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Abstract. The propertiesof the hulls of directedpercolationclustersarestudied.The scaling
and finite-sizescalingof many quantitiesaroundthe percolationthresholdpc are derivedand
a novel Monte Carlo algorithm,which is more than twice as fast as the standardalgorithm at
pc, hasbeenformulatedto studytheseproperties.Simulationshavebeenconductedthatenable
an estimationof all the exponentsinvolved. In particular,the centralexponent,x, relating the
averagehull lengthof clustersto their mass,hasbeenestimatedto be0.773(4) at thepercolation
threshold.This sameexponentis estimatedto be 0.905(5) for p < pc. Thus,this secondvalue
shouldhold for directedanimals.

1. Intr oduction

Directedpercolationin two dimensions[1,2], unsolvedon any regularlattice, remainsan
intriguing exampleof a modelwith critical behaviourthat is simultaneouslynot conformally
invariantandyet apparentlycomplex.Onequestionthathasmadedirectedpercolationto be
anobjectof studyby severalauthors[3–5] hasbeentherationalityor otherwiseof its critical
exponents.Exponentrationalityholdsfor all conformallyinvarianttwo-dimensionalmodels
(seefor example[6]). Also, a varied collection of physicalproblems,suchas fluid flow
in porousmedia,epidemics,forestfires, Reggeonfield theory,variouschemicalreactions,
andpopulationdynamicshavekept directedpercolationasa canonicalmodelof study for
the past20 years.

Isotropic,or standard,percolationin two dimensions[7,8] hasbeenextensivelystudied
for many yearsand its critical behaviouris now well understood(evenin the absenceof
a mathematicallyrigoroussolution). Critical exponentsassociatedwith a whole menagerie
of physical quantitieshave beencalculated. Included in this list is the set of exponents
associatedwith the scalingof the standardproperties,suchassizeandnumberof clusters
with the length of their externalperimeters(h). Dependingon its precisedefinition the
externalperimeteris knownasthehull. This scalingis in contrastto themoreusualonein
termsof themass,s (beingnumberof sites),of theclusters.Centralto this collectionis the
exponent,x, that connects,via scalingrelations,the exponentsderivedusing hull lengths
and thoseusing the massas the basic scaling variable. It is definedby the relationship
betweenthe averagehull lengthof a given massandthat mass:

〈h〉 ∼ sx ass → ∞ (1.1)

andit is clearthat 1
2 6 x 6 1. In fact, it attainsthreedifferentvaluesdependingon whether

the concentration,p, is above,at, or below, the critical concentrationpc.
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Figure 1. A directedpercolationclusterof masss = 22, hull h = 20, lengthv = 9 andwidth
w = 4.

In this paper we study the hull scaling exponentsfor directed percolation in two
dimensions. In particularwe haveestimatedthe value of the exponentx to be 0.773(4)

at p = pc. We note that this is closeto the appealingrational 7
9. However,for directed

problems, for which conformal invariancedoes not hold, there is no reasonto expect
rationalexponents,andpastexperience[9] hasshownthat theseappealingrationalfractions
are often just good approximations.In the courseof our calculationswe haveintroduced
severalnovel algorithmsfor simulatingdirectedpercolationclusters. Thesehavea speed
advantageover thetraditionalmethodof simulation.Our resultsaresummarizedin tables3
and4.

This paperis organizedasfollows. In section2 we definethepropertiesto becalculated
andreviewtheir associatedscalingtheory. In section3 we introducethealgorithmsutilized
for our simulations. We have set out our resultsand commentedon their accuracyand
precisionin section4, with a brief concludingsummaryfollowing in section5.

2. Definitions and scaling theory

We have considereddirectedsite percolationon a quadrantof the squarelattice seeded
from a cornerasshownin figure 1. Startingfrom the origin onecanproducea clusterby
occupyingthe site of the lattice at (x, t) with probability p providedeither (x − 1, t − 1)

or (x, t − 1) is occupied. This producesa clusterwhere the origin is connectedto each
occupiedsite by a directed path of occupiedsites. The numberof occupiedsites in the
clusteris denotedby s (andcalledthemass).If anoccupiedsiteof theclusteris a perimeter
site (one adjacentto an unoccupiedsite) and if further it can be connectedby a path of
unoccupiedsites (via nearestand next-nearestneighbours)to the edgeof the lattice then
it is deemedto be a hull site of the cluster. Hence,the hull is the externalperimeterof
the cluster itself (whereasoften in percolationtheory the ‘external perimeter’denotesthe
unoccupiedsitesadjacentto the hull). The numberof hull sitesis denotedh.

We definethe normalized cluster number as

ns(s, p) =
Pr(origin ∈ s-cluster)

s
(2.1)

which is identicalto the definition usedin isotropicpercolation.Of course,in a simulation
of this directedpercolationproblemonewould naturallyestimateNs = sns asthe average
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proportion of clustersproducedthat are of mass(size) s. The normalized hull number
nh(h, p) is definedin ananalogousway. Notethat in our set-uptheprobabilityof obtaining
aclusteris 1. Hence,theprobabilitythattheorigin belongsto a infinite clusterP(p) satisfies

P(p) +
∞∑

s=1

sns = P(p) +
∞∑

h=1

hnh = 1. (2.2)

Canonicalfunctionsof interestare the mean cluster size, S(p) and mean hull size, H(p)

which aredefinedas

S(p) =
∑∞

s=1 s2ns∑∞
s=1 sns

(2.3)

andsimilarly

H(p) =
∑∞

h=1 h2nh∑∞
h=1 hnh

. (2.4)

The geometric size of the clustersare also of interest. One wants to calculatesome
measureof the horizontalandvertical extentof the clusters,suchasthe radiusof gyration.
For easeof calculationwe havesimply chosento useasa measureof the vertical size,v,
the vertical length (or ‘calliper’ length) of the cluster in the variable t (that is, the value
of t for which thereis at leastone occupiedsite suchthat at t + 1 thereare no occupied
sites). For the horizontalsizewe havechosenthe maximumwidth, w, of the rows of the
cluster,over all the rows of the cluster(‘calliper width’). We shall usethesesamesymbols
to denotethe averagesover all clustersof masss, that is v(s, p) and w(s, p), and with
primesfor averagesover all clustersof particularhull lengths. Averagesover all clusters
weightedby the the probability of obtainingclustersof masss or hull h aregiven as

V (p) =
∑∞

s=1 vsns∑∞
s=1 sns

(2.5)

and

V ′(p) =
∑∞

h=1 v′hnh∑∞
h=1 hnh

(2.6)

respectivelyfor the vertical size. Similar equationsdefineW(p) in termsof w(s, p) and
W ′(p) in termsof w′(s, p). Thecalliper lengthandwidth shouldalsobeof directphysical
interestwhen modelling a situationwherethe maximumextentof somephysicalprocess,
suchasan epidemic,is important.

Of most interestis the scalingin the vicinity of the critical point. The singlevariable
scalingassumptionfor the normalizedclusternumbers(see[8] and referencestherein) is
central to our current understandingof the behaviourof the systemnear the percolation
thresholdandis given by

ns(s, p) ◦∼ s−τf ((p − pc)s
σ ). (2.7)

This involves the two basicexponentsτ andσ . For an exactdefinition of the ‘scalesas’
symbol, ◦∼, seeBrak and Owczarek[10]. The behaviourof the function f (z) for large
argumentmust match the scalingof ns for p away from pc. The function f (z) is non-
zeroat the origin. An analogousassumptioncanbe written down for the normalizedhull
numbersas

nh(h, p) ◦∼ h−τ ′
f ′((p − pc)h

σ ′
) (2.8)

with the sameconditionson f ′.
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To connectthesetwo forms andmorepreciselytheir exponentswe useequation(1.1)
andtheassumptionthat thenumberof clusters,Ns , countedby sizeis relatedto thenumber
of clusters,Nh, countedby hull lengthwith the following equation:

s0∑

s=1

Ns ≈
h0∑

h=1

Nh (2.9)

whereh0 is the averagehull sizeof clustersof masss0. That is, the numberof clustersof
size6 s0 ≈ numberof clustersof hull 6 h0. Scalingarguments[11,12] canthenbe used
to showthat

2 − τ

2 − τ ′ =
σ

σ ′ = x. (2.10)

It is worth noting that this scaling law is different to the one that holds in the caseof
isotropic percolation. This is simply becausein directedpercolationa single realization
of the systemproducesa single cluster whereasin isotropic percolation it producesa
distribution of clusters. In isotropic percolationone has (1 − τ)/(1 − τ ′) = σ/σ ′ = x

which hasbeenverified usingMonte Carlo simulations[13].
The exponentsassociatedwith the otherquantitieswe definedaboveare

P(p) ∼ |p − pc|β asp → p+
c (2.11)

S(p) ∼ |p − pc|γ asp → pc (2.12)

H(p) ∼ |p − pc|γ
′

asp → pc (2.13)

V (p) ∼ |p − pc|ν‖−β asp → pc (2.14)

V ′(p) ∼ |p − pc|ν
′
‖−β asp → pc (2.15)

W(p) ∼ |p − pc|ν⊥−β asp → pc (2.16)

W ′(p) ∼ |p − pc|ν
′
⊥−β asp → pc (2.17)

asfunctionsof p, and

v(s, pc) ∼ sν‖ ass → ∞ (2.18)

v′(h, pc) ∼ hν ′
‖ ash → ∞ (2.19)

w(s, pc) ∼ sν⊥ ass → ∞ (2.20)

w′(h, pc) ∼ hν ′
⊥ ash → ∞ (2.21)

asfunctionsof the two sizes.
Theseexponentsarenot independentandshouldsatisfy the following relations:

ν‖ = ν ′
‖ (2.22)

with

ν‖ = σν‖ and ν ′
‖ = σ ′ν‖ (2.23)

andhence

ν‖ = xν ′
‖ (2.24)

with an analogousset for ν⊥ and its relatives. Also, other scalingargumentsusing (2.7)
and(2.8) give

γ =
3 − τ

σ
and γ ′ =

3 − τ ′

σ ′ (2.25)

and

β =
τ − 2

σ
=

τ ′ − 2

σ ′ . (2.26)
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2.1. Finite-size scaling

In orderto extractvaluesfor theexponentsdefinedvia scalingin theconcentrationp, such
as(2.11),it maybeadvantageousto performa finite-sizescalinganalysis,andscaleagainst
a cut-off instead.We havefound it convenientanda gooduseof the datafor the ordinary
scalinganalysisto fix a cut-off in themass,or hull length,of theclustersgenerated,so that
s < smax, or h < hmax respectively.We usedthesamedatafor a finite-sizescalinganalysis.

Onecanarguethat for a finite systemof maximumsizesmax, or hmax, that thegeometric
sizemeasuresshouldscalewith the cut-offs as

V ◦∼ smax
(ν‖−β)σg((p − pc)smax

σ ) (2.27)

V ′ ◦∼ hmax
(ν‖−β)σ ′

g′((p − pc)hmax
σ ′

) (2.28)

whereg and g′ are scalingfunctions,and are expectedto be unimodal: for large enough
‘maximum sizes’plots of V andV ′ areunimodalwith peaksat ppeak (note that ppeak is a
function of the maximumsizesmax or hmax). Hence,at p = pc, or at p = ppeak, we expect

V ∼ smax
(ν‖−β)σ (2.29)

V ′ ∼ hmax
(ν‖−β)σ ′

. (2.30)

Again there are analogousequationsfor W and W ′ with ν⊥ substitutedfor ν‖. These
equationscan then be usedto analysethe dataproducedin simulationsfor the exponents
associatedwith the meanclusterlengthandwidth.

3. Generation algorithms

We haveusedtwo algorithmsto generatedata.Thefirst is thecanonicalMarkov algorithm
which treats two-dimensionaldirected site percolation as a one-dimensionalbranching
Markov process. This has been the main methodused in the past, and has proved to
be simple to encodeand fast on execution. To calculatethe hull length, whole clusters
needto be storedand so thereare more stringentmemorylimitations than with the usual
implementationof this algorithm. Using this algorithm and calculatingthe hull we were
able to simulateclustersof size s = 217 on a DEC Alpha 250/4/266using approximately
44 MB RAM.

However, we have developedalgorithmsthat generatethe externalhull of a cluster,
andaslittle of the internalstructureasis necessary,makingthemevenfasterthoughmore
difficult to code. The exponentx relating massto hull length scaling (1.1) cannot be
calculatedfrom thesesimulationsalone.

3.1. Hull algorithms

An algorithmfor isotropicpercolationthat iterativelygeneratestheexternalhull of a cluster
was formulatedsome time ago [14, 13]. We shall refer to this as the ZCS algorithm.
Becausethe numberof hull sitesscalesash ∼ sx , where 1

2 6 x < 1, one expectsthat in
generals � h, andhencethatthetime takento generatea clusterhull is muchlessthanthat
takento generatea full cluster.TheZCSalgorithmhasbeenusedto accuratelyestimatepc

for isotropicsitepercolation[13], andconfirmthevaluesof hull exponentspredictedby the
(isotropic) hull scalinglaw. It was naturalto consideradaptingthe idea of this algorithm
to the caseof directedpercolation.However,asonecansee,below this applicationis not
straightforward.With theadditionof someextrapartsthoughthealgorithmcanbeadapted
to the caseof directedsite percolationon the squarelattice.
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Figure 2. Beforethe walker canmoveto the new site it
mustfirst checkto seeif a supportexists(brokencurve).

3.1.1. A single-walker algorithm for directed percolation hulls. Wefirst describethesingle-
walker algorithm, as its featuresand limitations are reflectedin the two-walker algorithm
we havedevelopedfor our study. This single-walker algorithmdescribesthe movementof
a singlewalker startingfrom the origin, moving anticlockwiselaying down the hull of the
cluster.

Adding anisotropyto the hull walker of ZCS is itself not difficult. However, it is
complicatedby two features.First, the directionsthat the walker is allowedto movefrom
the current site dependupon the absolutedirection just moved (rather than on only the
relative direction). Secondly,and more significantly is the fact that the hull of a directed
percolationclusteris not necessarilya directedpercolationclusteritself. That is to say, in
isotropicpercolationthe hull is itself a clusterso the internal structureof the clusterdoes
not matter. Hence,the hull is independentof the internalstructureso that eachrealization
of the hull canbe achievedwith the correctprobability by constructingthe hull alone.The
directedpercolationhull structuredependsuponthe internalstructuresinceall sitesmustbe
supported by a directedpathof occupiedsitesfrom the origin to that site. To obtaineach
hull with the correctprobability in a simulationone must excludeinternal configurations
that do not satisfy the definition of directedpercolation.Practically,this meansthat when
the walker is about to step in certain directions(as describedbelow), we must first test
to seeif the site is supported (seefigure 2). The supportof the site is checkedfor, and
generated,by a subroutinecalledorphan.

The orphansubroutinegeneratesa treeof pseudo-occupied(not includedin the cluster
definition)sitesin anattemptto constructa directedpathbackto partof theclusteralready
occupied(suchasthehull). It doessoby alwaystrying to find the ‘left-most’ suchpath. If
it succeedsthat single-directedpath becomesa designatedpart of the directedpercolation
cluster. The rest of the generatedtree is inaccessibleto the continuing algorithm, since
it is to the left of the path. If one were to include in the definition of the cluster the
whole generatedtree this subroutinewould producenon-directedpercolationclusters.The
pseudositesgeneratedare, however,requiredto obtain the correctprobability for a given
hull. As such,this featureis both peculiarand novel but neverthelesstrue. A full proof
of the equalityof the probabilitiesof generationby our algorithm,andby the definition of
directedpercolation,is long andtedious.The essenceof the proof utilizes the fact that any
site not visited by eitheralgorithmcanbe arbitrarily designatedasoccupiedor not so long
asthe probability of doing so addsup to 1.

Thesingle-walkeralgorithmgeneratesa two-dimensionalstructureandnaively requires
the whole squarelattice on which to work, thoughmemorymanagementproceduressuch
asdatablockingcanbeemployedto alleviatethis constriction.Thealgorithmrequiresfour
possiblesite states: blank, vacant, occupied and hull. A blank site is one that has not
yet beenvisited by the algorithm and so could be either vacantor occupied. The orphan
routine setsoccupiedsitesas occupied,and the single-walkersetsoccupiedsitesas hull.
For simplicity, directionsfrom (x, t) to (x ′, t ′) will be abbreviatedasin table1.
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Table 1. Directions,their abbreviationsandthetranslationstheyrepresenton thedirectedsquare
lattice.

Abbreviation Direction 1x 1t

dl down-left x′ = x t ′ = t + 1
dr down-right x′ = x + 1 t ′ = t + 1
ul up-left x′ = x − 1 t ′ = t − 1
ur up-right x′ = x t ′ = t − 1

Table 2. Movement table for the single-walkeralgorithm giving the movementpreferences
(seefigure 3 for an example)andthe requiredtestsfor eachpossiblepreviousmovements(see
table 1 for abbreviations).The testsare denotedin parenthesesby (b), (s) and (n). The test
(b) is whetheror not the site (in that direction) is blank and then a randomnumbergenerated
between0 and1 is lessthanp; andthe test(s) is whetheror not the site is supported,which is
testedby the orphansubroutine.The casewhena test is unnecessaryis denotedby (n): true is
automaticallyreturned.

Direction moved First Second Third Fourth

down-left dl(b) dr(b) ur(n) ◦
down-right dl(b) dr(b) ur(s) ul(n)
up-left ur(s) ul(n) ◦ ◦
up-right dr(b) ur(s) ul(n) ◦

Startingfrom the origin the algorithmproceedsasfollows.
(I) Set the currentsite asthe hull.
(II) Rememberingthe direction just moved,makethe next moveaccordingto table2.

Usethe row appropriateto the direction just movedand:
(a) checkto seeif the first test is true (that is, the onein the first column);
(b) if the test is true proceedto (III);
(c) if otherwiseset the testedsite asvacantandrepeat(II)(a) with the next preference

(next column).
(III) If the walker tries to move in an upwarddirection from the origin the algorithm

terminates,otherwiseexecutethe moveandreturnto (I).
Initially it is assumedthat the walker hasmoveddown-left to the origin.
On long runs,thisalgorithmprovedto beslowerthantheMarkov (plushull walker)near

pc. Closerexaminationof generatedclustersshowedthat the orphanroutine(seefigure 4)
was ‘overflowing’ when it was searchingfor supports.It was searchinga very wide area
for supportingsitesand this areawas frequentlyfound to be outsidethe final clusterhull
andat timesit wasapproximatelythe samesizeasthe (virtual) clusteritself. This problem
wasovercomeby usingtwo walkersin parallel.

3.1.2. The dual-walker algorithm In the dual-walker algorithm two walkers move in
tandem,with one always waiting for the other to catch up. Thus, before anotherstep
downwardsis takenboth areon the samerow. This avoidsthe overflow problemthat the
single walker faced(seefigure 5), as now the only areathat will be searchedby orphan
routinesis strictly betweenthe pathsthe two walkershaveset,i.e. within the cluster.

Both walkersmove in much the sameway as the single walker describedabove,but
now onewalker is left biased(asabove),andthe other is right biased.Similarly thereare
two orphanroutines,oneleft biasedandthe otherright biased.
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Figure3. Theorderpreferenceof movesafteranup-right
stepfor a left-biasedwalker.

Figure 4. The orphan routine can possibly search
anywherebetweenthe currently definedhull and the
right-handboundaryof the lattice.

Figure 5. When thereare two walkersin parallel, the
orphanroutinecanonly searchstrictly insidethecluster.

Also, becausethereis the possibility that both walkersmay be at the samesite at the
sametime thereis a together walker subroutine,to accountfor this:

(1) set the currentsite asthe hull;
(2a) if thereis a blank site dl, occupyit with probabilityp (setashull) or elsesetit as

vacant;
(2b) if thereis a blank site dr, occupyit with probabilityp (setashull) or elsesetit as

vacant;
(3a) if the sitesat both dl anddr havenow beenoccupied,thenreturnto the main part

of the dual-walkeralgorithmwith two separatewalkers;
(3b) if only onesite hasbeenoccupiedthenmovethereandrepeatfrom 1;
(3c) otherwise, there are no unoccupiedsites below, and so the whole algorithm

terminates.
The dual-walker algorithm proved difficult to encode,but was faster than both the

single-walkerandthe Markov (plus hull walker) algorithmswhensimulatingat pc. It was
combinedwith an appropriatememorymanagementcode(datablocking [13]) andusedto
generatethe hull-specificdatawhich we analysed.

4. Resultsand discussion

The Markov and dual-walkeralgorithmswere usedto generateclustersat variousvalues
of p and systemsize. One may be temptedto usedatafrom clustersof length lessthan
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somecut-off L to computeexponents.However,thereis a crucial lossof data;if clusters
are limited by a lengthL then the clusternumbersns , wheres > L, lose the contribution
of clusterswith lengthgreaterthanL. This leadsto inaccuratedistributionsfor s > L, and
the useof ordinary scaling for analysisis then inappropriate. Insteadwe set the system
sizein termsof the numberof sites,with maximumclustersizesetat smax for the Markov
simulations,andmaximumhull sizehmax for the dual-walkersimulations.

The comparisonof the speedof the two algorithmsneedscareful analysis. Sincewe
are looking for distributionsof lengthsand widths as well as hulls, we needto compare
the Markov anddual walker when they aregeneratingthe samedistributions. The critical
factor in this comparisonis the hull scalingexponentx. The further the valueof x is from
1, the smaller the hull of an averageclusterof particularmassis, and hencethe greater
the time savedby the dual-walkeralgorithm is. It was found that when the cut-offs were
setashmax ≈ 25000 andsmax ≈ 131072, the algorithmsgeneratedapproximatelythe same
distributions,but thedual-walkeralgorithmwasabout2.5 timesasfastastheMarkov (plus
hull finding) algorithm.

Dependingon the algorithm,for eachclusterthe following quantitieswerecalculated:
• sizes, the total numberof occupiedsitesin the cluster;
• hull h, the total numberof occupiedsitesin the externalhull asdefinedpreviously;
• ‘calliper’ lengthv, the maximumlengthof the cluster;
• ‘calliper’ width w, the maximumwidth of the rows of the cluster.
Using the Markov algorithm and a simple walk-around-the-hull,clusterswere first

generatedin full and then their hulls determined. This gave distributionsof eachof s,
h, v and w. A total of 1.8 × 106 clusterswere generatedat pc using this methodup to
the cut-off of smax = 131072, of which 1.3 × 106 had massless that the maximum. By
calculatingthe averagehull length as a function of massthe hull scalingexponentx for
p < pc, p = pc and p > pc was estimated. The unprimedlength scaleexponentsν‖
and ν⊥ were also calculated.With the exponentτ found directly from the distribution of
mass,theseprovideda checkon our analysesby allowing a comparisonwith recentseries
estimates[5]. The dual-walkeralgorithmwasusedto generateh, v andw distributionsin
a wide rangeof p, with specialattentionpaid to pc. A total of 4.5 × 106 clusterswere
generatedat pc usingthedual-walkeralgorithmup to thecut-off of hmax = 32768of which
3.3 × 106 hadhull lessthat the cut-off. For the sakeof generalcomparisonthe simulation
of 105 clusterhulls at p = pc with a cut-off of hmax = 32768 took 2.5 CPU hourson a
DEC Alpha 250/4/266.

We haveperformedseveraldifferentanalysesof the data. Ordinaryscalingandfinite-
size scaling relationsallow us to calculateexponentsby examiningthe behaviourof the
following distributions:

• quantityversushull or clustersizeat p = pc, usingordinaryscalingsuchas(2.18);
• quantitypeakheightversussystemsize,usingfinite-sizescalingsuchas(2.29).
In the ordinaryscalinganalyses,the valueof pc usedwasthat providedby the precise

seriesestimateof Jensen[5], that is pc = 0.7054853 (which is more precisethan our
simulationscould achieve).

4.1. Ordinary scaling analysis

From the Markov simulationsdata we extractedestimatesof the exponentsx at pc and
x below pc, σν‖, σν⊥, and τ using ordinary scalingassumptions.From the dual-walker
simulationwe calculatedestimatesof σ ′ν‖, σ ′ν⊥ andτ ′. To do this we analysedthedatain
severaldifferentways. Genericallywe calculatedlocal exponentestimatesfrom (weighted)



6688 A L Owczarek et al

0.90

0.85

0.80

0.75

0.70

x

0.250.200.150.100.050.00
1/ln(s)

Figure 6. A plot of local estimatesof the exponentx against1/ log(s), with (95% confidence
interval) error-bars.The horizontalline representsour final estimate.

linear regressionson small sectionsof thedataandthenplottedtheseagainstthe reciprocal
of the logarithm of the meanposition of the local regression(for visual purposesonly).
Fortunatelyour estimatesseemedto converge within the rangesimulatedandso we took a
final estimatefrom the (weighted)averageof the last few local exponentestimates.We did
not attemptanyfurtherextrapolation.Importantto this processwasthedeterminationof the
rangeoverwhich the local exponentestimateswereessentiallyconstant.In figure6 we plot
thelocalestimatesfor theexponentx obtainedby first calculatingtheaveragehull lengthfor
eachvalueof massfrom our simulations,thenbinningthoseresultsin logarithmicallyequal
binsof length1 ln(s) = 0.02, andextractinglocal slopesfrom a weightedlinear regression
of disjoint contiguoussetsof 20 points. In this casewe usedthe last five pointsto provide
an estimateof x. We varied the binning size and rangeover which the linear regressions
were calculatedto test the robustnessof our estimate.We utilized bin sizesof 0.02, 0.05
and 0.4 as well as simple linear bins of size 1, varying also the numberof bins usedin
the linear regressionsso as to makethe error barsreasonable.We are thereforeconfident
that our estimatesand associatederror barsrepresenta bestestimatefrom the largestend
of our data. We howeverdo not provide an independentestimateof the systematicerror
but given the trend of the data this shouldbe less than the statisticalerror quoted. The
exponentestimatesobtainedin the aboveway are listed in table3.

The accuracyof our methodcan be gaugedby consideringthe estimatesof the mass-
basedexponentsσν‖, σν⊥ and τ , noting that thesewere calculatedfrom the Markov
algorithm simulations. The internal consistencyof theseestimatescan also be gauged
by using scalingrelations. One can obtain an independentestimateof the exponentx by
using relation (2.10) and the pairs of estimatesfor σν‖ andσ ′ν‖, andσν⊥ andσ ′ν⊥, and
finally τ and τ ′. Thesegive 0.774(9), 0.774(10) and 0.772(14) respectively,which are
clearly consistentwith our direct estimateof 0.773(4).

Below pc, at p = 0.65, the exponentx was also estimated(seetable 3). This value
should be the value of x that holds for directed animals since the large s (and so h)
behaviourof clustersare dominatedby directedanimals(analogousassumptionsare true
for percolation:see[8]). The exponentx wasalsoestimatedabovepc at p = 0.715, and
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Table 3. Our bestestimatesfor the exponentsobtainedvia a standardscalinganalysisof our
data.

Quantity Exponent Our estimate Seriesresults

〈h〉(s) for p < pc x 0.905(5) uncalculated
〈h〉(s) at pc x 0.773(4) uncalculated
v(s, pc) σν‖ 0.680(5) 0.678818(22)
w(s, pc) σν⊥ 0.431(8) 0.429431(14)
ns(s, pc) τ 2.1077(13) 2.10825(8)
v′(h, pc) σ ′ν‖ 0.879(4) uncalculated
w′(h, pc) σ ′ν⊥ 0.557(5) uncalculated
nh(h, pc) τ ′ 2.1395(8) uncalculated
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Figure 7. Plotsof meanhull size,H , versuspc − p for varioussystemsizes.

was found to be steadilydecreasingas s becamelarger. Given this lack of convergence
we did not attemptto estimatethe valueof the exponent.However,abovepc, clustersare
expectedto scaleas two-dimensionalobjects.Consequentlywe expectthe hull to scaleas
the surfaceof a two-dimensionalobject. So we predict that x will converge to the surface
valueof 1

2 in the large s limit.

4.2. Finite-size scaling analysis

For the three quantitiesmeanheight V ′, meanwidth W ′ and averagehull H calculated
from the dual-walkeralgorithm,we utilized their peakvaluesto obtainexponentestimates.
Simulationswereconductedin therangep = 0.66–0.7134at valuesof p spacedin intervals
that varied from 0.0001to 0.0005dependingon whetherthe simulationswere in the peak
regionor in the shoulders.At eachpoint 5 × 105 clustersweregenerated.

We first plotted eachquantity for various valuesof cut-off hmax againstp (see, for
example,figure 7). Using a weightedquadraticfit near the peakwe estimatedthe peak
position and value. We note herethat estimatesat different valuesof hmax, but the same
valuesof p, werecorrelatedin this analysis(aswe usedthe samedatarunsto producethe
estimates).However,our peakvalueswerenot so correlatedgiven that the peakpositions
weredistinct andassimulationsat differentvaluesof p wereindependent.

The peakheightswerecalculatedfor hmax = (
√

2)m for m = 20, . . . , 30 andweighted
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Table 4. Our estimatesfor the exponentsobtainedvia finite-sizescaling(FSS)analysisof the
data.Thesecanbe comparedwith estimatescalculatedfrom scalingrelationsandour estimates
from the ordinaryscalinganalysisin section4.1.

Quantity Exponent FSSestimate Scalingestimate

V ′(hmax) (ν‖ − β)σ ′ 0.72(2) 0.740(6)
W ′(hmax) (ν⊥ − β)σ ′ 0.408(12) 0.418(5)
H(hmax) γ ′σ ′ 0.85(2) 0.8605(8)

0.4
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0.1

g(
z)

6543210-1
z

Collapsed Distributions

Figure 8. A plot of the scalingfunctiong(z) associatedwith the meanhull H(p; hmax) against
the variablez = hσ ′

max(p − pc). The valuesof hmax usedwere 5000, 10000, 20000, 30000.
Note that the maximumvaluesof |p − pc|, ratherthanz, for eachplot werethe same.

linear regressionwas performedover thosepoints and subsetsfixed at the large end of
the datarange. Thereseemedto still be significantsystematictrendsin the dataand the
statisticalerrorswerelarge. Our finite-sizescalingestimates,andestimatescalculatedfrom
our ordinaryscalinganalysisaboveandappropriatescalingrelations,aregiven in table4.

While theseestimatesare not as preciseor stableas thoseobtainedfrom the ordinary
scalinganalysis,theyareneverthelessconsistentwith them. Usingthepeakheightexponent
estimates,we haveillustratedthe goodness-of-fitproducedby plotting the scalingfunction
g(z) of the meanhull H (seefigure 8) usingdatafrom differentcut-offs.

5. Conclusions

This studyhasestimatedvaluesfor theexponentsassociatedwith thescalingof thestandard
propertiesof directedpercolationclusterhulls by meansof Monte Carlo simulations. We
havefoundaninternallyconsistentsetof values,thatarealsoconsistentwith seriesestimates
of the massscalingexponents:the comparisonmadepossibleby scalingrelationsand an
estimateof theconnectingexponent,x betweenthetwo setsof exponents.Furthermore,this
connectingexponentx is closeto the rational 7

9, thoughwe expectfurther analysisof this
problemto excludethis value. This is intriguing from the point of view of a possibleexact
solution: its form mustbe unusualif the exponentsarenot rational. It tallies thoughwith
otherexponentvaluesfor this problemwhich seemalsoto havedefiedrational(fractional)
conjecturein the past.
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