleexact
solution: its form mustbe unusualif the exponentsare not rational. It tallies thoughwith
otherexponentvaluesfor this problemwhich seemalsoto havedefiedrational (fractional)
conjecturein the past.



On the hulls of directed percolation clusters 6691

Acknowledgments

Financialsupportfrom the AustralianResearchCouncil is gratefully acknowledgedy the
authors.

References

(5]
(6l
(7]

(8]

El
(0]
(11]
[12]
(13]
[14]

Kinzel W 1983Percolation Sructures and Processes (Annals of the Israel Physical Society 5) ed G Deutscher,
R ZallenandJ Alder ch 18, pp 425-45

Bunde A and Havlin S 1991 Fractals and Disordered Systems ed A Bunde and S Havlin (Heidelbeg:
Springer)ch 2, pp 81-2

Jenserl andGuttmam A J 1995J. Phys. A: Math. Gen. 28 4813

Jenserl andGuttmam A J 1996J. Phys. A: Math. Gen. 29 497

Jenserl 1996J. Phys. A: Math. Gen. 29 7013

Cardy JL 1996 Scaling and Renormalization in Statistical Physics (Cambridge:CambridgeUniversity Press)

Bunde A and Havlin S 1991 Fractals and Disordered Systems ed A Bunde and S Havlin (Heidelbeg:
Springer)chs 2, 3, pp 51-149

Staufer D andAharonyA 1992An Introduction to Percolation Theory 2nd edn(London: Taylor andFrancis)

ConwayA and Guttmam A J 1994J. Phys. A: Math. Gen. 27 7007

Brak R andOwczaré& A L 1995J. Phys. A: Math. Gen. 28 4709

Leah P L andReich G R 1978J. Phys. C: Solid Sate Phys. 11 4017

Weinrib A and Trugman S A 1985Phys. Rev. B 31 2993

Ziff R M 1986 Phys. Rev. Lett. 56 545

Ziff R M, Cumming P T andStell G 1984 J. Phys. A: Math. Gen. 17 3009



