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Abstract

While directed site-animals have been solved on several lattices, directed bond-animals remain unsolved
on any nontrivial lattice. In this paper we demonstrate that the anisotropic generating function of directed
bond-animals on the square lattice is fundamentally different from that of directed site-animals in that
it is not differentiably finite. We also extend this result to directed bond-animals on hypercubic lattices.
This indicates that directed bond-animals are unlikely to be solved by similar methods to those used in
the solution of directed site-animals. It also implies that a solution cannot be conjectured using computer
packages such as GFUN [A MAPLE package developed by B. Salvy, P. Zimmermann, E. Murray at INRIA,
France, available from http://algo.inria.fr/libraries/ at time of submission; B. Salvy, P. Zimmermann, GFUN:
A MAPLE package for the manipulation of generating and holonomic functions in one variable, ACM Trans.
Math. Software 20 (2) (1994) 163-177] or differential approximants [A.J. Guttmann, Asymptotic analysis
of coefficients, in: C. Domb, J. Lebowitz (Eds.), Phase Transit. Crit. Phenom., vol. 13, Academic Press,
London, 1989, pp. 1-234, programs available from http://www.ms.unimelb.edu.au/~tonyg].
© 2005 Elsevier Inc. All rights reserved.

Keywords: Enumeration; Bond animals; Solvability; Differentiably finite power series

1. Introduction

The enumeration of lattice animals is a long-standing problem in enumerative combinatorics
and finds applications in statistical physics and theoretical chemistry. Though the subject has
received considerable attention over many years, the problem remains unsolved.
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Fig. 1. A bond-animal and a site-animal.
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Fig. 2. A directed bond-animal and a directed site-animal.

Definition 1. A bond-animal is a connected union of bonds (edges) on a lattice.! Similarly a
site-animal is a connected union of sites (vertices). Two animals are considered to be the same if
they are translates of each other. See Fig. 1.

In spite of the difficulty of enumerating general lattice animals, many subclasses have been
solved. In almost all cases it has only been possible to count animals with quite severe topological
restrictions—such as directedness or convexity. In this paper we focus on directed animals.

Definition 2. A bond-animal is directed if it contains a special vertex called the roof vertex such
that all bonds in the animal may be reached from the root vertex by paths that take only north and
east steps and are contained within the animal. Similarly a site-animal is directed if it contains
a root vertex and all other sites can be reached from it by taking only north and east steps. See
Fig. 2.

Directed site-animals were first solved around 20 years ago by Dhar [7,8] by mapping the
problem to a hard-core lattice gas, and then subsequently by a number of authors using more
geometric and bijective methods (such as [2,3,9,15]). The resulting generating function is a sim-
ple algebraic function:

1 l+g¢g
S — |A] J— —1 s 1
@) > =35, )
directed

Ae site-animals

1 Except for the animals in Corollary 21, all objects considered in this paper are on the square lattice.
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where |A| denotes the number of sites in an animal, A. A similar solution exists for directed site-
animals on the triangular lattice and a directed cubic lattice (in which both nearest-neighbour and
next-nearest-neighbour steps are allowed).

The generating function of directed bond-animals is defined in a similar way:

Boy= Y. )

A directed
€ bond-animals

where |A| denotes the number of bonds in the animal A. Despite the similarity of the underlying
objects, the directed bond animal generating function remains unsolved.

In this paper we show that a possible reason that directed bond-animals remain unsolved is
that their generating function, in particular their anisotropic generating function, is not within
the class of differentiably finite functions. Consequently it is fundamentally different from that
of directed site-animals and most other solved bond lattice models. A similar result for self-
avoiding polygons was recently given in [17]. Unfortunately this result does not then imply that
the isotropic generating function is not differentiably finite.

In the next section we define differentiably finite functions and the anisotropic generating
functions of directed bond and directed site-animals. In Section 3 we prove that the anisotropic
generating function of directed bond-animals is not differentiably finite. An immediate corollary
of this is that the generating function of directed bond-animals on the d-dimensional hypercubic
lattice (with d > 2) is not D-finite.

2. Anisotropic and differentiably finite generating functions

Perhaps the most common functions in combinatorics and mathematical physics are those
that satisfy simple linear differential equations with polynomial coefficients—these functions
are called differentiably finite or D-finite. More precisely:

Definition 3. Let f(¢) be a formal power series in ¢ with coefficients in C. This series is differ-
entiably finite or D-finite if there exist a nontrivial differential equation of the form

P) fRO@) +--+ Pi) (1) + Po(t) f (1) =0, 3)

where the P;(¢) are polynomials in # with complex coefficients. It can also be shown that any
algebraic power series is also a D-finite power series [20].

Ideally we would like to show that the generating function, B(z), is fundamentally different
in nature from that of directed site-animals, S(g), which is an algebraic, and hence D-finite,
power series. Perhaps the easiest way to demonstrate that a series is not D-finite is to examine
its singularities; the classical theory of linear differential equations implies that D-finite series of
a single variable cannot have an infinite number of singularities (see [21] for example). By this
reasoning the function f(#) = tan(z) is not a D-finite power series in ¢.

Unfortunately, almost nothing is known rigorously about B(z)—we do not even know the
exact location of its dominant singularity, and (the author) certainly cannot show that it has an
infinite number of singularities. Fortunately, by considering the anisotropic generating function
we are able to make considerably more progress.
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Fig. 3. (Left) A directed bond-animal with vertical bonds highlighted. (Right) A directed site-animal with sites supported
only from the south highlighted.

.
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We form the anisotropic generating function of directed bond-animals by counting animals, A,
according to the number of horizontal (respectively vertical) bonds it contains, denoted |A|e
(respectively |Alg):

Bix,y)= Y xMeylle=%"p, xmyn, “)
Ac direct_ed m,n
bond-animals

where by, , is the number of directed bond-animals with m horizontal and n vertical bonds.

Anisotropisation of the directed site-animal generating function is more problematic and is
not unique. Discussions on this topic are given in [6,12]. In [6], it is suggested to anisotropise
directed site-animals by counting them according to the number of sites and the number of sites
supported only from the south—i.e. the number of sites that have a neighbour to the south, but
not the west. An example is given in Fig. 3. Directed site-animals on the square lattice had
already been enumerated according to this parameter in [4] and results in the following algebraic
generating function

s =~ |1- 44 —1 (5)
=5 A+a(+qg—gqs) )

Expanding both S(g, s) and B(x, y) as power series in s and y (respectively) one observes a
marked difference in the structure of their coefficients which leads to our main result. Rewriting
S(g,s) = Zn>0 R, (q)s", we find that the R,(g) are rational functions of g, and the first few
are:

Ro<q)=1L,
—q
2
q
Ri(q)= —1 |
1(q) d—q)7
3 2
q¢°(1+q+q°)
Ry(g)=L T4 T7 7
D= 5t
4(1+2q +49% +2¢° + ¢*
R3(q):q( q+49"+29°+q°) ©)

(I-g)"(1+¢)?
Expansion shows that the numerators are symmetric, positive and unimodal and that the de-
nominators are given by D, (¢) = (1 — ¢)>"T1(1 +¢)"~'. Hence the R, (g) are only singular at
qg==l1.

Similarly, the generating function B(x, y) can be rewritten as B(x, y) =), H,(x)y", where
H,, (x) counts the number of directed bond-animals with n vertical bonds according to the number
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of horizontal bonds they contain. Using computer enumeration techniques [13] one can find? the
first few H, (x):

1
Hp(x) = —,
1—x
Hi(x) = !
14 2x +x2—x3
H =
2 = T s
14 5x 4+ 7x2 + x3 = 3x% —2x7 4«
H3(x) = 7 3 ;
1-x)'(1+x)
[1,10,33,53,43,3,-25,-20,1,5,2, —1]
Hy(x) = , (7N

(1—=x)°0+x)31+x+x2)

where we have written [ag, ay, ..., a,] in place of ag + a1y + - -- + a, y".

We observe that the H,, (x) are simple rational functions whose denominators are products of
cyclotomic polynomials.? This structure is quite general and can be proved using the haruspicy
techniques described in [16]:

Theorem 4. (From [16].) If B(x, y) = Zn>0 H, (x)y" is the anisotropic generating function of
directed bond-animals, then

e H,(x) is a rational function,

o the degree of the numerator of H, (x) cannot be greater than the degree of its denominator,
and

e the denominator of H,(x) is a product of cyclotomic polynomials.

If we look a little further we find that the numerators become increasingly complicated, but the
denominators, which we denote D, (x), retain a regular structure. Unlike those of directed site-
animals, the denominators of the coefficients of the directed bond-animal generating function
contain higher and higher order cyclotomic polynomials, and hence have more and more zeros:

Ds(x) =1 —x)“(l +x)4(l +x —|—x2)2,

De(x) = (1 =) (1 + 0% (1 +x +x2)° (1 +x?),
D1(x) = (1 =) (1 + 001 +x +x2) (1 +x?)7,
Dg(x) = (1 —x)17(1 —|—x)7(1 +x —|—x2)5(1 +x2)3(1 +x+x2+x3 +x4). ()

This dichotomy between the denominators of solved and unsolved models is observed in many
different lattice models and was suggested as the basis of a numerical test of “solvability” by

2 More precisely, the first hundred (or so) terms of the expansion of H,(x) were fitted using Padé approximants.
Construction of the approximant does not require many series terms, and the other terms serve to “verify” the conjectured
form. We also note that in [16] it is proved that Hj, (x) is rational and bounds are given for the degrees of its numerator
and denominator.

3 We remind the reader that the cyclotomic polynomials are the factors of (1 — x™), and in particular (1 — x") =
Hk\ 1 Wk (x), where ¥y (x) is the kth cyclotomic polynomial.
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Guttmann and Enting [11,12]—if one observes an increasing number of zeros in the denomi-
nators of the coefficients of the anisotropic generating function then the model is probably not
solvable. One can make this notion of solvability more precise by relating it to differentiably
finite functions:

Theorem 5. (From [5].) Let f(x,y) = Zn>0 y" H, (x) be a D-finite series in y with coefficients
H, (x) that are rational functions of x. For n > 0 let S, be the set of poles of H,(x), and let
S =, Sn. Then S has only a finite number of accumulation points.

Consequently if the set of zeros of the denominators of the anisotropic generating function has
an infinite number of accumulation points then the anisotropic generating function is not D-finite.
Unfortunately Theorem 4 does not give sufficiently detailed information to prove results about
the set of singularities of the coefficients, H, (x). Ideally, we would like to prove the exact form
of the denominator, which appears to be

n/2)+1

Dy(x)=(1—-x)" [] @)y, ©)
k=1

however this seems to be extremely difficult.* Instead we prove a weaker result that is still suffi-
cient:

Theorem 6. The denominator of Hai—>(x) contains a factor of Wy (x) which does not cancel with
the numerator, and so Hyp—j is singular at the zeros of Wi (x).

This result them implies:

Corollary 7. The singularities of the coefficients H,(x) in the anisotropic generating function
B(x, y) form a dense set on the unit circle |x| = 1, and so B(x, y) is not a D-finite power series
iny.

Since the specialisation of any D-finite power series is itself D-finite (provided the specialisa-
tion is well defined—i.e. nonsingular), we are able to extend this result to directed bond-animals
on any hypercubic lattice.

3. Proof of Theorem 6

The haruspicy techniques in [16] give a way of linking the “topology” (in some loose sense)
of subsets of bond-animals to the structure of their generating functions—and in particular a way
of determining which “topologies” cause which singularities; the next theorem makes this idea
precise. We note that we do not give definitions of dense, section and section-minimal animal in
the main body of the paper and we refer the reader to Appendix A (or to [16]).

4 One can probably prove that Dy (x) is a factor of the product on the right-hand side of this expression using the
techniques described [16]—proofs of similar results for self-avoiding polygons and general bond animals are given in
[16,17].
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Fig. 4. A directed bond-animal with 2k — 2 vertical bonds and a k-section (highlighted) with k = 4.

Theorem 8. (From [16].) Let A, be a dense set of animals with n vertical bonds. And let

H,(x)= Z xlAle .

AcA,

If H,(x) has a denominator factor Wi (x), then there must be a section-minimal animal in A,
that contains a K -section for some K € 7™ divisible by k. Further if H,(x) has a denominator
factor Wy (x)®, then there must be a section-minimal animal in A, that contains o sections that
are K -sections for some ( possibly different) K € Z divisible by k.

Note that below we shall write “animal” instead of “directed bond-animal” for convenience.
3.1. Animals that cause Wy (x)

Theorem 6 asserts that a factor of ¥, (x) occurs in the denominator of Hpx_2(x). According
to the above theorem this can only be the case if there is a section-minimal animal with 2k — 2
vertical bonds that contains at least one k-section (or a K-section with K an integer multiple
of k). We start by characterising such animals.

Lemma 9. Let A be an animal that contains a k-section. A must contain at least 2k — 2 vertical
bonds. If A contains a k-section and exactly 2k — 2 vertical bonds then there must be exactly 2
vertical bonds in each row of A.

Proof. Consider an animal that contains a k-section. The k-section must contain at least £ — 1
cells in a vertical line (see Fig. 4). In order to be a k-section, no section-line may cross any of
these cells. Hence each section line to the left and right of these cells must be obstructed by a
vertical bond and so there must be at least 1 vertical bond to the left and 1 vertical bond to the
right of each of these cells. Hence an animal that contains a k-section must contain at least 2k — 2
vertical bonds.

By similar reasoning, if the animal contains exactly 2k — 2 vertical bonds then there must be
2 vertical bonds in each row. 0O

We note that one can push the above proof further to show that a section-minimal directed
bond-animal with exactly 2k — 2 vertical bonds contains no more than one k-section, however
we do not need this result. We also note that the above lemma and Theorem 8 imply that the
denominators of H, (x) with n < 2k — 2 cannot contain a factor of ¥ (x).

The previous lemma shows that the factor of Wy (x) in the denominator of Hpx_»(x) is caused
by those section-minimal animals that contain a k-section, which requires that they have 2 ver-
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Fig. 5. (Left) A 2-directed bond-animal which has 2 vertical bonds in each row. (Centre) The corresponding primitive
2-directed bond animal. (Right) A 2-directed animal that contains 2k — 2 vertical bonds but no k-section.

tical bonds in each row. In order to prove that this denominator factor does not cancel with the
numerator of Hy;_»(x), we need to examine the set of all directed bond-animals with 2 vertical
bonds per row.

Definition 10. A 2-directed animal is a directed animal which has 2 vertical bonds in each row.
A primitive 2-directed animal is a 2-directed animal in which all vertices of degree 1 lie between
(or on) vertical bonds (see Fig. 5).

By Lemma 9 all animals that contain a k-section and have 2k — 2 vertical bonds are 2-directed
animals, but there are 2-directed animals with 2k — 2 vertical bonds that do not contain a k-section
(see Fig. 5). Also, one may construct a 2-directed animal from a primitive 2-directed animal by
prepending a line of horizontal bonds to the left of the bottom-leftmost-vertex, and appending
lines of horizontal bonds to the right of the rightmost vertices. Consequently, if f,,(x) is the
generating function of primitive 2-directed animals with 2n vertical bonds, then (ﬁ)”‘|r2 Jn(x)
is the generating function of all 2-directed animals with 2n vertical bonds.

Lemma 11. The generating function of 2-directed animals with 2n — 2 vertical bonds (n > 0)
has poles at the zeros of Wy, (x) if and only if Hy,—>(x) has poles at the zeros of ¥, (x).

Proof. Since section deletion and duplication do not alter the number of vertical bonds, nor move
them between rows, it follows that 2-directed animals are closed under section duplication and
deletion and so form a dense set. Similarly the set of directed bond animals that are not 2-directed
bond-animals is dense. This means that we may apply Theorem 8 to both of these sets.

Let A be the set of all directed bond-animals with 2n — 2 vertical bonds, and let 13 be the set
of all 2-directed animals with 2n — 2 vertical bonds. Now split H, (x) into a sum over the animals
in B3 and all the others:

oo ()= 3 xe 4 37 xlle = G100 + Ga). (10)
AeBB Ac A\B

By Theorem 4 we know that G1(x) and G,(x) are rational generating functions whose denom-
inators are products of cyclotomic polynomials. Since all those section-minimal animals with
k-sections contribute to G1(x) and not G2(x), by Theorem 8 there is no factor of ¥, (x) (or
higher cyclotomic factors) in the denominator of G (x).

Let G1(x) have a factor of ¥, (x)“ in its denominator that does not cancel with its numerator.
Since there are no factors of ¥, (x) in the denominator of G;(x), it follows that H,,_,(x) also has
a factor of ¥, (x)“ in its denominator. Similarly if H, (x) has a factor of ¥, (x)* in its denominator
that does not cancel with its numerator, then so must G{(x). O
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The above lemma makes the proof of Theorem 6 much simpler. Instead of having to analyse
all directed bond-animals, we only need look at a much simpler subset—2-directed animals. Fur-
thermore, in order to analyse this subset we do not need to explicitly enumerate it nor find an
explicit expression for its generating function; it suffices to locate the singularities of its generat-
ing function.

3.2. Counting 2-directed animals

In order to study the generating function of 2-directed animals we make use of a power-
ful enumeration technique, the Temperley method. The method consists (essentially) of two
steps—finding a recurrence satisfied by coefficients or generating functions, and then solving
that recurrence. For the purposes of this paper we need to analyse the singularities of the gener-
ating function, and it transpires that an expression for the generating function is unnecessary—it
is sufficient to work with the recurrences it satisfies. As was the case in [17] we use a variation
of the Temperley method involving Hadamard products.

We start by defining the restricted Hadamard product and then showing how it may be used
to find a recurrence satisfied by the generating function of 2-directed animals.

Definition 12. Let f(1) =3, fut" and g(1) = }_,~ 8n" be formal power series in 7. The
(restricted) Hadamard product is defined to be

FO O )= fagn-
n>=0
We note that if f(¢) and g(¢) are two power series with real coefficients such that
lim |f,gn|/" <1,
n—>oo

then the Hadamard product f(¢) ©; g(t) will exist.

Below we consider Hadamard products of power series in ¢ whose coefficients are po-
wer series in two variables x and s. The products are of the form f(¢;x) ©; T(¢,s;x) =
Zn>0 Jn(x)T,(s; x). The summands are the generating functions of certain directed bond an-
imals and it follows that the nth summand is O(sx™) and so the sum converges. In order to
re-express the Hadamard products we will use the following result:

Lemma 13. Let f(t) be a formal power series in t. The following (restricted) Hadamard products
are easily evaluated:

f @) O

—— = f(@),
RO —_—

(1 —ap)rtl 9

We also note that the Hadamard product is a linear operator.

t=a

Proof. See similar lemmain [17]. O

Every 2-directed animal may be constructed row by row—many other objects have been
counted in this way. In this paper we use the same variation of this technique used in [17] which
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Fig. 6. Decomposing a 2-directed animal into a seed, a sequence of building blocks and then a cap.
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Fig. 7. The section-minimal caps.

building
blocks

involves decomposing the object into a seed and building blocks. To simplify the following dis-
cussion we will work with primitive 2-directed animals rather than all 2-directed animals; since
their generating functions differ only by factors of (1 — x), the other cyclotomic factors are un-
affected. For convenience we shall drop the word “primitive.”

Start with a 2-directed animal and duplicate every row (including the vertical bonds in each
row)—see Fig. 6(left and centre). Now cut horizontally through the centre of each pair of du-
plicated rows; this decomposes the animal into a “seed block” (occupying a single row at the
bottom of the animal), a sequence of “building blocks” (each occupying two rows) and then a
“cap” (occupying a single row at the top of the animal)—see Fig. 6(top). We note that the se-
quence of blocks is restricted so that the top row of one block must have the same length as the
bottom row of the next block—the Hadamard product allows us to easily translate this restriction
into an operation on generating functions.

We are able to find a recurrence satisfied by the generating function of 2-directed animals from
the generating functions of the seeds, building blocks, and caps. In particular we must enumerate
each of these objects according to the number of horizontal bonds, and the distance between the
vertical bonds.

The seed is simply a line of horizontal bonds terminated on each end by a vertical bond. It has
generating function 1= (where s is conjugate to the distance between the vertical bonds).

The caps consist of two vertical bonds with some number of horizontal bonds between them.
Since the animal is directed, these horizontal bonds must be attached to the left-hand vertical
bond, but not necessarily the right-hand vertical bond. The section-minimal caps are given in
Fig. 7, and expanding them gives the generating function:

t(1+x—1tx) _ 1 X
A—-0(l—tx) +(1—x)(1—t)_(1—x)(1—tx)’

(1D

where ¢ is conjugate to the distance between the vertical bonds.

The building blocks are (reasonably) complicated and we give the section-minimal building
blocks in Fig. 8. We compute the generating function of the building blocks by expanding each
of the sections. We now need two extra variables: s and ¢ are conjugate to the distances between
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Fig. 8. The section-minimal building blocks of 2-directed bond-animals. The highlighted horizontal bonds are short-hand
for either a single horizontal bond, a single horizontal space (with no bond) or a single horizontal bond and a single
horizontal space.

the vertical bonds in the top and bottom rows, respectively. Doing this gives (moving from left-
to-right and top-to-bottom in Fig. 8):
T (s, t;x) = ([stx] + [st] + [stx][se]) + [sex] ([ex] + [¢] + [ex][e])

+ ([stx] + [st] + [stx][st]) [sx]

+ [ex]([stx] + [st] + [sex][se]) + Dex]Dsex]([ex] + [e] + [ex][e])

+ [ex]([stx] + [se] + [sex][se]) [sx]

+ ([ex] + [e] + [exD[e]) Isx] + (Lex] + (2] + [ex[e]) [xD sx]. (12)
f

where we have used the short hand notation [ f] =
nonstandard) partial fraction form as:

s g 2sx 1
e t0= (l—x)(l—sx)(t)+(1—x)2(1_”)<1_t>

N 1
+(1—x)(1—sx)(s—x)<1—st>
(s—l)s—(s—2)(s — s+ Dsx — (s2 =5 +3)s2x2 + 252 + 1)sx? —32x4< 1 )
(1 =x)2(1 —5)2(1 —sx)(s — x) 1—1tx

sx? t s(1 — (1 +x —x2)s) 1
B 1—-x)1-y) ((1 —tx)2> + (1 =x)(1 =5)2(1 —sx) (1 —stx)’ (13)

which we shall rewrite (more concisely) as:

T(S,f;x)=co(t0)+01<L>+Cz( ! >+03( ! )
1—1 1—st 1—1tx
t 1
+C4<(1— )2> <l—srx)’ (1

T=7" This may then be written in (a slightly
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where the ¢; are the corresponding rational functions of s and x.

We find a recurrence for 2-directed animals in two steps. First we consider “uncapped”
2-directed animals, which are those generated from a seed and sequence of building blocks,
but no cap. These are simply 2-directed animals with no horizontal bonds attached to the top of
vertical bonds in their topmost row. We then find a recurrence for all 2-directed animals in terms
of the uncapped 2-directed animals.

Lemma 14. Let fn (s; x) be the generating function of uncapped 2-directed bond-animals (with
2n vertical bonds). The variable x is conjugate to the number of horizontal bonds and s is
conjugate to the distance between the vertical bonds in the topmost row. This generating function
satisfies the following functional equation:

fi(s;x) = : (15)

SX

1 —sx

o o o o 0 fn
Sog1(s;x) =c1 fu(l;x) + 2 fuls; x) + 3 fulx; x) + C4i

+osfusx;x),  (16)
s

§=X

where the c; are given in Egs. (13) and (14).

This recurrence is singular at two points of interest (for results below), namely s = 1 and
s = x. At these points singularities of the building block generating function coalesce and the
recurrences change structure:

Fo1(150) = %fn(kx) - 71(41_i1_)§2 Fu(x; %) — % aai" _
3 2 7
- ﬁaas];n . (17
L e R e kL
+ (l_xix)zfn(xz;x). (18)

We note that the recurrence is also singular when s = 1/x, however we do not need to study
it at this value of s for the results below.

Proof. The generating function of uncapped 2-directed animals with 2 vertical bonds is exactly

that of the seed generating function, namely *°—. We then obtain the generating functions,

fn (s; x), by repeatedly adding building blocks.

Let fu(s: %) =351 fum(X)s™, and T (s, t;x) = 3,5 Tu(s: x)t™. The coefficient f,,  (x)
counts those 2-directed animals which have m cells separating the 2 vertical bonds in their top
row. Similarly 7, (s; x) counts those building blocks with m cells separating the 2 vertical bonds
in their bottom row. Thus adding a new building block corresponds to the following operation on
the generating functions:

Frir(s:) =Y fam )T (s3 %) = fut: x) O, T(s, 15 x).
m>1

Applying Lemma 13 to the partial fraction form of T (s, ¢; x) gives the first recurrence. Repeating
this with s = 1 and s = x gives the later recurrences. Note that f;,(0; x) = 0, since there must be
some positive number of cells separating the vertical bonds in the top row of the animal. O
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Lemma 15. The generating function, f,(x), of all 2-directed animals with 2n vertical bonds
may be expressed in terms of the generating function of uncapped 2-directed animals:

) =1— (fn<1 X) = x fu(x; ). (19)

Proof. By similar reasoning to that given in the proof of the previous lemma, we may express
the capped generating function as a Hadamard product of the uncapped generating functions
together with the generating function of the caps (see Eq. (11)). Again we make use of the fact
that f,(0;x)=0. O

3.3. Analysing the singularities

Using the recurrences for the generating functions of 2-directed bond-animals we proceed in
two steps. We iterate the recurrences in order to determine the structure of the coefficients as
rational functions of s and x. We then substitute this structure back into the recurrence to link
the singularities of the generating function of animals with 2n vertical bonds at s = 1 to those
with 2n — 2 vertical bonds at s = x. Continuing this reasoning, we link the singularities of f,,—
a function we do not know in closed form—to the singularities of fj—which is a simple rational
function that we do know.

Examining the first few generating functions, fu(s; x) we see that their denominators are
products of cyclotomic polynomials, W (x), and factors of the form (1 — sx¥). To refer easily to
polynomials of this type we define the following sets:

Definition 16. Let D, (s; x) be the set of all polynomials of the form

n—1

(=) (1 =) [[(1—sx* ]_[ W ()%, (20)

k=1

where a; and by are nonnegative integers. Note that the factor (1 — sx™) cannot occur in a
polynomial in D, (s; x).

Using the above notation we can describe the structure of these generating functions:

Lemma 17. The generating function, fvn (s; x), is of the form:

D N (s; x)
IO D, G0 — vy’ @D

where Ny (s; x) and D, (s; x) are polynomials in s and x. Further D, (s; x) is a polynomial in
Dy, (s; x) which does not contain factors of (1 —s) or (s — x).

Proof. Since f1 (s:x) = 1= sx,
Assume that f,,(s; x) is of the desired form. We prove that f,,+1 is of the desired form using the
recurrences in Lemma 14.

Since the denominator of f;,(s; x) does not contain factors of (1 — s) or (x — s) we find that

the lemma is true for n = 1. We proceed by induction on n.

f,,(l x), fn (x;x) and = f I |s—y are all of the form gg; where N (x) and D(x) are polynomials in
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x with the restriction that D (x) is a product of the first n+ 1 cyclotomic polynomials. Substituting
this form into Eq. (16) we see that
Nug1(s; %)

f ; is of the form ,
St Dy (53 0 (1 = s27%)

with N, 41 and D, being polynomials in s and x. The factor of (1 —sx"*!) in the denominator
of an comes from the f,, (sx; x) term in Eq. (16).

We now show that D,,11(s; x) is an element of D, (s; x). The denominator factors arise
from two contributions—those of the coefficients, and those from the various fn terms. All of
these factors lie in I, 1 (s; x) excepting the single factor of (1 — sx"*!) which comes from the
f,,(sx; x) term. Hence Dy+1(s; x) € D41 (s; x).

It remains to show that D, (s; x) does not contain factors of (1 —s) or (s — x). This is equiv-
alent to showing that an (s; x) is finite at s = 1 and s = x. By Eq. (17) we can write fn+1 (1; x)

y 27
v 832 v
nite. Hence f;,+1(1; x) is finite, and so the denominator of f,1(s; x) does not contain a factor
of (1 —s). A similar argument shows that f;H—l (s; x) does not contain a factor of (s —x). 0O

|s=x which are, by the assumed form of fn, fi-

in terms of fn(l;x), fn(x;x), %h:x and

Before we can substitute the above form into the recurrences satisfied by f;,, we need to show
that one of the coefficients of the recurrence does not have zeros on the unit circle which could
potentially cancel singularities of f,.

" (1=(1+x—x?)x")
(1=x)(1=xM)2(1—x"+T)

Lemma 18. At s = x", the coefficient c5(x"; x) =
the unit-circle |x| = 1.

is nonzero everywhere on

Proof. Whenn =1, ¢5(x,x) = (1—x—x)2 and so is nonzero on the unit circle. Now assume n > 2

and consider the zeros of the numerator polynomial (1 — (1 4+ x — xHx™) =0. We may rewrite
this as

x" = ; (22)
T l4x—x2
If the polynomial has a zero on the unit circle, x = ¢ then it follows that [14+x— x2| = 1. This
then gives

(14 cos(6) — cos(26))” + (sin(6) — sin(26))* = 1, (23)

which reduces to the condition cos?(6) = 1. Hence the only candidates for zeros are x = %1.
Inspection of the polynomial then shows that it has a single zero at x = 1 for all n > 1, and that
it has a single zero at x = —1 forodd n > 1.

Since the denominator of c¢5(x", x) contains factors of (1 — x) and (1 + x) for all n > 1, it
follows that neither x = 1 or x = —1 is a zero of the function. O

Theorem 19. For all n > 1, the generating function f,(x) has simple poles at the zeros
of Yn11(x).

Proof. Fix n and let & be a zero of ¥, 1(x). We will start by showing that fk(x"_k“; x) is
singular at x = & by induction on k for fixed n. We then show that this is sufficient to prove the
above theorem by linking the singularities of f;, to those of f,.
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Setting k = 1 gives fl (" x) = lf';—tlﬂ which is singular at x = £.

We now proceed by induction on k using the recurrences of Lemma 14. Assume that
fk(x"’k“; x) is singular at x = £. By Lemma 17, we may write fn (s; x) as:

Ni(s;x)

Dy (s; x)(1 — sx*)’
where N (s; x) is some polynomial in s and x and D (s; x) € D (s; x) and does not contain
factors (1 —s) or (s —X). Substitute this form into the recurrence given by Eq. (16) in Lemma 14.
We may now write fr41(s; x) as
N(s;x)
D(s; x)

fi(s;x) =

feri(six) = +es(s; x) fi(sx: x), (24)
where N(s; x) and D(s; x) are polynomials and D(s; x) € Dg41(s; x). Setting s = x"* (for
n—k # 1) gives

n—k.

Frar () = S a7 ), 5)
where D(x"~¥; x) is some product of the first n cyclotomic polynomials—hence it cannot be
zero at x = £. By Lemma 18 we know that c5 (x"~k x) is not zero at x = £. Since fk (kL x)
is singular at x =& so is fk+1 (x"k: x).

The above inductive argument works for k =2,...,n — 2. When k =n — 1 we need to sub-
stitute s = x. As noted in Lemma 14, the recurrence changes structure slightly and we make use
of Eq. (18) instead of Eq. (16). This gives essentially the same form:

< _N(x;x) X
I =h0n T -2

Fac1(x2;x) (26)

where D(x; x) is some product of the first n cyclotomic polynomials. Since fu,,,l(ng X) is sin-
gularat x =&, so is f,,(x; Xx).

By induction we have shown that fulx; x) is singular at x = £. Further, Lemma 17 implies
that the singularity is a simple pole.

Using Lemma 15 the singularities of fn are linked to those of f;;:

1 < o
Ju(x) = :(fn(I:X) — X f (x5 X)). 27)

Lemma 17 then implies that f,, (1; x) is not singular at x = £ and so the simple pole of an (x;x)
at x =& implies a simple pole in f,(x) atx =&. O

The above theorem gives our main result:

Corollary 20. Since f,(x) has simple poles at the zeros of Wy, 4+1(x), the coefficient Hp, (x) has
simple poles at the zeros of Wy,+1(x) and the anisotropic generating function of directed bond-
animals is not differentiably finite.

Proof. Since the generating function of primitive 2-directed animals and 2-directed animals are
related by factors of (1 — x), it follows from Theorem 19 and Lemma 11 that H», (x) has simple
poles at the zeros of ¥;, 1 (x).

Let S be the union of the singularities of H, (x) for all n. For any ¢ € Q there exists k such
that ¥ (¢2719) = 0, and since Hax_>(x) has simple poles at the zeros of Wi (x), it follows that
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e?™4 ¢ §. Consequently S is dense on the unit circle |x| = 1, and by Theorem 5 the anisotropic
generating function of directed bond-animals is not differentiably finite. O

This can then be extended to give the following result:

Corollary 21. Let B; be the set of directed bond-animals on the d-dimensional hypercubic lat-
tice, and let By be the anisotropic generating function

d—1
Al;
Ba(x1, ... xq-1,y) = Z ylAla sz‘ "

AeBy i=1

where |A|; is the number of bonds parallel to the unit vector ¢;. Then B1(y) = ﬁ, and for all
d > 2 the generating function is not a D-finite power series in y.

Proof. When d = 1 the only directed bond-animals consist of a line of bonds; the generating
1

function is simply - When d = 2 the result follows from the previous corollary. Finally if
d>2,set xp=---=x4-1 =0 1in By. This specialisation is well defined since the generating
function now counts those animals that are confined to the plane spanned by {€}, €;} which are
simply directed bond-animals on the square lattice.

Since the well-defined specialisation of a D-finite power series is itself D-finite [14], it follows
that if By were a D-finite function of y, then B(x, y) would also be D-finite. This contradicts the

previous corollary and the result follows. O
4. Conclusion

We have demonstrated that the anisotropic generating function of directed bond-animals is not
differentiably finite and so is fundamentally different from that of directed site-animals which has
been solved.

Unfortunately this result does not enable us to say anything rigorous about the nature of the
isotropic generating function; one can readily construct an example of a function, f(x, y) which
is not D-finite that becomes D-finite when x = y. For example:

yﬂ
F(x’y)_z (1 —xm)(1 — xnt (28)

n>1

is not a D-finite function of y by Theorem 5. Setting y = x = z gives a rational, and hence
D-finite, function of z:

n

Z Z
F(Z’Z)zrg(l—z”)(l—z"“):(1—z)2’ (29)

On the other hand, the “anisotropisation” of models that have been solved does not alter the
nature of their generating functions, rather it moves singularities around in the complex plane.
Of course, this does not imply anything about unsolved problems. We note that if the isotropic
generating function is indeed not D-finite then it will not be found using computer packages such
as GFUN [1,19] or differential approximants [10] which can only find D-finite solutions. At best
one might hope that the solution may satisfy some sort of g-linear equation.

We are currently working on extending non-D-finiteness results to other bond-animal prob-
lems including square lattice bond-animals and bond-trees. Unfortunately, work on a similar
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result for self-avoiding walks appears to be beyond the scope of these techniques [ 18]—the self-
avoiding walk analogue of 2-directed animals and 2-4-2 polygons (see [16]) appear to be quite
complicated and so finding recurrences such as those in Lemma 14 would be very difficult.

Finally, it may also be possible to extend the haruspicy techniques to site-animals and poly-
nominoes making it possible to show that self-avoiding polygons or general site-animals, counted
by an “anisotropised” area are not D-finite. This would also possibly explain why directed
site-animals on the hexagonal lattice remain unsolved—there is strong numerical evidence [6]
indicating that their anisotropic generating function is not D-finite, and it may be possible to
sharpen this evidence into proof.
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Appendix A. Haruspicy

In a previous paper [16] haruspicy> techniques have been developed that allow us to deter-
mine properties of the anisotropic generating function of a set of bond animals without detailed
knowledge of those animals. This allows the techniques to applied to problems that are unsolved,
such as self-avoiding polygons [17] and (in this paper) directed bond-animals.

The basic idea is to reduce or squash the set of animals down onto some minimal set, and
then determine properties of the coefficients, H, (x) of the anisotropic generating function by
examining the bond configurations of the minimal animals.

We start by showing how directed bond animals may be cut up so that they may be “squashed”
in a consistent way.

Definition A.1. Draw horizontal lines from the extreme left and the extreme right of the lattice
towards the animal so that the lines run through the middle of each lattice cell. These lines
are called section lines. The lines are terminated when they first touch (i.e. are obstructed by)
a vertical bond (see Fig. 9).

Cut the lattice along each section line from infinity until it terminates at a vertical bond. Then
from this vertical bond cut vertically in both directions until another section line is reached. In
this way the animal (and the lattice) is split into pages (see Fig. 9); we consider the vertical bonds
along these vertical cuts to lie between pages, while the other vertical bonds lie within the pages.

We call a section the set of horizontal bonds within a single column of a given page. Equiv-
alently, it is the set of horizontal bonds of a column of an animal between two neighbouring
section lines. A section with k horizontal bonds is a k-section. The number of k-sections in an
animal, P, is denoted by oy (P).

By dividing an animal into sections we see that many of the sections are superfluous and are
not needed to encode its “shape” (in some loose sense of the word). In particular, if there are two
identical sections next to each other, then we can reduce the animal by removing one of them.

5 The word “haruspicy” refers to techniques of divination based on the examination of the forms and shapes of the
organs of animals.
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e

section line

L 2-section

Fig. 9. Section lines (the heavy dashed lines in the left-hand figure) split the animal into pages (as shown on the right-hand
figure). Each column in a page is a section. This animal is split into 3 pages, each containing two sections; a 2-section is
highlighted. 11 vertical bonds lie between pages and 3 vertical bonds lie within the pages.

duplicate sections

Fig. 10. The process of section deletion. The two indicated sections are identical. Slice either side of the duplicate and
separate the animal into three pieces. The middle piece, being the duplicate, is removed and the remainder of the animal
is recombined. Reversing the steps leads to section duplication.

Definition A.2. We say that a section is a duplicate section if the section immediately on its left
is identical and there are no vertical bonds between them (see Fig. 10).

An animal can be reduced by deleting duplicate sections; slice the animal on either side of the
duplicate section, remove it and then recombine it (see Fig. 10). By reversing the section-deletion
process we define duplication of a section.

We say that a set of animals, A, is dense if the set is closed under section deletion and dupli-
cation. I.e. no animal outside the set can be produced by section deletion and/or duplication from
an animal inside the set.

The process of section deletion and duplication leads to a partial order on the set of animals.

Definition A.3. For any two animals P, Q, we write P <, Q if P = Q or P can be obtained
from Q by a sequence of section deletions. A section-minimal animal, P, is a animal such that
for all animals Q with Q <y P we have P = Q.

The above definition leads quite directly to the following lemma:
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Lemma A.4. The binary relation <, is a partial order on the set of animals. Further every
animal reduces to a unique section-minimal animal, and there are only a finite number of minimal
animals with n vertical bonds.

By considering the generating function of all animals that are equivalent (by some sequence
of section deletions) to a given section-minimal animal, we find that H,, (x) may be written as the
sum of simple rational functions. Theorem 4 follows directly from this. Further examination of
the denominators of these functions gives Theorem 8. Details are given in [16].

References

[1] A MAPLE package developed by B. Salvy, P. Zimmermann, E. Murray at INRIA, France, available from http://algo.
inria.fr/libraries/ at time of submission.
[2] J. Bétréma, J.-G. Penaud, Animaux et arbres guingois, Theoret. Comput. Sci. 117 (1993) 67-89.
[3] J. Bétréma, J.-G. Penaud, Modeles avec particules dures, animaux dirigés et séries en variables partiellement com-
mutatives, Technical report 93-18, LaBRI, Université Bordeaux 1, 1993.
[4] M. Bousquet-Mélou, New enumerative results on two-dimensional directed animals, Discrete Math. 180 (1998)
73-106.
[5] M. Bousquet-Mélou, A. Rechnitzer, Lattice animals and heaps of dimers, Discrete Math. 258 (2002) 235-274.
[6] A.R. Conway, A.J. Guttmann, Hexagonal lattice directed site animals, in: M. T. Batchelor, L.T. Wille (Eds.), Sta-
tistical Physics on the Eve of the 21st Century, in: Adv. Stat. Mech., vol. 14, World Scientific, Singapore, 1999,
pp- 491-504.
[7] D. Dhar, Equivalence of the two-dimensional directed-site animal problem to Baxter’s hard square lattice gas model,
Phys. Rev. Lett. 49 (1982) 959-962.
[8] D. Dhar, Exact solution of a directed-site animals-enumeration problem in three dimensions, Phys. Rev. Lett. 51
(1983) 853-856.
[9] D. Gouyou-Beauchamps, G. Viennot, Equivalence of the two-dimensional directed animal problem to a one-
dimensional path problem, Adv. in Appl. Math. 9 (1988) 334-357.
[10] A.J. Guttmann, Asymptotic analysis of coefficients, in: C. Domb, J. Lebowitz (Eds.), Phase Transit. Crit. Phenom.,
vol. 13, Academic Press, London, 1989, pp. 1-234, programs available from http://www.ms.unimelb.edu.au/~tonyg.
[11] A.J. Guttmann, Indicators of solvability for lattice models, Discrete Math. 217 (2000) 167—189.
[12] A.J. Guttmann, I.G. Enting, Solvability of some statistical mechanical systems, Phys. Rev. Lett. 76 (1996) 344-347.
[13] I. Jensen, Anisotropic series for bond animals, directed bond animals and lattice trees, personal communication with
author, see also http://www.ms.unimelb.edu.au/~iwan.
[14] L. Lipshitz, D-Finite power series, J. Algebra 122 (1989) 353-373.
[15] J.-G. Penaud, Une nouvelle bijection pour les animaux dirigés, in: Actes du 22éme Séminaire Lotharingien de
Combinatoire, Université de Strasbourg, France, 1989.
[16] A. Rechnitzer, Haruspicy and anisotropic generating functions, Adv. in Appl. Math. 30 (2003) 228-257.
[17] A. Rechnitzer, Haruspicy 2: The self-avoiding polygon generating function is not D-finite. J. Combin. Theory Ser. A
(2005), in press.
[18] A.N. Rogers, On the anisotropic generating function of self-avoiding walks, personal communication with author—
work formed part of ANR’s PhD thesis, submitted to The University of Melbourne, 2004.
[19] B. Salvy, P. Zimmermann, GFUN: A MAPLE package for the manipulation of generating and holonomic functions
in one variable, ACM Trans. Math. Software 20 (2) (1994) 163-177.
[20] R.P. Stanley, Enumerative Combinatorics, vol. II, Cambridge Univ. Press, Cambridge, 1998.
[21] E.T. Whittaker, G.N. Watson, A Course in Modern Analysis, fourth ed., Cambridge Univ. Press, Cambridge, 1927.



