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Abstract

We analyse the capacity of several two-dimensional constraint families — the exclusion, colouring, parity and
charge model families. Using Baxter’s corner transfer matrix formalism combined with the corner transfer matrix
renormalisation group method of Nishino and Okunishi, we calculate very tight lower bounds and estimates on the
growth rates of these models. Our results strongly improve previous known lower bounds, and lead to the surprising
conjecture that the capacity of the even and charge(3) constraints are identical.
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I. INTRODUCTION

N this paper, we analyse the capacity of several two-dimensional constraints. A constraint induces a model of

magnetic spins, each of which can take a small number of spin values (typically 2, representing ‘up’ or ‘down’
magnetic spins). These spins are arranged in an ordered fashion on a two-dimensional plane — in all the models
we analyse, they are positioned at the vertices of the square lattice Z2. Each constraint limits in some way the
potential arrangements of the spins on the lattice.

An application where constraints arise is that of data storage. Here, the values of the spins contain data stored
(in some encoding) on a magnetic disk. Due to properties of the disk, it may be undesirable for certain local
arrangements of spins to exist, and this leads to a corresponding constraint. For example, in the hard squares model
we define below, the spins can take the values @ and ©. However, the presence of two © spins next to each other
may cause magnetic interference, so we do not allow this to happen.

Given a constraint such as this, we wish to know what the storage capacity of the disk is. In the language of
statistical mechanics, the partition function is the number of different configurations that can be written on N spins
under the constraint:

Zn = (# of legal configurations on N spins). (1)

We are interested in the behaviour of this number as the size of the storage array grows to infinity, and so define
the partition function per site

k= lim zZV. )

N—o00

We also call « the growth rate of the model. The growth rate is directly related to the capacity of a constraint,
which is defined to be the number of bits of information per spin that is possible to be written on a disk with that
constraint:
. 1
cap(C) = A}gréo i logy, Zn = logy k. 3)
In other words, a disk with IV spins can store approximately cap(C) x N bits of information under the constraint
C. A ‘free’ disk with no constraints has a capacity of 1, since there are 2V possible configurations on N spins,
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and as such each spin represents one bit of information. As we approach this problem from a combinatorial point
of view, we shall limit our terminology to growth rates rather than capacity (of course, they are trivial to derive
from each other).

This problem is also studied in symbolic dynamics and dynamical systems, but with different terminology. Here,
the capacity is also known as the (topological) entropy of the model, while the spins are letters (of an alphabet).
Constraints are called sofic shifts (or systems), with a slight distinction: in constrained coding, the focus is on
configurations of finite systems of arbitrary size, while in symbolic dynamics (and this paper), the focus is on
configurations on the entire lattice. The exclusion and colouring models below are sub-classes of so-called ‘shifts
of finite type’ or ‘finite memory systems’.

The capacity of constraints in one dimension is, in general, very easily computed using a transfer matrix.
Unfortunately, capacities of two-dimensional constraints are significantly more difficult to compute, and because of
this we seek estimates and rigorous lower and upper bounds for their values. Of interest here are the methods of Engel
[1], and Calkin and Wilf [2], who provide a method to calculate such bounds using transfer matrices, illustrating
with the hard squares model. Louidor and Marcus [3] generalised this method and applied it to the exclusion, parity
and charge families of constraints discussed here. Additional references are provided for individual models as we
introduce them below.

In this paper, we use corner transfer matrix (CTM) formalism to derive very precise lower bounds on the growth
rates of the models that we study. The corner transfer matrix method was first devised by Baxter in 1968 [4] as
a way of numerically estimating the growth rate of fully-packed dimers on a rectangular lattice. In later studies
in the late 70s [5], [6], it was developed into method to calculate series expansions of the partition function and
magnetisation. A particularly noteworthy triumph of this method was Baxter’s famous solution of the hard hexagons
model [7], [8], which was derived by noticing a pattern in the eigenvalues of the corner transfer matrices.

As far as we know, CTM formalism has never been used before to calculate lower bounds, rather than estimates
(although in fact, the theoretical machinery required to produce lower bounds has long been in place). When used
for this purpose, the accuracy of the bound depends on how close we can come to the solution of the model.

For this purpose, we use the corner transfer matrix renormalisation group (CTMRG) method of Nishino and
Okunishi [9], [10]. This method combines the original CTM method with ideas from the density matrix renormal-
isation group method (see, for example, [11], [12]), and also produces estimates of the growth rate. The CTMRG
is more general and easier to apply numerically than Baxter’s original method, and has been applied, among other
things, to self-avoiding walks [13] and the Ising model scaling function [14]. Recently, it too has been extended
by one of the authors [15] to calculate series expansions.

In Section II, we define the models that we study and discuss some reformulations needed to make them amenable
to CTM analysis. In Section III, we explain the corner transfer matrix formalism that we use to derive our lower
bounds and estimates. These numerical results are presented in Section I'V. In Section V, we discuss the (conjectured)
equivalency between two of our models, and conclude in Section VI.

II. THE MODELS

We calculate the growth rate of several models in this paper. All of these models have spins which lie on the
vertices of a square lattice, which usually take the values @ and &. The configurations will be constrained in certain
ways that we describe below.

A. Exclusion models

In the exclusion models, we consider configurations of &, S spins which are forbidden to contain certain local
configurations of Ss (see Fig. 1).

Definition 1. Consider a configuration of &, © spins on the vertices of the square lattice.

o The configuration satisfies the hard squares constraint if it does not contain two © spins joined by a single
bond. If one considers the & spins to be the centres of rotated square blocks, then this constraint requires that
these blocks do not overlap.

This model is a special case of a more general hard squares model where the constraint is enforced, but each
© spin is also given a weight z. Our model corresponds to z = 1. In the more general model, questions of



N WA

’/'\\ :’ z'\\:é
® OO0 O @O @ @ OO @ OO OQO OO @O QOO0
O Q- Qe Qo Qi Q- @O @ OO @O O @O ® QOO @O @O
@O @O Qo Qe QO QOO @ Qe O @O QO @ Qs Qe Qe QO
O @O QOO @ O @O @O0 O OO QOO QOO
O Q@O @ QOO QOO QOO @O ® OO @O @O
O @ QOO @O O @O Q@O OO QQ QOO
O QO @O @ OO QOO QO Qo QO O Q@ Qo Qi Qn OO
@O @O @O QO @O @ Qe Qe O @O @O O Qe O @ QO

Fig. 1. (bottom) Examples of the three exclusion models we consider (from left to right): hard squares, RWIM and NAK. We represent ©

spins by black vertices and & spins by white vertices. (top) The diagrams show the allowed configurations around a face for each model; two
vertices joined by a solid line may be simultaneously occupied by &s, while vertices joined by a dashed line may not.

interest include not only this special case, but also the location of the phase transitions (singularities in the
free energy). These questions have been studied using corner transfer matrices in [6], [15]. Placing the spins
on the vertices of a triangular lattice results in the hard hexagon model, which has been exactly solved using
corner transfer matrices [7], [8]. Studies on the z = 1 case include [2], [16].

o The configuration satisfies the read-write isolated memory (RWIM) constraint [17], [18] if it does not contain
two © spins joined by a horizontal bond, or lying diagonally across a single face. This constraint can be used
to model one-dimensional memory states with the hard square constraint, which are sequentially updated in
such a way that no two adjacent spins are changed in the same update.

o The configuration satisfies the non-attacking kings (NAK) constraint if it does not contain two & spins joined
by a single bond, or lying diagonally across a single face. Equivalently every face of the lattice contains at
most one & spin. If one considers each © spin to be a king on a chessboard, then the NAK constraint requires
that no king can attack another. This has been studied, along with the hard squares and other models, in [19].

B. Colouring models

We also consider vertex colourings of the lattice; each vertex is coloured using labels from 0 to ¢ — 1 for some
fixed ¢, and again we prohibit certain local configurations.

Definition 2. A configuration of {0,...,q — 1} spins satisfies the g-colouring constraint if it does not contain two
nearest-neighbour spins with the same colour.

This is related to the chromatic polynomial and the anti-ferromagnetic Potts model (see for example [20], [21],
[22], [23]). When g = 2, there are only two possible configurations, while for ¢ = 3 it is known that the growth
rate is exactly (4/3)3/2 = 1.5396007178 ... [24]. We study this model for higher ¢, where the growth rate is not
known exactly.

C. Parity models

Again we place the spins @ and © at the vertices of the square grid. However unlike the models above, the
constraints are no longer local. The two parity models arise by constraining the parity of the number of @& spins
lying between two © spins along any horizontal or vertical line.

Definition 3. Consider a configuration of @, & spins on the vertices of the square grid. Take any two & spins lying
along a horizontal or vertical line so that there is no other © spin between them.

« If every such pair is separated by an even number of & spins, then the configuration satisfies the even constraint.



o Conversely, if every such pair is separated by an odd number of & spins, then the configuration satisfies the
odd constraint.

While the above spin constraints are not local, it is possible to map them to other models of states with local
constraints, which makes them amenable to CTM analysis. We explain this mapping below.

The growth rate of the odd model is known to be /2 [3]. To prove that the growth rate is at least v/2, populate
the lattice with @ in a checkerboard pattern. The remaining spins, which constitute half the total spins, can then
be assigned @ or © independently. This always produces a valid configuration, so the bound follows.

To obtain the opposite bound, consider configurations of spins which obey the odd constraint along horizontal
lines, while having no constraint along vertical lines. Being less constrained, the growth rate of this new model
is greater than that of the odd model and is equal to the growth rate of the odd model in 1 dimension. It is
straightforward to show that this is exactly v/2.

Since the growth rate of the odd model is known exactly, we do not discuss it further.

D. Charge(3) model

A final family of constraints is parameterised by a positive integer corresponding to the maximum cumulative
electric ‘charge’ along a horizontal or vertical line.

Definition 4. A configuration of &, © spins satisfies the charge(3) constraint if for any finite horizontal or vertical
line segment, the sum of the spins along that segment lies between —3 and +3.

The above definition means that starting at any horizontal bond in the lattice, there exists an initial charge between
0 and 3 so that scanning to the right, the cumulative charge always lies between 0 and 3. The same holds for any
vertical bond, scanning downwards.

Clearly the above definition can be generalised by replacing 3 by any other positive integer. There are only 2
valid charge(1) configurations — checkerboard patterns of @ and & — so this system has growth rate 1. The growth
rate of charge(2) configurations on Z¢ was proved in [3] to be 227", Charge(3) is the first of this family of models
for which the growth rate is unknown — indeed, previous works have been unable to exactly determine its first
digit. Our results strongly support the following surprising conjecture:

Conjecture 1. The charge(3) and even models have equal growth rate on 7Z2.

E. Model transformations: states on bonds

The exclusion and colouring models all share the property that their constraint is local, acting entirely within the
confines of a single cell. This is precisely what we need for the model to be amenable to analysis using corner
transfer matrices. As such, we can apply this analysis to these models directly.

However, the even and charge(3) constraints are non-local. Fortunately, we can transform these models so that
the constraints can be expressed in a local manner. To do this, we will map configurations of & and © spins on
the vertices of the lattice to configurations of states that lie on the bonds of the lattice.

« For the even model, we place states on the bonds of the lattice as follows. First label all bonds adjacent to ©

spins by ‘p’. Then for any @ spin, bonds on opposite sides of the vertex must take different labels — so a
bond with a ‘p’ state must lie opposite a bond with an ‘7’ state and vice versa.
This means that for any given © spin, if we scan the bonds to its right towards the next & spin, we will
pass an even number of @ spins and so read an odd-length alternating sequence of bond states pipi . ..ip. In
particular we can interpret the ‘p’ state to mean that we have passed an even number of @ spins since the &
spin we started from. Similarly the ‘¢’ state indicates that we have passed an odd number of & spins since the
© spin. The same will occur if we scan downwards. The notation p and ¢ is taken from the French pair and
impair for even and odd.

« Consider a valid charge(3) configuration of spins. To each bond in the lattice we assign a state between 0 and
3. Around a @ spin, the state of the south and east bonds are 1 more than those of the north and west bonds
respectively. Around a © spin we do similarly, except that the south and east bond states are 1 less than the
north and west bond states. In this way the bond states represent the cumulative charge reading left to right
or top to bottom along the lines of the lattice.
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Fig. 2. An example of the @Q-charge (left) and p-i (right) models. For the p-i model we have represented bonds in state p as being vacant,
while those in state ¢ are drawn as occupied bonds.

The mapping for the even model defines a ‘p-i” model on the bonds of the lattice. A labelling of the bonds by
p and ¢ will be valid when there are no two adjacent ¢ states along any horizontal or vertical line, and further any
vertex must be adjacent to zero or two ¢ states. Thus the mapping transforms the non-local even constraint into a
local p-i constraint.

For the charge(3) model the mapping defines what we will refer to as the ‘Q)-charge’ model on the square lattice
(Q being traditional notation for charge in electrostatics). A labelling of the bonds by 0,1,2,3 will be a valid
(Q-charge configuration when around any vertex, the difference between the north and south bounds is the same as
that between the west and east bonds and equal to £1. That is,

b% valid ifd—a=c—b==+l1 @
CcC =
d invalid otherwise.

Again, this mapping transforms the non-local charge(3) constraint into a local ()-charge constraint.

The mappings to p-¢ and Q-charge configurations are not bijective. In each case a single valid configuration of
© and @ may map to many different p-i or (Q-charge configurations. However, it is easy to show that this factor
does not affect the growth rate.

Lemma 2. The growth rate of the even model is equal to that of the p-i model. Similarly, the growth rate of the
charge(3) and Q-charge models are equal.

Proof: The mapping defined above shows that Kepen < Kp. To prove the reverse inequality, consider both
constraints on the lattice [1, N]? (including boundary bonds).

Starting with a valid even configuration, if each row and column contains at least one & spin then the p-i
configuration is uniquely determined. On the other hand, if a given row or column has no © then the bonds it
contains can be labelled pipipi ... or ipipip. ... So on this finite lattice every even configuration corresponds to at
most 22V p-i configurations. Since there are N2 vertices in this lattice, the growth rates are equal in the N — oo
limit.

The proof for charge(3) and (Q-charge is similar, except that the state of the first bond in each row/column may
have up to 3 possible values. We note that the ‘worst’ possible charge(3) configuration — a checkerboard of © and
@ — will have 32V corresponding (Q-charge configurations. [ ]
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Fig. 3. Possible cells in the p-i and even-face models, up to rotation.

F. Model transformations: states on faces

We make a further transformation from the p-¢ model to another model (which we call even-face), which places
states on the centres of the faces of the lattice. These states can take the values O or 1. It is not necessary to make
this transformation, but empirically it responds better to the corner transfer matrix renormalisation group method.

Given a p-¢ configuration, two states on neighbouring faces in the corresponding even-face configuration are equal
if they are separated by a p bond, and unequal otherwise. A full enumeration of the possible p-i configurations
shows that the resulting configuration is internally consistent (see Fig. 3). Now we determine the validity of a
configuration according to each cell:

(a b)_{invalid ifatb+ctd=2 )

c d valid  otherwise.

Again, this mapping is not a bijection, but determining the value of one state on an arbitrary face in the even-face
model will fully determine the rest of the configuration. As such, the number of even-face configurations is exactly
twice the number of p-i configurations, and their growth rates are equal.

III. CORNER TRANSFER MATRIX FORMALISM
A. Computing a rigorous lower bound
Consider, for the sake of exposition, a model in which spins lie on the vertices of 72 and can take two values.
Further, the model is governed by an ‘interaction round a face’ w that is symmetric across a vertical line. This
includes the exclusion models (hard squares, NAK and RWIM), the colouring models and the even-face model
(since the square lattice is self-dual). More work is required for the charge model and we discuss it further below.
We wish to count the number of configurations, and so take

(6)

(a b) {1 if the local configuration is valid
w =
c d

0 otherwise.

First consider a strip of the square lattice of height m with cylindrical boundary conditions identifying the top
and bottom edges. Let V' be the 2™ x 2™ column transfer matrix defined by

s g3 Ti
Vo = Hw( o ;il) @

i=1
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Fig. 4. We define the 2™ elements of the vector ¢ to be the trace of the product of F' matrices. The elements of the column transfer matrix
V' are products of the face weight w. In both cases we apply cylindrical boundary conditions so that o,,4+1 = 01 and Ty,41 = 71.

where 0,41 = o1 and similarly for 7. See Fig. 4. Note that this is just the traditional column transfer matrix and
is symmetric.

Since V' is symmetric, we can apply a variational principle — namely, the dominant eigenvalue A(m) is given
by

VTVY
A(m) = max . 8
The growth rate of the system is the limit
k= lim A(m)Y/™. )

m—r o0

To obtain a lower bound, it suffices to substitute a particular 1 into (8), which we do using Baxter’s corner transfer
matrix ansatz.

Let {F(a,b)} be a set of four n x n matrices indexed by two spin values a,b € {0, 1} so that F(a,b) = FT (b, a).
While some of these matrices may be zero (e.g. for the hard squares model F'(1,1) = 0), they should not all be
trivial. Consider the vector of dimension 2™ which satisfies

Ve = Tr[F(o1,02)F(02,03) ... F(om,01)]. (10)

This is shown in Fig. 4. For any particular choice of F', we obtain a vector i) and so a lower bound for the
maximisation problem. Now, given a choice of F, we need to be able to compute )" V¢ and 17+ and so our
lower bound.

Let us fix m and the matrices F. We denote the n? entries of F(a,b) as F(a,b)a s for a, 8 € {1,...,n}. It
is possible to rewrite the product of 179 as the trace of a power of a new matrix, R. This is extremely helpful
because R is not dependent on the height of the strip. Instead, the height dependence is confined to the power of
the matrix. In particular, we may write

YTy = Tr(R™) (11)
where R is a (2n?) x (2n?) matrix defined by
Rajalan, b7 = F(a,b)a,sF(a,b)ar - (12)

See Fig. 5 for an illustration of this. To see this consider
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Fig. 5. In order to compute 174 (top-left) and T V1) (top-right), we define two matrices R and S so that T+ = Tr(R™) and
T Vap = Tr(S™). The elements of R and S are defined as indicated (bottom-left and bottom-right respectively).
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Now rewrite the summands as elements of R

=X > > Hlewa><ab+1|m1|am> (13d)

0 Qy,.. ,amal, ,a

= Tr(R™). (13e)
In a similar way,
WV =Tr(S™) (14)
where S is a (4n?) x (4n?) matrix defined by

/

b b
S(ala.aran) (8l 13) = F(@,b)as - w (a a’) F@ Ve (1

Note that due to the symmetry F(a,b) = FT(b,a), both R and S are symmetric.
Now let £ and 7 be the maximal eigenvalues of R and S respectively. Our lower bound becomes

(™) = k= lim Am)Y™ > 2, (16)

A(m) > ) Jim =
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Fig. 6. (left) X and Y are the dominant eigenvectors of the matrices R and S (respectively) with eigenvalues £ and 7 (respectively). (right)
By recasting X and Y as matrices, we can rewrite the eigenvalue equations as matrix equations in terms of F' as shown.

So to compute our bound it suffices to compute the dominant eigenvalues of R and S.
Let X be the dominant eigenvector of R, so that

£X = RX. (17)

See Fig. 6. It is helpful in what follows to recast X as a set of matrices, and the corresponding eigenvalue
equation as a matrix equation. The vector X has dimension 2n? and we index its elements as X(ala|p)- Define
X(a)a,s = X(ala|)- Then we can write the eigenvalue equation as

§X(a)a,0r = (RX)(a)alar) (18a)
= Y Riajaler), @180 X 810187 (18b)

B,b,8'
=Y F(a,b)asF(a,b)a 5 X (b)p5 (18¢)

B,b,8'
=Y F(a,b)as X(b)pe F(ba)s o (18d)

B,b,8
= (Z F(a,b) X (b) F(b, a)> (18e)

b a,o’
and so

¢X(a) = F(a,b) X(b) F(b,a). (19)

b

Now define Y to be the dominant eigenvector of S, so nY = SY. It is of dimension 4n?2, and we index its elements as
Y(aja,b8)- Again, partition these as Y(a,b)a,s5 = Y(a|a,b|3)- With similar working, we have the eigenvalue equation

Y (a,0) = > w (‘; Z) F(a,¢)Y(c,d) F(d,b). (20)

c,d

To compute £ and 7, one could apply the power method to the matrices R and .S using a random initial vector.
However, since R and S have dimension O(n?), each matrix-vector multiplication (and so each iteration) would
take O(n*) operations. Instead it is more efficient to apply the power method implicitly using (19) and (20).

Consider equation (19). Given a prospective eigenvector X;(a) with a fixed normalisation, we substitute this into
the right-hand side of (19). Given this normalisation, the next iteration &; 1, X;+1(a) is now given by the left-hand
side of the equation. Each iteration of these equations involves multiplying square matrices of dimension n, and so
requires O(n?) operations (or smaller with the use of more sophisticated algorithms).

We can use any value of X(a) to start the power method, but the CTMRG method below will suggest an
appropriate starting value. To cover the possibility that this starting value is a sub-dominant eigenvector, we perturb



Fig. 7. In Fig. 6 the eigenvectors X and Y were recast as matrices. Now we rewrite them again as products of the matrix F' together with the
corner transfer matrix A. The matrix ' sweeps through a half-row or half-column and the matrix A sweeps through a quarter of the lattice.

it slightly before starting the power method. n (and Y') is found in an identical manner, except this perturbation is
not needed (the result will still give a lower bound on 7 and so k).

So our process for computing a rigorous lower bound for « is this: we take any set of F' matrices, apply the
power method to (19) and (20) to calculate 7 and £, and then our lower bound is n/¢.

Of course, the efficacy of this approach depends critically on the set of F' matrices — thus we now need a
heuristic to find a ‘good’ set of F' matrices. This is achieved by use of the corner transfer matrix renormalisation
group algorithm, which we detail in the next section.

We note that the method described in Sections 3 and 6 of [3] is similar in spirit to that described above, in that
they both replace the eigenvector of the transfer matrix with an expression that simplifies calculations.

B. Corner transfer matrix renormalisation group method

We now wish to choose a set of F' matrices which provide a good lower bound, i.e. as large as possible. We
do this using a heuristic algorithm known as the corner transfer matrix renormalisation group (CTMRG) method.
Note that while the choice of F' alters the quality of the bound, it does not affect the fact that it is a lower bound,
and as such it is unnecessary to prove any convergence properties of the CTMRG method.

Since we wish our lower bound to be as large as possible, we wish to maximise 1/ with respect to F'. The
derivation of equations which ensure this is long and complicated, and we shall not repeat it here. It is sufficient
[5] to note that if we have a set of n x n matrices A(a) which satisfy

X (a) = A%*(a) Y (a,b) = A(a) F(a,b) A(b) Q1)

then £ is stationary with respect to F'. Note that defining A in this way assumes that the model is invariant under
rotation by /2. For models without this symmetry, we define several different corner transfer matrices — see the
next section. Unfortunately (21) does not prove that « is maximal, merely stationary, though empirically this does
appear to be the case. See Fig. 7 for a graphical interpretation of the above equations. Unlike the more familiar
column and row transfer matrices, the matrix A(a) (the eponymous corner transfer matrix) adds the weight of one
quadrant or corner of the lattice.

The CTMRG method calculates matrices which converge to the finite-size solution of (19), (20) and (21), known
collectively as the CTM equations. As such, the I’ matrices that it produces can be used in our calculations above
to provide (what appears to be) a very tight lower bound.

To gain an intuition for the CTMRG method, consider A(a) and F'(a, b) to be infinite-size transfer matrices (with
an appropriate normalisation) which represent a corner and half-row of the entire plane respectively. It is easily
seen that with X and Y determined according to (21), they represent (normalised) half-plane transfer matrices. In
this case, (19) and (20) are seen to be satisfied by this choice of F', X and Y. So the infinite-dimensional solution
of the CTM equations can be thought of as a set of transfer matrices.

In order to approximate this infinite-dimensional solution, we can construct initial A and F’ matrices as the corner
and half-row transfer matrices of a lattice of (2p + 1) x (2p + 1) spins. These matrices have dimension 27 x 2P,
We can now bootstrap to a larger lattice by constructing the block matrices

Al(Oga =Y w (‘CL Z) F(d,b) A(b) F(b,a) (22a)
b
Fi(d, )lpa = w (Z 2) F(b,a) (22b)

10



Fig. 8. Expansion of transfer matrices.

each having dimension 2P*! x 2P+ From Fig. 8, it is apparent that A; and F} are the corner and half-row transfer
matrices of a lattice of (2p+3) x (2p+ 3) spins. By repeating this process indefinitely, we approach the infinite-size
transfer matrices which we require.

At any p, we can compute the number of configurations on the lattice of size (2p+1) X (2p+1) as Zopy1,2p41 =
o Ir (A4(a)). Unfortunately, since the size of these matrices grows exponentially, this is not a practical approach
for even moderate p. It does, however, suggest that we should examine the eigenvalues of A. If the eigenspectrum
of A decays quickly, then we can approximate this trace by using only the largest few eigenvalues of A.

To manipulate the eigenvalues directly, we diagonalise the matrix A;. Observe that the CTM equations are
invariant under the similarity transforms

A(a) = PT(a) A(a) P(a) F(a,b) = PT(a) F(a,b) P(b) (23a)
X (a) — PT(a) X(a) P(a) Y (a,b) — PT(a) Y (a,b) P(b) (23b)

for orthogonal matrices P(a). This means that we can take A;(a) to be diagonal, with entries ordered from largest to
smallest. We throw away the smaller eigenvalues by truncating our large matrices to size n x n. Since the discarded
eigenvalues are small, the effect of this truncation on the trace (and so our estimate of Zaj,11 2,4+1) Will also be
small. Empirically we also find that the resulting matrices are close to the n x n solution of the CTM equations.

Ideally, we would find approximate solutions at size n X n by using (22) to construct very large transfer matrices,
then transform and truncate these transfer matrices according to (23). However, since the matrices double in size
for each use of (22), this quickly becomes impractical.

Instead, we transform and truncate the matrices every time we expand. Since we may choose exactly how many
eigenvalues to discard, we can take matrices of size n X n, expand them to size 2n x 2n and then truncate back
down to size n X n. In this way we can produce a sequence of n X n matrices which appear to converge to the
finite-size solution of the CTM equations.

As far as we know, it is not proved that this procedure will converge at all, let alone to the finite-size solution.
However, this happens empirically, and as stated above such a proof is not necessary to establish a rigorous lower
bound — we can simply observe that the resulting F' matrices result in good bounds. In full, the CTMRG method
is as follows:

(1) Start with initial 1 x 1 matrices A(a), F'(a,b) and let n = 1.

(2) Expand A and F using (22).

(3) If required, increase n by 1.

(4) Diagonalise A;(a). Let P(a) be the matrix consisting of the eigenvectors corresponding to the n largest

eigenvalues of A(a).

(5) Reduce A; and Fj using (23).

(6) Normalise A and F' so that the top-left elements of A(0) and F'(0,0) are both 1.

(7) Go to step 2.

Once the above procedure has converged sufficiently at a given size n, we can substitute the resulting F' into the

CTM equations to obtain & and 1 and the lower bound. In fact, we can terminate the procedure at any stage, since

any F' will result in a bound, but in practice we wait until the procedure has converged to a desired precision.
We calculate our estimates of x by the formula [5]

11



Fig. 9. For a model with symmetry under rotation by = we need two sets of corner transfer matrices A and B as well as half-row and
half-column transfer matrices F' and G.

(ST 2@) (Sapea T (&) A@F (@ AP ADFEHAOFG.0))
K= G

(s Tr A2(a)F(a,6) A2(D)F (b, ) ) i

Each term in this formula represents the partition function of the entire plane. However, the term in the
denominator contains an extra row compared to the first term in the numerator, while the second term in the
numerator contains both an extra row and column. The net effect is to cancel out everything but the effect of a
single cell. In practice, using this formula is faster and more accurate than the lower bound computation, but of
course does not provide a bound.

C. Asymmetry and the CTMRG

The decomposition in (21), and thus the CTMRG, implicitly assumes that the corner transfer matrices are equal
under a rotation of 7 /2. This naturally occurs if the model itself is invariant under this rotation, which holds true
for the majority of the models we analyse. The exceptions are the RWIM and )-charge models, which are only
symmetric under rotation by 7. To accommodate this, we define separate half-row and half-column transfer matrices,
and two different families of corner transfer matrices — see Fig. 9.

We will use A to denote the corner transfer matrices for the second and fourth quadrants of the lattice, and B
for the first and third. Similarly we let £’ and G denote the half-row and half-column transfer matrices respectively.
We expand these matrices in a similar way to (22), taking care with the orientations:

A =S w (‘CL Z) Gb,a) A(a) F(a, ) Fi(e,a)lap = w (‘Z z) F(d,b) (25
Bi()laa =3 w (CC‘ Z) F(d,) B(b) G(b, ) Ci(d, )]0 = w <‘; Z) G(b,a).  (25b)

b

To reduce the matrices, we observe that we can represent the transfer matrix of the entire plane as either (AB)? or
(BA)?, and these are not necessarily equal. In order to diagonalise both these matrices and simultaneously preserve
the CTM equations, we define P4p(a) and Ppa(a) to be the matrices consisting of the first n eigenvectors of
Aj(a)Bi(a) and Bj(a)A;(a) respectively. Our reducing transformations then become

A(a) — PT5(a) Aj(a) Pga(a) F(a,b) — PL,(a) Fy(a,b) Pga(b) (26a)
B(a) — P% 4(a) By(a) Pap(a) G(a,b) — Pig(a) Gi(a,b) Pap(b). (26b)

The remainder of the method is unchanged.
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Fig. 10. For a model with bond states we define the corner transfer matrices A and B, and the half-row and half-column matrices F' and G
as shown. The edges of the lattice are shown in thin dotted lines. The bond-states surrounding the weight w are shown as labelled white circles.

D. States on bonds

The CTMRG is defined on a model where the states are located on the vertices of the Z? lattice. As this lattice
is self-dual, it can be applied without change to a model where the states are on the faces. However, we must make
some small adjustments when the states lie on the bonds, as for the (Q-charge model. As this model is not invariant
under a rotation of 7/2, we will also use the machinery developed in the previous section.

In order to apply the CTMRG to this form of model, we use a form of the method similar to that developed by
Foster and Pinettes [25], [13]. The face weight w becomes a weight around a vertex, and we shift all the matrices by
half a length unit (see Fig. 10). This also has the effect that the corner transfer matrices are no longer parameterised
by a state — so we only have one A and one B. Similarly the half-row and half-column matrices, F'(a) and G(a),
are now parameterised by a single state.

We make obvious adjustments to the expansion and contraction of the matrices. These now become

Atlea = Zw<b Z C) G(a) AF(b) (0)]d,a = Zw( ) (c) (27a)
a,b
Bldb—2w< ) (¢) BG(a) Gl(d)|c,bzzw<b Z c) G(a) (27b)

A PIo A Ppa F(a) — Pk, Fi(a) Ppa (27¢)
B PL, B Pap G(a) = Phy Gi(a) Pap (27d)

where the face weight w is given by (4).
Note that the corner transfer matrix formalism which leads to the rigorous lower bound only requires that the
original column transfer matrix V' is symmetric. In the case of the charge model, the symmetry of V' follows from

the fact that if you invert all the vertex spins in a column, then the column is still legal. However, it is no longer
the case that F7'(a) = F(a) and our eigenvalue equations must be changed to reflect this:

ZF )X FT(a) (28a)

Zw( c) F()Y(d) FT(c). (28b)

b,c,d

In practice, applying the power method using these equations can be unstable for the ()-charge model for reasons
we have not been able to determine. In any case, we are able to obtain significantly better bounds for this model
through a relation to the even model (see Section V).

IV. RESULTS

The CTMRG algorithm described in the previous section was implemented in C++ using the Eigen numerical
linear algebra library [26]. The main advantage of Eigen over other libraries is that it readily supports multiple
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precision computations through the MPFR library [27]'. The eigenvalues of the corner transfer matrices range over
many orders of magnitude, so all computations must be done at very high precision. For example, for the hard
squares model, the eigenvalues of A(0) and A(1) at size 50 x 50 range from 2° down to approximately 275

All of the computations were run on modest desktop computers running Linux and took between a few hours
and a few days to complete. The fastest computation (overall) was hard squares and the slowest was charge(3).
Indeed, our most precise results were for hard squares and the least precise were for charge(3).

Matrix diagonalisation requires O(n?) operations, and so a full iteration of the algorithm described in Section I1I-B
also requires O(n3) operations. We have observed that for most of the models, the number of iterations required
to converge at size n does not increase with n. However, since our computer code waits until convergence at every
size before proceeding, we observe that the algorithm is roughly O(n*). Note however, that this is the time taken
to converge at a fixed matrix size, not to a fixed number of digits in k.

The rate of convergence of our estimates and bounds depends upon the eigenspectrum of the corner transfer
matrices. For the purposes of this discussion we will assume that the matrices at each size have converged to their
limiting value under the renormalisation procedure. A key observation is that the largest eigenvalues do not change
much with matrix size — the 4 eigenvalues of A(0) at size 4 are nearly the same as the 4 dominant eigenvalues
of A(0) at size 40, and presumably at size 400.

Thus, what changes as we increase matrix size are the eigenvalues we discard by truncating the matrices. Since
each term in our computation of « (via (24)) is the trace of the product of 4 corner transfer matrices (some interlaced
with half-row and half-column transfer matrices), we expect that the contribution of each eigenvalue to the estimate
of k is roughly proportional to its fourth power.

The question of the tightness of the bound is a little more complicated, as it depends on how close our F' matrices
are to the solution of the CTM equations. If they exactly solve the CTM equations at finite size (for some values
of the other matrices), then there is no difference between our bound calculation using (16) and our estimate using
(24), and so the error should be the same. As we run the algorithm to convergence at each finite size, we expect
that the extra error induced by having a not-quite-optimal F' is minimal.

This analysis shows that the utility of the method hinges on the distribution of the eigenvalues of the corner
transfer matrices. If the eigenvalues decay slowly, then by truncating the matrices we will throw away quite large
contributions to the estimates and bounds of «. In such a situation, we would expect our estimates and bounds to
converge slowly with increasing matrix size. On the other hand, if the eigenvalues decay quickly then the truncated
eigenvalues will have little impact.

It is believed [28] that the eigenvalues of the corner transfer matrices scale as

AL ~ exp (—c(ln k)2) . (29)

Here we have denoted the k™ largest eigenvalue by \.: since these do not vary significantly between different
matrix sizes, we have not specified the dimension of the underlying matrix.

If the above scaling form holds true — and our observations suggest that it does (see Fig. 11) — then we expect
the error in our estimates to have a similar asymptotic form with increasing matrix size. Thus, to achieve an error
approximately €, we need to take matrices of size k x k with

k ~ exp (a\/Tg(s)) . (30)

Substituting € = 27V gives
k ~ exp (5¢N) . 31)

Since the running time and memory required grow polynomially with matrix size, the above argument supports the
assertion that the time and memory required by the algorithm to correctly compute N digits grows subexponentially
with N.

In Table IV, we list our lower bounds and estimates for the growth rates of the models we have considered. Due
to the instability of the bound calculation for the charge(3) model, we only give the estimate for this model. Note

TAt the time of writing the Eigen and MPFR libraries were available from http://eigen.tuxfamily.org and
http://www.mpfr.org/.
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Fig. 11. A plot of log()\) vs log(k)?, for the eigenvalues of A(0) (upper curve) and A(1) (lower curve) at size 50 for the hard squares
model. For larger k, the plots appear approximately linear, supporting the conjectured scaling form of (29).

TABLE I
LOWER BOUNDS AND ESTIMATES FOR THE GROWTH RATES OF THE VARIOUS MODELS. FOR EACH MODEL WE GIVE THE FULL DECIMAL
EXPANSION OF THE LOWER BOUND, AND THEN WE GIVE THE LAST FEW DIGITS OF OUR ESTIMATE IN BRACKETS. THESE REPLACE THAT
MANY DIGITS IN THE LOWER BOUNDS — THE PRECEDING DIGITS ARE IDENTICAL. WE UNDERLINE THE DIGITS WHICH AGREE WITH THE
PREVIOUS BEST KNOWN LOWER BOUNDS (REFERENCES GIVEN UNDERNEATH THE MODEL NAME).

Model Matrix size | Lower bound on (and estimate of)
Hard squares 256 1.503 048 082 475 332 264 322 066 329 475
[29] 553 689 385 781 038 610 305 062 028 101
735 933 850 396 923 440 380 463 299 47 (65)
NAK 256 1.342 643 951 124 601 297 851 730 161 875
[3] 740 395 719 438 196 938 393 943 434 885
4550 (1)
RWIM 128 1.448 957 371 775 608 489 872 231 406 108
[3] 136 686 434 371 (7)
Even 128 1.357 587 502 184 123 (5)
[3]
Charge(3) 74 (1.357 587 50)
[3]
4-Colouring 96 2.336 056 641 041 133 656 814 01 (4)
[22]
5-Colouring 64 3.250 404 923 167 119 143 819 73 (6)
[22]

that since RWIM is asymmetric, we computed the bounds and estimates both using (19) and (20) as stated, and
also with F' replaced by G; they gave the same bounds (to the precision stated in the table).

To show how much our bounds are an improvement on existing bounds, we have underlined the digits which agree
with previous best known bounds (after which, our bounds are greater). Of course, rigorously measuring the accuracy
of a bound is impossible without exact knowledge of the quantity being estimated, or at least a comparable upper
bound. However, comparing the number of digits with which our estimates agree with our bounds and previously
known bounds, we are confident that our bounds are a great improvement in all cases.

We note that our estimates agree with all 43 digits of the estimate for the hard squares growth rate given in
[16], and agree up to our last 2 digits with a naive evaluation of the g-colouring series given in [23] with ¢ = 4, 5.
We have attempted to identify all of these constants using the Inverse Symbolic Calculator [30]. Unfortunately, we
were not able to identify any of them.

Our estimates lead to the rather surprising observation that the growth rates of the charge(3) and even models
are identical — at least to the 8 significant digits we have computed. This observation led us to Conjecture 1. We
discuss this further below.
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Fig. 12. The allowed transitions for the one-dimensional p-i (top) and @Q-charge (left) models. There is a 2-1 graph homomorphism from the
Q-charge finite-state graph to that of the p-i model — namely map the nodes 0, 3 to the node ¢ and the nodes 1,2 to the node p.
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V. THE CHARGE(3) AND EVEN MODELS

As noted above, our estimates of the growth rates of the charge(3) and even models agree to 8 significant digits,
which is the limit of our accuracy for the charge(3) model. Because of this we conjecture that they are equal.
Should this conjecture be true, our lower bound and estimate for the charge(3) model can be extended by a few
digits, using values from the even model.

The one-dimensional counterpart to this conjecture can be proved quite readily:

Theorem 3. For the one-dimensional lattice,

1+5

Kcharge(3) = Keven = 2 . (32)

Proof: Perhaps the most obvious way to demonstrate this is to construct the appropriate transfer matrices for
the (Q-charge and p-i models (see Fig. 12). These are

01 00
1 1 1 010

Vp—i = <1 0> Vchharge = 01 0 1 (33)
0 010

A quick computation shows that the dominant eigenvalue (and hence the growth rate) of each is 1+2\/5.

It is more instructive, however, to construct a mapping between the two states-on-bonds models. This mapping
is a 2-1 graph homomorphism between the two underlying state graphs as illustrated in Fig. 12. Simply map the
vertices labelled by 0, 3 to the vertex labelled ¢, and the vertices labelled 1,2 to the vertex labelled p.

Now consider any valid ()-charge configuration in one dimension. Using the above mapping we can transform
it into a valid p-¢ configuration. The reverse mapping is 1 to 2. To see this pick a single p in the p-¢ configuration
— we may choose whether this maps to a 1 or a 2 in the corresponding (-charge configuration. Once this choice
is made, the rest of the mapping is fixed. The result follows. [ ]

The mapping used in the above proof can also be used to show that the growth rate of the charge(3) model in
two dimensions is at least that of the even model.

Theorem 4. For the two-dimensional lattice,
Kcharge(3) = Keven (> 1.357 587502184 123). (34)

Proof: Choose any bond on the lattice, and draw a line parallel to y = x through this bond. Choose all
bonds intersecting this line to have ()-charge states 0 or 2, as shown in Fig. 13. Now consider a valid Q-charge
configuration conforming to these restrictions. The set of such configurations is a (strict) subset of all valid )-charge
configurations. However, since the bond-states must increase or decrease by 1 as we read across horizontal and
vertical lines, we have determined the parity of every bond state on the lattice.

Now in every cell, the parities of the N and W bonds are determined and identical. A full enumeration of the (five)
possible cell configurations shows that in this case, the above mapping between the )-charge and p-i models is a
bijection between all valid Q-charge and p-7 cell configurations. Thus the number of configurations for each model
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Fig. 13. Restriction for the Q)-charge <> p-i mapping. All states on the red line must have state 0 or 2 in the ()-charge model.

is the same. Since we have only taken a subset of valid ()-charge configurations, but all valid p-i configurations,
this provides the inequality. [ ]

Unfortunately, we have not been able to prove the reverse inequality, though we can make a non-rigorous argument
as to why this should be so. In every ()-charge configuration, there will be a number of faces where the N and
W bonds have identical parity (the ‘good’ faces), and a number of faces where the N and E bonds have the same
parity (the ‘bad’ faces). As mentioned above, it is possible to take configurations which consist entirely of good
faces, and these are equivalent to the p-¢ configurations.

It is also possible to take configurations which consist entirely of bad faces, and a similar analysis of cell
configurations shows that these faces map onto (invalid) p-¢ faces containing exactly one ¢ and three p’s. By
considering an ¢ as an ‘occupied’ bond and a p as an ‘vacant’ bond, we see that these configurations are in fact
fully-packed dimer configurations. The growth rate of such configurations has been proved [31] to be

Kk = eCatalan/m — 1 33851515. .. (35)

which is less than our proved lower bound for kKe,ep,. Therefore, these configurations are exponentially infrequent
in the set of ()-charge configurations.

Another possibility is to take configurations where the good faces and bad faces are arranged in a checkerboard
pattern. We call this model the ‘elbow’ model, due to the characteristic shape of the individual bond configurations.
The growth rate of this model can be rigorously bounded above using the method of Calkin and Wilf [2]. Using
transfer matrices of width 8, we calculate Kejpow < 1.333521 ..., which is again less than the proved lower bound
for Keypen.-

Now choose any fixed set of parities for the rows and columns of the lattice. In these configurations, the good
faces and bad faces form a ‘tartan’-like configuration (see Fig. 14). The growth rate of such configurations is some
combination of the growth rates of the even model (the good faces), the fully-packed dimer model (the bad faces)
and the elbow model (an interfacial term between good and bad faces). Out of these three models, the even model
has the largest growth rate and so the growth rate of such configurations cannot be greater than Keyen-

Now there are 22VN ways to choose these parities on a lattice of IV spins, a sub-exponential factor. Each of
these ways results in a growth rate not more than x.,e,, and therefore the set of all valid QQ-charge configurations
has a growth rate not greater than Keyep,.

This (admittedly non-rigorous) argument, combined with the accuracy of our numerical results and the above
theorem, presents what we find to be a compelling case that Kcparge(3) = Keven-

VI. CONCLUSION

In this paper, we have constructed very accurate rigorous lower bounds on the growth rate of several families
of data storage models: exclusion, colouring, even, and charge(3) models. The process we use also gives us very
precise estimates of the growth rates. This is achieved using Baxter’s corner transfer matrix formalism combined
with the corner transfer matrix renormalisation group method of Nishino and Okunishi.
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Fig. 14. An example of the QQ-charge model mapped to a ‘tartan’ combination of p-i and fully-packed dimer constraints. The shaded regions
obey the p-i constraint, while the unshaded regions obey the dimer constraint.

The precision of our bounds allows us to conjecture the equality of the growth rate of two of our models, the
charge(3) and even models. We have proved one inequality for this relation, and have a non-rigorous (but overall
convincing) argument for equality.

For future work, we would like to be able to construct upper bounds of similar quality. The quality of proved
lower bounds have typically been much higher than that of upper bounds. It may be possible to use linear algebra
results to obtain a bound on the error of our estimates, and so derive an upper bound for the growth rate. It certainly
is possible to bound the distance between our estimate and the nearest eigenvalue of the transfer matrix using a
theorem of Wilkinson [32]. However, there is no guarantee that this eigenvalue is the dominant eigenvalue, and so
more work needs to be done to establish a provable upper bound.

In addition, there are still a number of constraints which we have not analysed in this paper, for example higher-
order charge or colouring models. These are amenable to identical analysis, and are the subject of future work.
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