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A model of a self-interacting directed animal, which also interacts with a solid
wall, is studied as a model of a directed branched polymer which can undergo
both a collapse and an adsorption transition. The directed animal is confined to
a 45° wedge, and it interacts with one of the walls of this wedge. The existence
of a thermodynamic limit in this model shown, and the presence of an adsorp-
tion transition is demonstrated by using constructive techniques. By comparing
this model to a process of directed percolation, we show that there is also a
collapse or h-transition in this model. We examine directed percolation in a
wedge to show that there is a collapse phase present for arbitrary large values of
the adsorption activity. The generating function of adsorbing directed animals
in a half-space is found next from which we find the tricritical exponents asso-
ciated with the adsorption transition. A full solution for a collapsing directed
animal seems intractible, so instead we examine the collapse transition of a
model of column convex directed animals with a contact activity next.

KEY WORDS: Directed animals; directed percolation; branched polymer
adsorption; generating functions; convex directed animals.

1. INTRODUCTION

The introduction of lattice animals (connected subgraphs of a lattice)
dates back to the combinatorial problem of cell growth.(38, 47) These objects
also arise in studies of percolation,(55) and in the physical sciences are often
used as models of branched polymers in dilute solution.(48) Self-interact-
ing models of lattice animals have received particular attention over the
last decades as models of branched polymers undergoing a h-col-
lapse,(16, 27, 28, 31, 32) or an adsorption transition on a plane or at an inter-
face between emiscible solvents (defect plane). There is a connection
between the phenomenon of percolation and models of collapsing lattice



animals,(19, 27, 28, 33, 42) and this has been exploited to show that the limiting
free energy in certain models of collapsing lattice animals is a non-analytic
function, which implies that the model undergoes a collapse transition.

The adsorption problem in models of polymers was introduced by
Hammersley et al., (36) see also the papers by Duplantier and Saleur,(20)

Cardy,(13) and Batchelor and Yung.(1) A lattice tree model of adsorbing
branched polymers was considered in Janse van Rensburg and You;(45) see
also De’Bell and Lookman.(15) In all these models it can be demonstrated
that there is a non-analyticity in the limiting free energy corresponding to
the adsorption transition, and moreover, for adsorption onto a surface
from a half-space, the transition takes place at a nontrivial value of the
adsorption activity(40, 43, 45) ( for similar results for adsorbing copolymers, see
You and Janse van Rensburg.(57)) More on this can be found in the work
of Eisenreigler and collaborators,(21–23) and see also Fisher.(25)

Directed models of adsorbing and collapsing polymers have also been
considered. Directed versions of linear polymers were introduced by
Privman and S̆vrakić, (52, 53) and many variations of this model have been
studied. A model of adsorbing directed walks was studied by Carvalho and
Privman,(14) Privman et al., (51) and a collapsing model of a directed walk
was solved by Brak et al.; (10, 11) the full solution shows that this model is
very similar to models of inflating convex and partially convex lattice
vesicles (these are models of square lattice polygons with area and perimeter
activities; increasing the area activity takes the vesicle through a transition
into an inflated phase): see for example Pólya,(49) Bousquet-Mélou,(3, 4)

Brak et al., (12) Prellberg and Brak.(50) The adsorption of a fully directed
walk was reviewed by Janse van Rensburg, (41) and a model of adsorbing
and collapsing columns was found to be very similar to both models of
inflating partially convex vesicles and adsorbing (partially) directed
walks(44) (see also Brak et al. (9)).

In this paper we consider a model of interacting directed animals in
the square lattice. The directed animal is confined to a wedge, and it inter-
acts with the main diagonal through an adsorption activity which is con-
jugate to the number of visits the animals makes to the main diagonal. The
model becomes more interesting with the introduction of cycle and contact
activities; and one would expect that increasing these activities will take the
directed animal through a h-transition into a collapsed phase. In Section 2
we consider the adsorption transition in this model. We show the existence
of a limiting free energy, and prove that there is a collapse transition in the
model, regardless of the strengths of the cycle and contact activities. In
Section 3 we focus instead on the h-transition in this model. We show that
it is closely related to a percolation phenomenon in a certain model of site-
bond directed percolation. We show that this model of
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directed percolation implies that the limiting free energy is a non-analytic
function of the cycle and/or contact activities, and that a phase transition,
which presumably is a h-transition, occurs at all values of the adsorption
activity which correspond to a repulsive main diagonal. We then demon-
strate that collapse occurs when the main diagonal is attractive, and find
the presence of a collapsed phase for arbitrarily large values of the adsorp-
tion activity.

It might be tempting to suppose that there should be a simple generat-
ing function for this model (since it is fully directed), but unfortunately,
this seems not to be the case. In the absence of cycle and contact activites
one can find a generating function with an adsorption activity, from which
we may calculate critical exponents associated with the adsorption activity
(see Section 4.1). However, the introduction of a cycle and/or a contact
activity changes the picture dramatically and we are unable to find a solution.
In light of this we consider a simpler model of collapsing directed column-
convex animals and find a generating function in terms of q-deformed
Bessel functions; the analysis of such functions is quite difficult and even in
the case of this simplified model we are not able to completely determine
its phase diagram. This can be seen to imply that directed animals, while
seemingly a simple approximation to lattice animal models of branched
polymers, are in their own right a complicated model which is ordinarily
unlikely to have a generating function which is algebraic (and therefore
easily solvable).

2. DIRECTED ANIMALS IN A HALF-SPACE

The square lattice can be directed by assigning to each horizontal
edge the direction ‘‘East’’ and to each vertical edge the direction ‘‘North.’’
Every directed edge in the directed lattice has an initial vertex, and a final
vertex (and a directed edge is ‘‘from’’ its initial vertex ‘‘to’’ its final vertex).
A vertex is a source in any subgraph of the directed square lattice if there
are no directed edges (in the subgraph) to it, but there is at least one
directed edge from it (we say that its indegree is zero, and its outdegree is
bigger than zero). Every vertex has two descendents which are the end-
points of the directed edges pointing from it. The initial vertices of the two
directed edges pointing to a vertex are called its predecessors.

A connected section graph of the directed square lattice is a directed
animal. Ordinarily, we shall only consider directed animals with one source
vertex which is located at the origin. Notice that there is a path of directed
edges from the origin to any vertex in such a directed animal. The animal is
a site animal in the sense that two adjacent vertices (or sites) are within the
animal if and only if the edge joining them is as well.
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A positive directed animal is a directed animal such that all its vertices
lie above or on the main diagonal in the square lattice (the subset of vertices
in the square lattice confined to the first quadrant and above or on the
main diagonal will be called the principle wedge; all vertices in this wedge
have non-negative coordinates (x, y) with y \ x). The positive directed
animals in this paper will normally be confined to the principle wedge, and
will interact with the main diagonal. One such animal is illustrated in Fig. 1.
Observe that the lattice and the animal is oriented such that the main
diagonal is horizontal. The source of the animal is at the origin, and the
animal is otherwise confined to the half-space above the main diagonal,
which we shall call the positive half-space.

The directed animal in Fig. 1 has at least one vertex (its source) within
a distance of one lattice spacing from the main diagonal. Such an animal
will be called attached. If the directed animal in Fig. 1 is translated away
from the main diagonal, then it will eventually not be attached anymore,
and its source will not be located at the origin. In some constructions we
shall encounter attached animals, but whose source vertex is a certain
height from the main diagonal.

The vertices in a directed animal can be lexicographically ordered, first
in the direction along the main diagonal, and then perpendicular to it. Such
an ordering will produce a first and last vertex. The first vertex will always
be the source, and is also called the bottom vertex. The last vertex is the top
vertex.

A contact in a directed animal will be a pair of vertices with coordinates
of the form (x, y) and (x+1, y−1); some contacts are indicated in Fig. 1
as dotted lines. A visit in a positive and directed animal is a vertex which
lies in the main diagonal, but we shall not count the source vertex as a visit,
even if it is located at the origin (and thus in the main diagonal). The
number of cycles in the directed animal is equal to the number of vertices
in the animal with two occupied predecessors.

Fig. 1. An attached, positive and directed animal with 12 vertices, 2 visits, 2 cycles and 13
edges. The source vertex is at the origin in this animal, but we do not count it as a visit.
Notice that the usual Cartesian axes have been rotated throught 45° so that the main diagonal
is horizontally oriented.
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Let av(c, k, w) be the number of positive and directed animals with one
source at the origin and with v vertices, c cycles, k contacts and w visits.
The quantities v, c and w satisfy the relations

n+1−v=c

n+w+q=2v−1
(2.1)

where n is the number of edges in the underlying graph of the animal, and
q is the number of perimeter edges in the positive halfspace leaving from a
site within the animal and arriving at vertices outside it.2 The first equation

2 Each visit in the main diagonal is incident with a directed edge below the diagonal. These
edges are not considered part of the perimeter. In other words, the perimeter edges are all
those edges incident with the animal which could become part of the animal.

is Euler’s relation, while the second equation follows since every vertex that
is not a visit in the animal is a source of two edges, each one either an edge
in the animal, or an edge in the perimeter. Each visit is the source of a
directed edge above the main diagonal, and this edge is either in the
animal, or in the perimeter of the animal, or is a directed edge which is
below the diagonal which is neither in the animal nor in its perimeter.

We define the partition function of an interacting model of a positive
and directed animal adsorbing in the main diagonal as:

Zv(x, y, z)= C
n, k, w \ 0

av(c, k, w) xcykzw. (2.2)

In the next section the existence of a thermodynamic limit in this model is
proven.

2.1. Existence of the Thermodynamic Limit

The existence of a thermodynamic limit in models of animals usually
relies on a supermultiplicative relation for the partition function which
is obtained by concatenation(34, 35, 47) and a most popular height argu-
ment.(36, 37) For directed animals, however, the proof follows somewhat
similar lines, but is greatly complicated by the absence of reflection sym-
metries; as it will become apparent below.

In this section it will be necessary to relax the condition that the
source of the directed animals be located at the origin. We define the height
of a vertex to be the distance between the vertex and the main diagonal, in
units of 1/`2 lattice spacings (so that it is always an integer). We are only
intested in the heights of the bottom vertex (source) and the top vertex in
any given directed animal (see Fig. 2).
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Fig. 2. Two attached, positive and directed animals can be concatenated if the top vertex of
the first has the same height as the bottom vertex (source) of the second. The construction
proceeds by first translating the animal on the right until its source is `2 lattice units to the
right of the top vertex of the animal on the left. One vertex can be added between the two
animals to join them into a single animal. No new contacts or cycles are created in this con-
struction, and the number of visits is just the sum of the visits of the two animals. The total
number of vertices also increases by one, and only a subclass of attached, positive and
directed animals can be created in this way. Contacts in these directed animals are indicated
by dotted lines, and visits by open circles in the main diagonal. The sources are indicated
by À .

Suppose that the height of the bottom vertex is hb, and the height
of the top vertex is ht, in a certain animal. Let av(c, k, w; [hbht]) be the
number of directed animals with source (bottom vertex) of height hb and
top vertex of height ht. Then av(c, k, w)=;h a v(c, k, w; [0h]). We show in
Fig. 2 that two attached, positive and directed animals can be concatenated
into a single attached, positive and directed animal if the height of the top
vertex of the first is the same as the height of the source (bottom vertex)
of the second. The construction is described in the caption of Fig. 2. If the
first animal has v1 vertices, c1 cycles, k1 contacts and w1 visits, and the
second animal has v2 vertices, c−c1 cycles, k−k1 contacts and w−w1 visits,
then the resulting animal has v1+v2+1 vertices, c cycles, k contacts, and w
visits. This gives the following supermultiplicative relation

C
c1 , k1 , w1

av1
(c1, k1, w1; [hbh]) av2

(c−c1, k−k1, w−w1; [hht])

[ av1+v2+1(c, k, w; [hbht]). (2.3)

Multiplying by xcykzw, and summing over c, k and w, gives

Zv1
(x, y, z; [hbh]) Zv2

(x, y, z; [hht]) [ Zv1+v2+1(x, y, z; [hbht]). (2.4)

If we now put hb=ht=h, then the following limit exists(39)

Fhh(x, y, z)=lim
vQ .

1
v
log Zv(x, y, z; [hh]), (2.5)
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since − log[Zv−1(x, y, z; [hh])] satisfies a standard subadditivity relation.
Observe that Zv(x, y, z; [hh]) [ lv max{1, (xyz)v}, where l is the growth
constant of lattice animals in the square lattice, so that Fhh(x, y, z) is finite
for finite values of its arguments.

On the other hand, we can now show that F00(x, y, z) is in fact the
limiting free energy of the original model, which has partition function
;h Zv(x, y, z, [0h]). Define

Zv(x, y, z)=C
h
Zv(x, y, z; [0h]). (2.6)

There is a most popular value for h in the right hand side of Eq. (2.6). Let
this be hg

t (and notice that h
g
t is the most popular value of the top vertex

height, and may depend on v, and on the activities x, y and z). Then, since
h takes on at most v values, we have

Zv(x, y, z; [0h
g
t ]) [ Zv(x, y, z) [ vZv(x, y, z; [0h

g
t ]). (2.7)

On the other hand, we may concatenateM+2 animals together as in Fig. 2,
with the first tree counted by Zv(x, y, z; [0h

g
t ]), the next M trees counted

by Zv(x, y, z; [h
g
t h

g
t ]), and the last tree counted by Zv(x, y, z; [h

g
t 0]). This

gives the following inequality:

Zv(x, y, z; [0h
g
t ])[Zv(x, y, z; [h

g
t h

g
t ])]

M Zv(x, y, z; [h
g
t 0])

[ ZM(v+1)+1(x, y, z; [00]). (2.8)

Take the logarithm of this, divide by M(v+1)+1, and take MQ .. By
Eq. (2.5) we obtain

1
v+1

log Zv(x, y, z; [h
g
t h

g
t ]) [ F00(x, y, z). (2.9)

We can now safely take vQ . on the left hand side in Eq. (2.9) to see that

Fhg
t h

g
t
(x, y, z) [ F00(x, y, z) [ lim inf

vQ .

1
v
log Zv(x, y, z; [0h

g
t ]), (2.10)

since hg
t is the most popular value of h in Eq. (2.6).
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The following lemma will be critical in establising the existence of the
thermodynamic limit. It relates Zv(x, y, z; [0h

g
t ]) and Zv(x, y, z; [h

g
t 0]) to

one another, where hg
t is that most popular value of h in Zv(x, y, z; [0h]).3

3 In the case of an undirected model, this result would be immediate by reflection symmetry,
but the directed nature of the model here makes this non-trivial, since a directed animal
reflected throught a line perpendicular to the prefered direction is not necessarily a directed
animal.

Lemma 2.1. It is the case that

lim sup
vQ .

1
v
log Zv(x, y, z; [0h

g
t ])=lim sup

vQ .

1
v
log Zv(x, y, z; [h

g
t 0]).

Proof. To see this, we use an argument similar to that leading to
Eq. (2.8). Concatenate, in an alternating fashion, animals counted by
Zv(x, y, z; [0h

g
t ]) and Zv(x, y, z; [h

g
t 0]). By Eq. (2.4), this shows that

[Zv(x, y, z; [0h
g
t ])]

M [Zv(x, y, z; [h
g
t 0])]

M−1

[ Z(2M−1)(v+1)−1(x, y, z; [0h
g
t ]);

[Zv(x, y, z; [h
g
t 0])]

M [Zv(x, y, z; [0h
g
t ])]

M−1

[ Z(2M−1)(v+1)−1(x, y, z; [h
g
t 0]).

Notice that hg
t is that value of h which is the most popular value in

Zv(x, y, z; [0h]). Take logarithms, divide by (2M−1)(v+1)−1, and take
the lim inf asMQ . on the right hand sides, while hg

t is kept fixed (since v
is fixed). This shows that

1
2v+2

log Zv(x, y, z; [0h
g
t ])+

1
2v+2

log Zv(x, y, z; [h
g
t 0]

[ lim inf
MQ .

1
(2M−1)(v+1)−1

log Z(2M−1)(v+1)−1(x, y, z; [0h
g
t ]);

1
2v+2

log Zv(x, y, z; [h
g
t 0])+

1
2v+2

log Zv(x, y, z; [0h
g
t ]

[ lim inf
MQ .

1
(2M−1)(v+1)−1

log Z(2M−1)(v+1)−1(x, y, z; [h
g
t 0]).

Naturally, it is also the case that

lim inf
MQ .

1
(2M−1)(v+1)−1

log Z(2M−1)(v+1)−1(x, y, z; [0h
g
t ])

[ lim sup
vQ .

1
v
log Zv(x, y, z; [0h

g
t ]),
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where hg
t is now the most popular value of h in Zv(x, y, z; [0h]) on the

right hand side as well. Thus, if the lim supvQ . is taken on the left-hand
sides of the penultimate equations, then

lim sup
vQ .

1
v
log Zv(x, y, z; [h

g
t 0]) [ lim sup

vQ .

1
v
log Zv(x, y, z; [0h

g
t ]);

lim sup
vQ .

1
v
log Zv(x, y, z; [0h

g
t ]) [ lim sup

vQ .

1
v
log Zv(x, y, z; [h

g
t 0]);

and this completes the lemma. L

Next, choose h=0 and hb=ht=hg
t in Eq. (2.4) to see that

Zv(x, y, z; [h
g
t 0]) Zv(x, y, z; [0h

g
t ]) [ Z2v+1(x, y, z; [h

g
t h

g
t ]). (2.11)

Taking logarithms, dividing by 2v and letting vQ ., while using Lemma 2.1,
gives eventually

lim sup
vQ .

1
v
log Zv(x, y, z; [0h

g
t ]) [ Fhg

t h
g
t
(x, y, z). (2.12)

Comparison to Eq. (2.10) shows the existence of the desired limit, and we
obtain

lim
vQ .

1
v
log Zv(x, y, z; [0h

g
t ])=F00(x, y, z) — F(x, y, z). (2.13)

A standard application of the Cauchy–Schwartz inequality shows that
F(x, y, z) is also a convex function of anyone of log x, or log y, or log z.
Thus,F(x, y, z) is continuous, and differentiable almost everywhere.

2.2. Adsorption of the Directed Animal

It will be shown thatF(x, y, z) is a non-analytic function. In particular,
for any fixed values of x and y there is a critical value of z corresponding
to an adsorption transition. To see this, first observe that if any animal is
translated one step from the main diagonal in the vertical direction, then all
visits are destroyed (see Fig. 3). The animal can be reconnected with the
origin by adding a single vertex at the origin. The result is that

av(c, k, w) [ av+1(c, k, 0). (2.14)

The consequence of Eq. (2.14) is Lemma 2.2.
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Fig. 3. Translating a positive and directed animal one step vertical will break all visits, but
every old visit can be used to generate a new visit by adding edges along the dashed lines. This
may create one new cycle and/or a new contact for every new visit.

Lemma 2.2. The partition function Zv(x, y, z) satisfies the following
two inequalities:

Zv(x, y, z) [ Kv/2L[max{1, z}] Kv/2L Zv+1(x, y, 0);

Zv(x, y, z) \ Zv(x, y, 0).

Proof. The partition function of animals with no visits is given by
Zv(x, y, 0). Since this is also the coefficient of z0 in Zv(x, y, z), the second
inequality is obtained. To find the first inequality, use Eq. (2.14). Since the
number of visits is at most N(v−1)/2M=Kv/2L−1 in a positive and directed
animal with v vertices, it follows that

Zv(x, y, z) [ 5 C
c, k \ 0

av+1(c, k, 0) xcyk65 C
Kv/2L−1

w \ 0
[max{1, z}]w6 ,

and this gives the first inequality above. L

Theorem 2.3. F(x, y, z) is a non-analytic function of z for each
finite and fixed value of (x, y). In particular,F(x, y, z)=F(x, y, 1) for all
0 < z [ 1, and there exists a zc(x, y) \ 1 such that F(x, y, z) ] F(x, y, 1)
for z > zc(x, y).

Proof. If z > 1, then Zv(x, y, z) \ av(0, 0, Kv/2L) z Kv/2L \ z Kv/2L, and so

F(x, y, z) \ 1
2 log z, if z \ 1.

However, if z [ 1, then the squeeze theorem for limits and Lemma 2.2
shows that

F(x, y, z)=lim
vQ .

1
v
log Zv(x, y, 0)=F(x, y, 0), if z [ 1,
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and in particular F(x, y, z)=F(x, y, 1) for all non-zero z [ 1, since
F(x, y, z) is a continuous function. L

Theorem 2.3 seems to suggest the existence of a critical surface of
phase transitions given by z=zc(x, y), corresponding to an adsorption
transition of the directed animal in the main diagonal. It is in fact the case
that zc(x, y) > 1 for all finite values of x and y; the proof of this is pre-
sented next. A key ingredient in this proof will be the density function of
visits for this model. In particular, at fixed x and y define the (microcanon-
ical) density function of visits by

log P(x, y; E)=inf
z > 0

{F(x, y, z)− E log z}, (2.15)

and in this model, E ¥ [0, 1/2]. It is then the case that if

Zv(x, y; NEvM)= C
v

c, k=0
av(c, k, NEvM) xcyk, (2.16)

then

logP(x, y; E)=lim
vQ .

1
v
log Zv(x, y; NEvM), (2.17)

and moreover

F(x, y, z)= sup
0 [ E [ 1/2

{log P(x, y; E)+E log z}. (2.18)

Since F(x, y, z) is independent of z in the desorbed phase, this supremum
is realised at E=0 in that phase. In the adsorbed phase, the supremum is
realised at values of E strictly greater than zero, since F(x, y, z) is now a
function of z, and is in fact, convex in log z. Thus, the value of E which
realises the supremum is a non-decreasing function of log z, and is in fact
the energy density (of visits). Equation (2.18) also shows that

logP(x, y; E) [ F(x, y, 1), for any E ¥ [0, 1/2]. (2.19)

More details can be found in Janse van Rensburg;(43) see also Ellis.(24)
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Lemma 2.4. For finite and fixed values of x and y, and for any
value of E ¥ (0, 1), the density function of visits obeys the following
inequality:

5 EEtd

dd(E−d)E−d
6 P(x, y; E) [ P(x, y; d/(1+d)),

for any value of d ¥ (0, E), and where t=e−F(x, y, 1)/[(1+x−1)(1+y−1)].

Proof. Consider any positive and directed animal counted by
av(c, k, w) (see Fig. 3). This animal can be translated one step in the verti-
cal direction to break all visits, while a single directed edge is added on the
origin to keep the animal rooted there, as we did in deriving Eq. (2.14).
Select u of the w vertices which were visits, and add a horizontal edge on
them. This creates u new visits (and thus u+1 new vertices, if the new root
is also counted), and may create as many as u new contacts and/or cycles.
The construction can be reversed by deleting the u new visits and translat-
ing the animal back into the main diagonal. Consequently, the following
inequality is found:

1w
u
2 av(c, k, w) [ C

u

i, j=0
av+1+u(c+i, k+j, u).

Choose w=NEvM and u=NdvM, where 0 < d < E; multiply the above by xcyk

and execute the sums over c and k. After simplification, the result is that

1 NEvM
NdvM

2 Zv(x, y; NEvM) [ C
NdvM

i, j=0
Zv+1+NdvM(x, y; NdvM) x−iy−j.

Define t0=(1+x−1)−1(1+y−1)−1; one can show that ; NdvM
i, j=0 x

−iy−j [ t−NdvM
0 .

Then

1 NEvM
NdvM

2 Zv(x, y; NEvM) [ t−NdvM
0 Zv+1+NdvM(x, y; NdvM).

Take the 1/v-power of this, and let vQ .. The result is

5 EEtd
0

dd(E−d)E−d
6 P(x, y; E) [ [P(x, y; d/(1+d))]1+d.
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Use Eq. (2.19) in the above to see that

[P(x, y; d/(1+d))]1+d [ P(x, y; d/(1+d)) eF(x, y, 1) d.

Substitute this into the previous inequality and absorb the factor e−F(x, y, 1)

into t0 to complete the proof. L

One can show that the maximum of the left hand side of the inequality
in Lemma 2.4 occurs when d=Et/(1+t) < E, in which case the inequality
becomes

(1+t)E P(x, y; E) [ P(x, y; Etg), (2.20)

where tg=t/(1+t+Et) [ t. Suppose that z is so large that the adsorbed
phase of the positive and directed animal is encountered. This implies that
the supremum in Eq. (2.18) is realized at a value of E which is strictly posi-
tive, since E is the density of visits in the animal.4 Let this value of E be

4Notice that in the desorbed phase the supremum in Eq. (2.18) is found when E=0, since
F(x, y, z) is independent of z. On the other hand, since F(x, y, z) is convex in log z, its
derivative to log z exists almost everywhere, and wherever it exists, it is given by that value of
E which realizes the supremum.

denoted Eg, then

F(x, y, z)=log[P(x, y; Eg) zEg], (2.21)

and notice that Eg is the energy density (density of visits) in the model.
Using Eq. (2.20) in (2.21) and observe that

F(x, y, z) [ log 5P(x, y; Egtg) zEgtg
zEg(1−tg)

(1+t)Eg
6 . (2.22)

Since Eg is that value of E which realizes the supremum in Eq. (2.18),
a contradiction is found in Eq. (2.22) whenever z1−tg < (1+t), unless Eg=0.
In other words, if z1−tg < (1+t) then the desorbed phase of the model
is encountered. Thus, if Eg > 0, then log z \ [log(1+t)]/(1−tg), and if
Eg Q 0+, then the lower bound on the critical value of z becomes

log zc(x, y) \ (1+t) log(1+t) > 0, (2.23)

so that the following theorem has been established:

Theorem 2.5. For all finite and non-zero values of x and y it is the
case that zc(x, y) > 1. L
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Thus, F(x, y, z) is independent of z for all 0 < z < zc(x, y), that is,
F(x, y, z)=F(x, y, 1) for all z ¥ [0, zc(x, y)]. In Theorem 2.6 we show
that ifF(x, y, z) is a non-analytic function of x (or of y) for some value of
z ¥ [0, zc(x, y)], then F(x, y, z) is a non-analytic function of x (or of y
respectively) for all z ¥ [0, zc(x, y)].

Theorem 2.6. Assume that F(x, y, z) is non-analytic at a point
(x0, y0, z0) as a function of x (as a function of y) and where z0 < zc(x0, y0).
Assume also that the phase boundary zc(x, y) is continuous at (x, y)=
(x0, y0). Then F(x, y, z) is non-analytic at (x, y)=(x0, y0) for every
z ¥ [0, zc(x0, y0)).

Proof. Let E > 0 and choose zE by

zE < inf{zc(x, y) | (x, y) ¥ [x0 − E, x0+E]×[y0 − E, y0+E]}.

F(x, y, z) is analytic in z for all such zE, provided that (x, y) ¥ [x0 − E,
x0+E]×[y0 − E, y0+E] (if not, then there is a phase boundary zd(x, y)
< zc(x, y), or then zc(x, y) is not continuous; this is a contradiction).
If E Q 0, then zE can be taken arbitrarily close to zc(x, y) since zc(x, y)
is continuous. This shows that F(x, y, z) is independent of z for
all z < zc(x0, y0), and a non-analyticity at (x0, y0, z0) will persist for all
z0 < zc(x, y). L

3. COLLAPSE IN POSITIVE AND DIRECTED ANIMALS

The existence of a collapse transition in models of animals have been
demonstrated using a connection with percolation models.(19) In particular,
there is a point in the phase diagram of (ordinary) lattice animals with
cycle and contact activities which corresponds to the critical percolation
point,(29, 30) and it is also known that there are other non-analytic points in
the phase diagram of animals with both cycle and contact activities.(42)

In this section we first consider collapse in directed animals rooted at
the origin, but not confined to the principle wedge. This will show that
there is a collapse transition for positive directed animals when the adsorp-
tion activity z=1. By Theorems 2.3 and 2.6, this suggests the existence of a
critical surface of collapse transitions in the phase diagram, for all those
values of z corresponding to a desorbed phase on the critical surface. The
method of proof is based on the fundamental theorem of percolation (as
modified for directed percolation).

We next apply these techniques directly to animals in the principle
wedge, and show that there is a collapsed phase in this model at some value
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of z > 1, and in fact, this phase persists even if the adsorption activity z
approaches infinity (while at least one of the cycle activity x, or the contact
activity y, also approaches infinity). Thus, for any z > 1 there is a transi-
tion into the collapsed phase.

3.1. Collapse in Directed Animals

In this section we shall consider a model of directed animals with source
at the origin, but not confined to the principle wedge. As in Section 2, the
animal will be oriented so that the main diagonal is horizontal, and a
lexicographic ordering will again define a bottom vertex (which is the
source), and a top vertex.

Define Av(c, k) to be the number of directed animals with a single
source (root) at the origin, and with v vertices, c cycles and k contacts
(defined as in Section 2). It is clearly the case that

Av(c, k) \ C
w \ 0

av(c, k, w), (3.1)

but the first goal in this section would be to show that the free energies of
directed animals, and of positive and directed animals, are in fact the same
if the contact activity z=1. To see this, we shall use a ‘‘most popular’’
argument, similar to the argument used in Section 2.1. Let a be any animal
counted by Av(c, k). The vertices in a can be ordered in the canonical lexi-
cographic way, and so there will be a bottom vertex (the lexicographic least
vertex, which in this case is the origin), and a top vertex (which is the
lexicographic most vertex). The partition function for these animals is

Yv(x, y)=C
c, k

Av(c, k) xcyk. (3.2)

Animals counted by Av(c, k) can be concatenated by choosing that
vertex with first coordinate exactly one larger than the first coordinate of
the top vertex of one animal to be the root (origin) of a second animal.
Since this process creates no new cycles or contacts, it gives the inequality

C
c1 , k1

Av1
(c1, k1) Av2

(c−c1, k−k1) [ Av1+v2
(c, k). (3.3)

Multiplying by xcyk and summing over c and k gives the following super-
multiplicative inequality for Yv(x, y):

Yv1
(x, y) Yv2

(x, y) [ Yv1+v2
(x, y). (3.4)
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Thus, since the number of animals grows exponentially,(47) there is a limit-
ing free energy in this model,(39) which we define by

G(x, y)=lim
vQ .

1
v
log Yv(x, y) (3.5)

and we can show that it is convex in each of its arguments, and therefore
continuous and also differentiable almost everywhere.

We now make a connection between G(x, y), and the limiting free
energyF(x, y, 1) of attached, positive and directed animals confined to the
principle wedge. Since we are not interested in the adsorption of the
directed animals in this section, we put z=1 in Eq. (2.2) and sum over w.
Let Bv(c, k)=;w av(c, k, w) be the number of attached, positive and
directed animals with a single source at the origin, and with v vertices,
c cycles and k contacts. Define Bv(c, k; [hbht]) to be the set of all attached,
positive and directed animals, with v vertices, c cycles, k contacts, and with
bottom and top vertices which have heights equal to hb or ht (see Fig. 2).
Note that 0 [ hb, ht [ v. Any directed animal counted by Bv(c, k; [hbht])
can be translated to have its source at the origin. On the other hand, any
animal counted by Av(c, k) can be translated to be attached and positive
and so is counted by Bv(c, k; [hbht]), or by Bv(c, k; [(hb+1) ht]) for some
value of hb. This gives

Av(c, k)=2 C
hb , ht

Bv(c, k; [hbht]). (3.6)

Furthermore, one can define the partition function

Xv(x, y; [hbht])=C
c, k

Bv(c, k; [hbht]) xcyk, (3.7)

and observe that there are most popular values for hb and ht, say [hg
bh

g
t ]

(dependent on v, x and y), so that

Xv(x, y; [hbht]) [ Xv(x, y; [h
g
bh

g
t ]). (3.8)

Comparison to Eq. (3.6) and to Eq. (3.2) shows that

2Xv(x, y; [h
g
bh

g
t ]) [ Yv(x, y) [ 2v2Xv(x, y; [h

g
bh

g
t ]), (3.9)

so that limvQ .

1
v log Xv(x, y; [h

g
bh

g
t ])=G(x, y) by Eq. (3.5).
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The next lemma is necessary to complete a proof that F(x, y, 1)=
G(x, y).

Lemma 3.1. If [hg
bh

g
t ] are the most popular values of [hbht] in

Xv(x, y; [hbht]), then

G(x, y)=lim
vQ .

1
v
log Xv(x, y; [h

g
bh

g
t ])=lim

vQ .

1
v
log Xv(x, y; [h

g
t h

g
b]).

Proof. It follows from Eq. (3.5) and Eq. (3.9) that

G(x, y)=lim
vQ .

1
v
log Xv(x, y; [h

g
bh

g
t ]).

To show the remaining equality, we shall argue as in Lemma 2.1, but
there are some technical difficulaties that will be encountered. In particular,
it is not trivial to see that limvQ .

1
v log Xv(x, y; [h

g
t h

g
b]) exists, and some

effort is required to prove its existence. If the bottom vertex of an animal
counted by Bv2

(c−c1, k−k1; [h2h3]) is placed so that its first coordinate is
a distance of `2 bigger than the top vertex of an animal counted by
Bv1

(c1, k1; [h1h2]), then they can be concatenated into a single animal by
inserting a single new vertex between them. This gives the following
inequality:

C
c1 , k1

Bv1
(c1, k1; [h1h2]) Bv2

(c−c1, k−k1; [h2h3]) [ Bv1+v2+1(c, k; [h1h3])

with the result that after multiplication with xcyk and summing over c and k,
we obtain the supermultiplicative relation

Xv1
(x, y; [h1h2]) Xv2

(x, y; [h2h3]) [ Xv1+v2+1(x, y; [h1h3])

for Xv(x, y; [h1h2]): In particular, the limit limvQ .

1
v log Xv(x, y; [hh])

exists.
Define [hg

bh
g
t ] to be the most popular values of [hbht] in Xv(x, y;

[hbht]). The concatenation above can be extended to alternate between
directed animals counted by Xv(x, y; [h

g
bh

g
t ]) and Xv(x, y; [h

g
t h

g
b]) to see

that

[Xv(x, y; [h
g
bh

g
t ])]

M [Xv(x, y; [h
g
t h

g
b])]

M−1 [ X(2M−1)(v+1)−1(x, y; [h
g
bh

g
t ]);

[Xv(x, y; [h
g
t h

g
b])]

M [Xv(x, y; [h
g
bh

g
t ])]

M−1 [ X(2M−1)(v+1)−1(x, y; [h
g
t h

g
b]).
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Take the logarithms of these, divide by (2M−1)(v+1)−1, and take M to
infinity, such that the lim infs on the right hand sides of the above
inequalities are found. This shows that

1
2(v+1)

log Xv(x, y; [h
g
bh

g
t ])+

1
2(v+1)

log Xv(x, y; [h
g
t h

g
b])

[ lim inf
MQ .

1
(2M−1)(v+1)−1

log X(2M−1)(v+1)−1(x, y; [h
g
bh

g
t ])=G(x, y);

1
2(v+1)

log Xv(x, y; [h
g
t h

g
b])+

1
2(v+1)

log Xv(x, y; [h
g
bh

g
t ])

[ lim inf
MQ .

1
(2M−1)(v+1)−1

log X(2M−1)(v+1)−1(x, y; [h
g
t h

g
b]).

Now take the lim sup on the left hand sides of these inequalities by taking
vQ ., while replacing the lim inf on the right hand sides by a lim sup. This
shows that

lim sup
vQ .

1
v
log Xv(x, y; [h

g
t h

g
b])=G(x, y). (‡)

It now only remains to show that the limit exists. To see that, define

lim inf
vQ .

1
v
log Xv(x, y; [h

g
t h

g
b])=K(x, y).

Let {vi} be any subsequence of the integers such that

lim
iQ .

1
vi
log Xvi

(x, y; [hg
t h

g
b])=K(x, y).

Define Mi to be the largest integer, dependent on v, such that Mi(v+1)
+li=vi, for each i, where 3(v+1) [ li < 4(v+1), and where v is fixed large
enough so that Xli

(x, y; [hg
t h

g
b]) ] 0 for any such li. Then it follows from

concatenation that

[Xv(x, y; [h
g
t h

g
t ])]

Mi Xli
(x, y; [hg

t h
g
b]) [ Xvi

(x, y; [hg
t h

g
b]).
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Take logarithms of this inequality, divide by vi, and take vi Q . by taking
iQ . with v fixed. ThenMi Q . and

1
v+1

log Xv(x, y; [h
g
t h

g
t ]) [ lim inf

vQ .

1
v
log Xv(x, y; [h

g
t h

g
b]). (†)

Now take vQ . to see that

lim
vQ .

1
v
log Xv(x, y; [h

g
t h

g
t ]) [ lim inf

vQ .

1
v
log Xv(x, y; [h

g
t h

g
b]),

where the concatenation of directed animals counted by Bv(c, k; [h1h2])
above shows that the last limit exists. This shows that limvQ .

1
v log Xv(x, y;

[hg
t h

g
t ])− lim infvQ .

1
v log Xv(x, y; [h

g
t h

g
b]) is not positive. Next, concate-

nating again directed animals counted byBv(c, k; [h1h2]), we obtain

Xv(x, y; [h
g
t h

g
b]) Xv(x, y; [h

g
bh

g
t ]) [ X2v+1(x, y; [h

g
t h

g
t ]).

Taking logarithms of this, dividing by v, and taking the lim inf on the left
hand side, shows that

G(x, y)+lim inf
vQ .

1
v
log Xv(x, y; [h

g
t h

g
b]) [ 2 lim

vQ .

1
v
log Xv(x, y; [h

g
t h

g
t ]).

Since limvQ .

1
v log Xv(x, y; [h

g
t h

g
t ])− lim infvQ .

1
v log Xv(x, y; [h

g
t h

g
b]) is

never positive, we have

G(x, y) [ lim
vQ .

1
v
log Xv(x, y; [h

g
t h

g
t ]).

Comparing this to equations (†) and (‡) above completes the proof. L

We would in fact like to show that G(x, y)=F(x, y, 1), the free energy
of positive directed animals with adsorption activity z=1. To do this, we
concatenate animals counted by Xv(x, y; [h

g
bh

g
t ]) and Xv(x, y; [h

g
t h

g
b]) in a

45° wedge. This is done in Fig. 4, and if k is large enough, then the directed
animal is confined in the principle wedge. The result is that (if 2M animals are
concatenated)

Z2M(v+1)+k−1(x, y, 1) \ [Xv(x, y; [h
g
bh

g
t ])]

M [Xv(x, y; [h
g
t h

g
b])]

M. (3.10)
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Fig. 4. (a) A schematic drawing of an animal counted by the partition function
Xv(x, y; [h

g
bh

g
t ]). (b) These animals can be concatenated alternatingly from the partition func-

tions Xv(x, y; [h
g
bh

g
t ]) and Xv(x, y; [h

g
t h

g
b]) to create a directed animal in a 45° degree wedge,

provided that k, the number of edges which joins the animal to the origin, is large enough (k > v
is sufficient).

On the other hand, it also follows fromEqs. (3.6) and (3.7) that

Zv(x, y, 1) [ Xv(x, y; [h
g
bh

g
t ]). (3.11)

Equations (3.10) and (3.11) finally gives the desired result:

Theorem 3.2.

F(x, y, 1)=G(x, y).

Proof. The proof follows by taking the logarithm of Eq. (3.10), divid-
ing by 2M(v+1)+k−1 and takingMQ . (with v fixed). This gives

F(x, y, 1) \
1

2(v+1)
[log Xv(x, y; [h

g
bh

g
t ])+log Xv(x, y; [h

g
t h

g
b])].

The variable k has now disappeared, as has any reference to the wedge in Fig.
4. Thus, we can take vQ . safely to obtain F(x, y, 1) \ G(x, y), using
Lemma 3.1. On the other hand, the opposite inequality can be obtained from
Eq. (3.11). L

To show that there is a collapse transition in the positive directed animal
at z=1, we must only show that G(x, y) is non-analytic in its arguments.
This we do by considering the relation of a directed animal
rooted at the origin in the first quadrant to the process of directed percolation.

Define a directed site-bond percolation process on the edges and
vertices of the first quadrant in the directed square lattice by introducing
the following probabilities. Any edge (bond) is open with probability pb,
and closed with probabality qb=1−pb. Every vertex (site) is occupied with
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probability ps, and not occupied with probability qs=1−ps. Grow a
directed percolation cluster from the origin as follows: If the origin is
occupied, then it is the first site in the cluster. If not, then the cluster at the
origin has size zero. Next, consider sites in the perimeter of the current
cluster. If such sites are occupied, and they can be reached from the current
cluster via an open and directed edge, then they become part of the current
cluster. This is continued until the process terminates. The result is a
directed animal, with a single source at the origin.

Every directed animal at the origin in a process of directed percolation
has a certain number of properties, and we enumerate them here:

v: total number of vertices, including the root and visits;

v1: the number of vertices with 1 predecessor in the animal;

v2: the number of vertices with 2 predecessors in the animal;

n: the number of edges in the animal;

c: the number of cycles in the animal;

k: the number of contacts in the animal;

s1: the number of perimeter sites incident with one perimeter edge;

s2: the number of perimeter sites incident with two perimeter edges.

(3.12)

Every occupied vertex Y in the directed cluster at the origin, except for
the root at the origin, has a predecessor X (which is also occupied, and in
the cluster) such that XY is an open edge from X to Y. Since each vertex,
except the root, has a predecessor, it is the case that v1+v2=v−1. More
such relations can be derived between the numbers in (3.12); in particular,
one may show that

v1=v−c−1;

v2=c;

s1=v−2k+c+1;

s2=k−c.

(3.13)

To see these, notice that each cycle can only be formed when a vertex has
two predecessors and vice versa, so v2=c, and therefore v1=v−1−c. If a
site has two predecessors in the animal, then there is a contact between the
predecessors. Since such a site is either occupied, in which case it is a cycle,
or not, in which case it is counted by s2, thus it follows that s2=k−c. Note
also that 2v=n+s1+2s2, since the two edges pointing to descendants of a
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vertex in the animal are either edges in the animal, or points to perimeter
sites. Since v−n+c=1, this shows that s1=v−2k+c+1.

Suppose that the directed animal a is obtained as the cluster at the
origin in a directed percolation process. The probability that a occurs is
given by the probability that every vertex in a is occupied, that there is a
directed open path from the origin to every vertex in a, and that the peri-
meter of a occurs (and is vacant). Every vertex in a, except the root, has
one occupied predecessor with probability pb, and two occupied predeces-
sors with probability 1−q2

b (since one open edge from either predecessor
will be enough to add the vertex to the cluster). A perimeter site has one
occupied predecessor with probability 1−ps pb (it can only be a vertex in
the animal if it is occupied and the edge from its occupied predecessor is
open), and two occupied predecessors with probability qs+psq

2
b (that is, it

is itself not occupied, or it is occupied, but both edges into it are closed).
Taken together, this shows that

Pv(a)=pv
s p

v1
b (1−q2

b)
v2 (1−ps pb) s1 (qs+psq

2
b)

s2;

=51−ps pb

pb

6[ps pb(1−ps pb)]v 5(1−q2
b)(1−ps pb)

pb(qs+psq
2
b)

6c 5 qs+psq
2
b

(1−ps pb)2
6k

.

(3.14)

To simplify this equation, define

x=
(1−q2

b)(1−ps pb)
pb(qs+psq

2
b)

, y=
qs+psq

2
b

(1−ps pb)2
, (3.15)

to be the weights of cycles and contacts in the directed cluster. The proba-
bility that the directed animal at the origin has exactly v vertices is then
given by

Pv(ps, pb)=C
a

Pv(a)=51−ps pb

pb

6[ps pb(1−ps pb)]v C
c, k

Av(c, k) xcyk.
(3.16)

Taking logarithms, dividing by v and taking vQ . gives

lim
vQ .

1
v
log Pv(ps, pb)=−z(x, y)=log(ps pb(1−ps pb))+G(x, y). (3.17)

where the existence of the limit is gauranteed by the existence of the limit
defining G(x, y) in Eq. (3.5). This result ties the limiting free energy, and
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thus the phase behaviour, of directed animals to the process of directed
percolation.

The fundamental theorem of percolation states that there are non-
trivial values of ps and pb where percolation occurs; that is, where the
cluster at the origin grows to infinity with non-zero probability. It can also
be demonstrated that Pv(ps, pb), defined in Eq. (3.16), has specific asymp-
totic behaviour in the percolated and in the unpercolated phases. We state
this, without proof,5 in Theorem 3.3.

5 The proof that z(x, y)=0 in the percolated phase as stated in Theorem 3.3 is in fact not
dissimilar to the proof of Theorem 3.6. The proof that z(x, y) > 0 in the unpercolated phase
is lengthy, but similar to the proof for ordinary bond percolation, see for example
Grimmett.(33)

Theorem 3.3. The probability Pv(ps, pb) that the directed cluster at
the origin contains v vertices is related to z(x, y) as follows:

Pv(ps, pb)=e−z(x, y) v+o(v).

Moreover, if both ps < 1 and pb < 1 are close to 1, then z(x, y)=0 and the
system percolates. Otherwise, z(x, y) > 0 and the system is in the sub-criti-
cal phase. Hence z(x, y) is a non-analytic function of its arguments. L

Consider x and y as functions of ps and pb, as in Eq. (3.15). In Fig. 5
we plot x against ps and pb, and in Fig. 6 we plot y against ps and pb. The
important observation in these figures is that in the first case

lim
pb Q 1 −

[ lim
ps Q 1 −

x(ps, pb)]=.,

lim
ps Q 1 −

[ lim
pb Q 1 −

x(ps, pb)]=1,
(3.18)

and in the second case

lim
pb Q 1 −

[ lim
ps Q 1 −

y(ps, pb)]=1,

lim
ps Q 1 −

[ lim
pb Q 1 −

y(ps, pb)]=..
(3.19)

Thus, either x, or y, or both, approach . if (ps, pb)Q (1−, 1−). Indeed, if
we should suppose that qb=aqs with a ¥ (0, .), then xy= 1+aqs

qs(1+aps)
. Hence

xyQ . as qs Q 0+ and so either xQ . or yQ ., or both.
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Fig. 5. x(ps, pb) plotted against ps and pb.

More generally, let qb=fb(t) and qs=fs(t) be parametric equations
of a continuous curve in the unit square with with endpoints (0, 0) and
(1, 1) (so that t ¥ [0, 1] and fb(0)=fs(0)=1 and fb(1)=fs(1)=0). Then
it follows that xy=(1+fb(t))/(fs(t)+fb(t)−fb(t) fs(t)), and xy=1 if
t=0 and xy=. if t=1. In other words, if the point (ps, pb)=(1, 1) is
approached along any continuous curve, then xyQ .. Theorem 3.3 can be
applied in these circumstances to conclude that z(x, y)=0, if (ps, pb) is
close enough to (1, 1). That is, there is a region in the unit square, which
has the point (1, 1) in its interior, where percolation has taken place, and
where the limiting free energy of the animal model is known explicitly (and
interpreted to have undergone a collapse transition). Outside this region

Fig. 6. y(ps, pb) plotted against ps and pb.
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is the unpercolated phase, corresponding to the expanded phase in the
directed animal (notice that x and y are small if both ps and pb are small).
It follows from Eq. (3.17) that if (ps, pb) is close enough to (1, 1), then

Gz(x, y)=F(x, y, 1)=−log[ps pb(1−ps pb)], (3.20)

and the expressions in Eq. (3.15) can in principle be inverted to write an
explicit expression for F(x, y, 1) in the collapsed phase. On the other
hand, if (ps, pb) approach (0, 0), then Theorem 3.2 gives z(ps, pb) > 0, and
so Fz(x, y, 1) ] − log[ps pb(1−ps pb)] in that case. By the arguments
above, there is a non-analyticity in Fz(x, y, 1) along any continuous curve
which joints the points (0, 0) and (1, 1), and the locus of the non-analytici-
ties are interpreted as a phase boundary.

There is a phase boundary separating the collapsed phase from the
expanded phase. To see this, argue as follows. Let L be the set of all non-
analyticities in Gz(x, y) in the closed unit square S=[0, 1]×[0, 1] (since
(ps, pb) takes values in the unit square). This set is not necessarily con-
nected, but it must have a component which separates the point (0, 0) from
the point (1, 1) in S: If S0L has a path-component containing both the
points (0, 0) and (1, 1), then there is a continuous curve with endpoints in
(0, 0) and (1, 1) and which is contained in S0L. But since every continuous
function must pass through a non-analyticity in L, this is a contradiction,
and so we conclude that S0L has at least two path-components, with (0, 0)
and (1, 1) in two different such components. We interprete the boundary of
the component in S0L containing the point (1, 1) as the phase boundary.

We have now established that F(x, y, z) has a phase boundary in the
plane z=1, but by Theorem 2.6 this immediately extends to a critical
surface for all z [ zc(x, y), where zc(x, y) > 1 is the critical adsorption
activity. Moreover, this critical surface is constant in the z-directions
(independent of z). The meeting between this critical surface, and the criti-
cal surface of adsorption transitions, is presumably a line of triple points
where expanded, collapsed and adsorbed directed animals coexist.

3.2. Collapse in Positive Directed Animals with z > 1

In this section we examine the existence of a collapsed phase for
attractive values of the adsorption activity z; that is, for values of z greater
than 1. As in Section 3.1, we shall again rely on a connection to directed
percolation, but in this case the directed percolation will be confined to the
principle wedge L.

In (3.12) we have defined a set of quantities associated with a directed
animal; this list will not be adequate for directed percolation in L.
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As before, v, n, c and k will still be the number of vertices, edges, cycles and
contacts in a directed animal rooted at the origin, and confined to L. To
this list, we add the following:

v1: the number of vertices with one predecessor, excluding visits;

v2: the number of vertices with two predecessors;

w: the number of vertices (excluding the root) lying on the main diagonal;

ws: the number of vertices in the super-diagonal (the line y=x+1);

sd: the number of perimeter sites in the main diagonal;

s1: the number of perimeter sites incident with one perimeter edge;

s2: the number of perimeter sites incident with two perimeter edges.

(3.21)

The definition of s1 above is interpreted as the number of perimeter
sites incident with one perimeter edge and not in the main diagonal.
Observe that sd+s1+2s2=q, where q is the number of perimeter edges
defined in Eq. (2.1) and where we have used the fact that each perimeter
site in the main diagonal is incident with exactly one perimeter edge).

The following relations can be derived amongst the quantities in (3.21):

v1=v−w−c−1;

v2=c;

s1=v−2k+c−ws;

s2=k−c;

sd=ws −w.

(3.22)

As before, it is still the case that v2=c, and n+1=v+c (Eq. (2.1))
while v1+v2+w=v−1. Thus v1=v−1−w−c. Every contact consists of
two occupied sites with a single common descendant. If this descendant is
occupied, then a cycle is formed, if not, then it is a perimeter site with two
predecessors. Thus k=c+s2. Since the source has no predecessors, it is
the case that ws=sd+w. Finally, the number of perimeter edges is q=
s1+sd+2s2, and from Eq. (2.1) we obtain that s1=v−w−c−sd −2s2.
Substitution of sd and s2 gives the required expression for s1.

Define the following percolation process on L. Any edge is open with
probability pb, and closed with probability qb=1−pb. Every vertex (site)
in L, including the origin, but excluding the remaining vertices on the main
diagonal, are occupied with probability ps, and otherwise not occupied.
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Lastly, vertices in the main diagonal, except the origin, are occupied with
probability pw, and otherwise not occupied. The cluster at the origin is now
grown as before, and it is a directed (site)-animal with source at the origin,
and confined to the wedge L.

Consider now the probability Pv(a) that the animal incident with the
origin is the animal a with exactly v vertices (and n edges, w visits, ws visits
to the superdiagonal, c cycles and k contacts). The animal a occurs if every
vertex in a is occupied, and if there is an open path (of edges and occupied
vertices) from the origin to every vertex in a, and if a’s perimeter occurs.
A vertex in a, which is neither the root nor a visit, has one occupied prede-
cessor with probability pb (since the edge must be open to add the vertex to
the cluster), and two occupied predecessors with probability 1−q2

b (since
one open edge from either predecessor will be enough the add the vertex to
the cluster). A diagonal site is in the perimeter with probability (1−pb pw)
(it will be in a if both the edge into it is open, and itself is occupied). Other
perimeter sites have one occupied predecessor with probability (1−ps pb)
(if it is occupied and the edge from its predecessor is open, then it must
be part of the cluster) and two occupied predecessors with probability
(qs+psq

2
b) (that is, it is itself unoccupied, or it is occupied, but both the

edges into it are closed). Taken together, this shows that

Pv(a)=pv−w
s pw

w p
v1
b (1−q2

b)
v2 (1−ps pb) s1 (qs+psq

2
b)

s2 (1−pb pw) sd. (3.23)

Substitution of the above from Eq. (3.22) leads to

Pv(a)=5 1
pb

6[ps pb(1−ps pb)]v 5(1−q2
b)(1−ps pb)

pb(qs+psq
2
b)

6c 5 qs+psq
2
b

(1−ps pb)2
6k

×5 pw

ps pb(1−pb pw)
6w 51−pb pw

1−ps pb

6ws

. (3.24)

We recognize x and y, defined in Eq. (3.15) in the above, and we may
further define

z=
pw

ps pb(1−pb pw)
, zs=

1−pb pw

1−ps pb
, (3.25)

for the weights of vertices in the main diagonal and in the superdiagonal
respectively. Summing Eq. (3.24) over all directed animals a with v vertices
and in L then give the probability that the cluster at the origin has v vertices:

Pv=C
a

Pv(a)=5 1
pb

6[ps pb(1−ps pb)]v C
c, k, w, ws

av(c, k, w, ws) xcykzwzws
s ,
(3.26)
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Using the techniques in Section 2.1, it can be shown that the limit

lim
vQ .

1
v
log Pv(ps, pb, pw)=−z(ps, pb, pw) [ 0 (3.27)

exists.
The value of z(ps, pb, pw) in Eq. (3.27) will be of interest to us. It is

related to z(ps, pb) defined in Eq. (3.17) and Theorem 3.3, and it will play a
role here similar to that played by z(ps, pb) there. It is related closely to the
limiting free energy in that model, and will show that the limiting free
energy in a model of collapsing positive directed animals is a non-analytic
function of the contact or cycle activities, even at values of z > 1. To see
this, we first consider more closely the process of directed percolation in L

with ps, pb and pw defined as above.
Denote the origin (0, 0) by 0̃. Define h(ps, pb, pw; X) to be the proba-

bility that the vertex X is in an infinite cluster in the directed percolation
model. Then it follows from the fundamental theorem of percolation that
h(ps, pb, pw; 0̃)=0 in the subcritical phase (where the origin is in a finite
cluster), and h(ps, pb, pw; 0̃) > 0 in the supercritical phase. Moreover, the
values of ps and pb which are critical with respect to percolation are not
the trivial values 0 or 1. Notice also that h(ps, pb, pw) is monotone non-
decreasing in its arguments ps, pb, or pw.

Theorem 3.4. If we denote the vertex (0, 1) by 1̃, then h(ps, pb

ps; 0̃)=h(ps, pb, 0; 1̃).

Proof. Observe that if pw=0, then a directed percolation process in
the wedge confined to the first quadrant and above the superdiagonal is
obtained. All vertex probabilities are ps, and all bond probabilities are pb.
This can be translated one step vertically to a model with pw=ps and the
theorem follows.6 L

6 The edges incident with the main diagonal, but outside the principle wedge, can be open with
probability pb, but that is irrelevent in this model. Since all the vertices below the main
diagonal are unoccupied (with probability 1), there are no directed paths through these
edges, and no cluster can be connected via them.

Theorem 3.5. If 0 < pw [ ps, then

h(ps, pb, pw; 0̃)=0 Z h(ps, pb, ps; 0̃)=0.

Proof. This theorem follows directly from the following string of
inequalities:
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h(ps, pb, ps; 0̃)

\ h(ps, pb, pw; 0̃) since ps \ pw;

=ps pb h(ps, pb, pw; 1̃) since 0̃ is occupied with probability ps;

\ ps pb h(ps, pb, 0; 1̃) since pw > 0

=ps pb h(ps, pb, ps; 0̃) by Theorem 3.4. L

An open path in the directed percolation process in L is a sequence
alternating between vertices and directed edges, starting and terminating
with a vertex, and with all vertices and directed edges along it occupied and
open respectively. Theorem 3.6 shows that z(ps, pb, pw)=0 in the super-
critical phase. The method of proof is similar to that of ordinary
percolation,(33) but the directed nature of the percolation process here again
produces some technical difficulties which must be overcome.

Theorem 3.6. h(ps, pb, pw; 0̃) > 0S z(ps, pb, pw)=0.

Proof. Let p — {ps, pb, pw} and let h(p; 0̃) be the probability that the
origin is the source of an infinite cluster. Let m be a positive integer, and
define Tm to be the triangle in L with corners (0, 0), (m, 0) and (m, m). The
number of vertices in Tm is m(m+1)/2. The boundary of Tm will be
indicated by “Tm and it consists of all those vertices in the set {(i, 0), (m, i),
(i, i) | i=0, 1,..., m} 2 {(i+1, i) | i=0, 1,..., m−1}.

Suppose that rm is the number of occupied vertices in Tm from which
an infinite directed cluster can be grown. If X is a vertex in Tm, then X is
counted by rm with probability h(p; 0̃), by translating the percolation
process to have origin X. We shall first find an upper bound on the expec-
tation of rm, and use that to find a lower bound on the probability that rm
exceeds [h(p; 0̃)/2][m(m+1)/2].

Denote the probability of the event a by P(a), and notice that rm [

m(m+1)/2, and that the expected value of rm is bounded above by

E(rm)= C
m(m+1)/2

n=0
nP(rm=n)

[ [m(m+1)/2] P(rm \ [h(p; 0̃)/2][m(m+1)/2])

+[h(p; 0̃)/2][m(m+1)/2] P(rm < [h(p; 0̃)/2][m(m+1)/2])

[ [m(m+1)/2] P(rm \ [h(p; 0̃)/2][m(m+1)/2])

+[h(p; 0̃)/2][m(m+1)/2]
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But surely E(rm) \ h(p; 0̃)[m(m+1)/2], since each vertex X in Tm is the
source of an infinite directed cluster with probability h(p; 0), and thus it
follows that

P(rm \ [h(p; 0̃)/2][m(m+1)/2]) \ h(p; 0̃)/2.

Let um be the number of vertices in Tm which can be reached from “Tm

by a directed path of open edges and occupied vertices. Similarly, define vm
to be the number of vertices in Tm which is the source of an open path(s)
to “Tm. Suppose that X is a vertex counted by vm, and that Xp is the open
directed path from “Tm to X. By reflecting Tm though its symmetric anti-
diagonal, let T −

m be the image of Tm, X − be the image of X, and X −

p the
image of Xp. Under this reflection, all open edges are reflected to open
edges, closed edges to closed edges, occupied vertices to occupied vertices,
and unoccupied vertices to unoccupied vertices. Observe that if the direc-
tion of edges in T −

m are reversed, then X −

p is a directed path of open edges
from X − to “Tm. Thus, X − will be counted by um in T −

m. Similarly, one can
establish that vertices counted by um in T −

m are reflected to vertices counted
by vm in Tm. Averaging over all realizations of open and closed edges, and
occupied and unoccupied vertices in Tm, this shows that the most likely
value of um and vm are the same; let this number beM.

Notice now that vm \ rm, since each vertex counted by rm is the source
of an open directed path of edges to “Tm. Thus

P(vm \ [h(p; 0̃)/2][m(m+1)/2]) \ P(rm \ [h(p; 0̃)/2][m(m+1)/2])

\ h(p; 0̃)/2.

Thus,M=G(m2), provided that h(p; 0̃) > 0.
The event Km that all vertices in “Tm are occupied, all directed edges

between vertices in “Tm are open, and all directed edges between “Tm and
“Tm+1 are closed, has probability pm+1

w p3m−1
s (1−pb)m+1 p4m

b . Thus, the
probability that bothKm occurs, and that [m(m+1)/2] \ vm \ [h(p; 0̃)/2]×
[m(m+1)/2] is at least

P(rm \ [h(p; 0̃)/2][m(m+1)/2]) P(Km)

\ 1
2h(p; 0̃) pm+1

w p3m−1
s (1−pb)m+1 p4m

b .

The most likely value of vm is M, and so it follows that M \ rm as well.
M is also the most likely value of um, the number of vertices in Tm which can
be reached by an open path from “Tm, and thus from the origin. Let PM(p)
be the probability that the cluster at the origin has size M vertices. Since
vm takes on at most [m(m+1)/2] values, the most likely one which is M,
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it follows that PM(p) \ [P(vm \ [h(p; 0̃)/2][m(m+1)/2])]/[m(m+1)/2].
Thus

PM(p) \ [P([m(m+1)/2]

\ rm \ [h(p; 0̃)/2][m(m+1)/2]) P(Km)]/[m(m+1)/2]

\ 1
2h(p; 0̃) pm+1

w p3m−1
s (1−pb)m+1 p4m

b /[m(m+1)/2].

Thus, sinceM=G(m2) if h(p; 0̃) > 0, it follows that limMQ .[PM(p)]1/M=1
in the supercritical phase. L

Let us now write h(ps, pb, pw) to mean h(ps, pb, pw; 0̃). The following
corollary is a consequence of Theorem 3.6.

Corollary 3.7. h(ps, pb, ps) > 0S z(ps, pb, pw)=0 -pw ¥ (0, 1].

Proof. Observe that if h(ps, pb, ps) > 0, then it follows also that
h(ps, pb, pw) > 0, for all pw ¥ (0, 1]. This follows in the first instance from
Theorem 3.5 if pw [ ps, and from the fact that h(ps, pb, pw) is non-decreas-
ing with pw if pw \ ps. The corollary is now a direct consequence of
Theorem 3.6. L

This corollary shows that z(ps, pb, pw)=0 in the supercritical phase,
and that reducing the value of pw is not sufficient to stop the system from
percolating, and move it from the supercritical phase into the subcritical
phase.

We next consider z(ps, pb, pw) in the subcritical phase. To see that
z(ps, pb, pw) > 0 if h(ps, pb, pw)=0 requires more careful arguments; here
we will only provide an outline of the proof. Consider first a model of fully
directed percolation in the first quadrant of the square lattice. Let the
diagonal and sub-diagonal vertices be occupied with probability pw (except
for the vertices (0, 0) and (1, 0), which is occupied with probability ps). The
remaining vertices are occupied with probability ps. Suppose that edges are
open with probability pb. Let PD

v (ps, pb, pw) be the probability that the
origin is in a cluster of size v vertices.

It follows that Pv(ps, pb)=PD
v (ps, pb, ps), where Pv is defined in

Eq. (3.16), and thus from Theorem 3.3 one obtains that

lim
vQ .

1
n
log PD

v (ps, pb, pw) [ lim
vQ .

1
n
log PD

v (ps, pb, ps) < 0; -pw < ps,
(3.28)

in the subcritical phase, since the directed percolation is an increasing
process with pw. The first quadrant can be divided into two principle
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wedges by cutting the edges between the diagonal and the subdiagonal, the
first originating at the vertex (0, 0), and the second originating at the vertex
(1, 0). The probability that (0, 0) is the source of a directed cluster of size v
in the first principle wedge is Pv(ps, pb, pw), and similarly, this is also the
probability that (1, 0) is the source of a cluster of size v in the second prin-
ciple wedge. Thus, joining these clusters with the edge between (0, 0) and
(1, 0), we get

PD
2v(ps, pb, pw) \ pb[Pv(ps, pb, pw)]2. (3.29)

Taking logarithms, dividing by 2n and letting nQ ., shows that
z(ps, pb, pw) > 0 in the subcritical phase and the following theorem is
obtained:

Theorem 3.8. h(ps, pb, pw)=0S z(ps, pb, pw) > 0, and moreover,
if 0 < pw [ ps then z(ps, pb, ps) > 0Z z(ps, pb, pw) > 0.

Proof. That h(ps, pb, pw)=0S z(ps, pb, pw) > 0 follows from the
arguments above. To prove the rest of the theorem, consider the following:

z(ps, pb, pw) > 0S h(ps, pb, ps)=0, by Corollary 3.7;

S z(ps, pb, ps) > 0, by the above.

On the other hand,

z(ps, pb, pw)=0S h(ps, pb, pw) > 0, by the above;

S h(ps, pb, ps) > 0, by Theorem 3.5, since 0 < pw [ ps;

S z(ps, pb, ps)=0, by Theorem 3.6. L

Notice that in Eq. (3.26) the partition function of a model of a positive
and directed animals interacting with the diagonal and superdiagonal and
with contact and cycle activities, is present. The existence of a limiting free
energy

Fz(x, y, z, zs)=lim
vQ .

1
v
log C

c, k, w, ws

av(c, k, w, ws) xcykzwzws
s (3.30)

follows from the concatenation construction in Section 2, which can be
suitably adjusted to the problem here. Comparison of this with Eq. (3.26)
gives Theorem 3.9 below. Moreover, it is also the case that Fz(x, y, z, zs) is
independent of both z and zs if both z [ 1 and zs [ 1; the proof of this fact
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follows the same arguments leading to Theorem 2.3. That is, Fz(x, y, z, zs)
=Fz(x, y, 1, 1) for all z [ 1 and zs [ 1.

Theorem 3.9. z(ps, pb, pw) andFz(x, y, z, zs) are related as follows:

z(ps, pb, pw)=−log[ps pb(1−ps pb)]−Fz(x, y, z, zs),

where x, y, z and zs are defined in Eqs. (3.15) and (3.25). Moreover,
Fz(x, y, z, zs) is independent of z and zs if both z and zs are less than or
equal to 1. L

The same arguments now apply to x and y as in Eqs. (3.18) and (3.19),
and the discussion following it. We obtain a phase boundary separating an
expanded and a collapsed phase (when xy is large) in this model. Applying
Corollary 3.7 to this model shows that z(ps, pb, pw)=0, for any value of
pw > 0, if (ps, pb) is close enough to (1, 1). From Theorem 3.9 we then have

Fz(x, y, z, zs)=−log[ps pb(1−ps pb)], (3.31)

and this independent of z and zs. On the other hand, if (ps, pb) approach
(0, 0), then Theorem 3.8 implies that z(ps, pb, pw) > 0, with the result that
Fz(x, y, z, zs) ] − log[ps pb(1−ps pb)] in that case. Since xyQ 0 as (ps, pb)
approach (0, 0), there is a non-analyticity in the limiting free energy in
either x (with y fixed), or in y (with x fixed), and the directed percolation
process thus underlies the collapse transitions driven by x and by y (or by
both).

The original model, defined in Section 2, is recovered if zs=1, and this
corresponds to the case that pw=ps in Eq. (3.25). In this circumstance it is
still the case that z > 1, so that a collapse phase in the model is detected
when the diagonal is attractive.

As a last example, consider the case that pb=1 and pw=ps. Then by
the above arguments there is a non-analyticity in F(x, y, z) at a critical
value of ps; say at ps=pc. Then x=1, y=1/(1−ps) and z=1/(1−ps),
and so yQ . and zQ . as ps Q 1−. If ps > pc, then F(1, y, z)=
log[y2/(y−1)] along the locus described by x=1 and y=z=1/(1−ps),
and if ps < pc, then F(1, y, z) < log[y2/(y−1)], and the transition takes
place when y=z=1/(1−pc) > 1. In other words, the collapse transition
takes place at a value of z which corresponds to an attractive main diago-
nal, but it is unclear whether the collapse is from the adsorbed phase iden-
tified in Section 2, or from the desorbed phase. Notice that the transition in
this case is driven by increasing only y (and z), and is thus driven by the
contact-activity, and that both yQ . and zQ . so that there is a
collapsed phase for arbitrary large values of z, as we claimed.
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On the other hand, take ps=pw=1. Then it follows that y=1 and
x=(2−pb)/(1−pb) while z=1/[pb(1−pb)]. Taking pb close to 1 will
again give percolation at a critical value of pb, say pd. If pb > pd, then
F(x, 1, z)=log((x+1)2/x)=log z along the locus of points given by
y=1 and x=(2−pb)/(1−pb) and z=1/[pb(1−pb)]. If pb < pd, then
F(x, 1, z) < log((x+1)2/x)=log z along this curve. Again, the collapse
transition takes place at a value of z greater than 1, and notice that in this
case the transition is driven by increasing only x (and z), with y=1. Thus,
this transition is driven by the cycle-activity.

4. COMBINATORIAL APPROACHES

In this section we discuss several special cases in which one can find
expressions for the generating function (of models of directed animals)
which is equivalent to the grand canonical partition function of the model.
Our motivation is to find an exact solution to the above model, or of a
simplified version of it, and also to find critical exponents associated with
the various phase transitions it undergoes. In the case of adsorbing directed
animals (i.e. ignoring the cycle and contact fugacities) we are able to do so,
but the problem seems intractible for collapsing directed animals. Instead,
we shall examine a model of column convex directed animals, and even in
this simplified model our results are incomplete. Equations (3.17) and
Theorems 3.3 and 3.9 indicate that collapsing directed animals are related
to percolation probability in a model of site-bond directed percolation, and
this model has not been solved exactly, except in more limited models. For
example, it is known that the (well studied, but still unsolved) directed
bond percolation probability can be derived from the cycle generating
function of directed site animals.(7)

Directed animals can be enumerated using a number of approaches:
Dhar’s method(17, 18) maps a collapsing animals into an interacting lattice
gas, which may be solved using classical approaches in some cases. More
constructive approaches relies on the Viennot notion of heaps.(2, 8, 56) These
techniques can be used to enumerate directed animals in a wedge interact-
ing with a wall, but it is not clear that they can be extended to animals with
cycle or contact activities.

4.1. Enumerating Adsorbing Directed Animals

Consider the model of directed animals defined in Section 2, and put
x=y=1. Then only the activity z, conjugate to the number of visits in the
main diagonal, remains as a parameter. This model exhibits an adsorption
transition, as demonstrated in Theorem 2.3, and moreover, the critical
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adsorption activity is given by zc(1, 1) > 1, proven in Theorem 2.5. In this
subsection we find an explicit expression for the limiting free energy, and
locate the critical point. We use the heap-method to do this.

Let Zv(z) be the partition function of this model, and define the
generating function G(q, z)=;v Zv(z) qv, where q is an activity conjugate
to the number of vertices in the directed animal. The radius of convergence
of G(q, z) is qc(z), and is related to the limiting free energy by F(z)=
−log qc(z). The heap method maps directed site animals into a heap-
monoid of dimers (dumb-bells). In particular, there is bijection between
directed animals above the main diagonal and half-pyramids of dimers.
The monoid structure of the half-pyramid of dimers admits a canonical
factorisation which gives the following recursive factorization for the
generating function of directed animals:

G(q, z)=qz+qzG(q, 1)+qzG(q, 1) G(q, z), (4.1)

for more details, see Bousquet-Mélou and Rechnitzer,(8) see also
Rechnitzer.(54) One can immediately solve for G(q, 1):

G(q, 1)=(1−q−`(1+q)(1−3q))/2q. (4.2)

Thus

G(q, z)=
z(1+(1−z) q−zq2−(1+zq) `(1+q)(1−3q) )

2(1−(1−q)z+z2q2)
. (4.3)

The singularities of physical interest can be readily found to be q=1/3 and
q=(`4z−3−1)/2z). These are plotted in Fig. 7.

The curve qc(z) is given by

qc(z)=˛1/3, if z [ 3;

(`4z−3−1)/2z,if z > 3.
(4.4)

The limiting free energy is simply F(1, 1, z)=−log qc(z), and the critical
adsorption activity is zc=3. This point has tricritical scaling; if z=3, then
the generating function diverges as G(q, 3) ’ (qc(3)−q)−1/2 so that the
exponent ct=1/2 (Brak et al. (12) and Janse van Rensburg(41)). The cross-
over exponent f associated with this transition can be read from Eq. (4.4)
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Fig. 7. The critical curve qc(z) of adsorbing directed animals.

by computing the shift exponent of qc(z) for z > 3 (in the adsorbed phase):

qc(3)−qc(z)=
3(z−3)2

2z(2z+3(`4z−3−1))
, (4.5)

which scales like (z−3)2 as zQ 3+. Thus the shift exponent is k=1/f=2.
The remaining tricritical exponent can be computed from the relation
cu=ct/f=1. If q=1/3 and z < 3 then G(1/3, z)=2z/(3−z) and this also
shows that cu=1, confirming tricritical scaling around the adsorption
point. A further exponent along the critical curve in the adsorbed phase is
defined by G(q, z) ’ (qc(z)−q)−c+ can be found: c+=1. Along the critical
curve corresponding to the desorbed animals, there is square-root singular-
ity in the generating function, and consequently, c−=−1/2.

All the values obtained here for zc and qc(z) is consistent with the
results in Section 2. The exponents are the same as those computed for
adsorbing staircase walks,(41, 43) a not too suprising fact, since directed
animals, Dyck paths and Motzkin words are related. By setting the contact
activity to zero (i.e. y=0) we forbid all contacts (and also all cycles), and it
is not hard to see that the only remaining directed animal configurations
are directed walks (above the wall). Such walks are closely related to Dyck
paths and can be enumerated in a number of ways — here we shall use the
Temperley method(5) to enumerate them according to the number of sites
(q), the number of visits (z), and the distance between the topmost site and
the wall (s). Following the methods described by Bousquet-Mélou we find
that the generating function P(s) satisfies:

P(s)=q+q 1 s+1
s
2 P(s)−

q
s
P(0)+q(z−1) 1“P

“s
2:

s=0
(4.6)
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This equation can then be solved using the kernel method(26) to give:

P(1)=
q((1−z−qz)+(1−z+qz) `(1+2q/(1−2q))

2(1−z+z2q2)
. (4.7)

And so the critical curve is given by:

qc(z)=˛1/2, if z [ 2;

(`z−1)/z,if z > 2.
(4.8)

This critical curve is identical to that found for Dyck words and also for
adsorbing staircase polygons.(41) The crossover exponent is still 1/2, but the
other singularities in the generating function have now changed. It can
be shown that P(1)|z=2 ’ (qc(2)−q)−1 and so ct=1. Since the generating
function is infinite on the critical curve, q=1/2 and z < 2, we are not able
to compute the exponent cu explicitly. Similarly we can show that c−=1/2
and c+=1.

4.2. Collapsing Directed Column-Convex Animals

Ideally we would be able to find the generating function of directed
animals in a wedge enumerated according to the number of sites, visits,
contacts and cycles (and then extract the asymptotic behaviour of the
generating function). Unfortunately this seems to be a very difficult
problem and we have only been able to solve simpler models. Even in this
case we have not been able to solve a (non-trivial) model of animals in
a wedge enumerated by sites, visits, cycles and contacts. The ‘‘closest’’
models we can consider are models of convex directed animals enumerated
with respect to sites, cycles and contacts. The introduction of a hard wall
into this model (with or without an adsorption interaction) seems to render
the problem of finding the generating function far more difficult and we
leave this open.

A directed animal is a directed column-convex animal, if each column
(i.e., the intersection with a line x=n) is connected. These animals are well
understood(6, 53) and have been enumerated according to their area and
perimeter. The area generating function of this model is a simple rational
function (since the heights of the columns are ‘‘independant’’); adding a
contact activity y introduces correlations between the heights of the
columns and the generating function becomes a q-series (as we shall see
below). We also introduce the activity s conjugate to the height of the last
column in the animal; this variable will be useful in solving for the generat-
ing function.
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Fig. 8. An example of a directed column-convex animal.

Lemma 4.1. The generating function of directed column-convex
animals, P(s; q, y), satisfies the following functional equation:

P(s)=a(s)+b(s) P(1)+c(s) P(sqy)

where

a(s)=
sq

1−sq

b(s)=
sq

(1−sq)(1−sqy)
=

sq
(1−sq)(1−sQ)

c(s)=
s2q2(1−y)

(1−sq)2 (1−sqy)
=

s2q(q−Q)
(1−sq)2 (1−sQ)

.

where Q=qy.

Proof. This equation can be derived using the methods described in
Bousquet-Mélou.(5) L

Theorem 4.2. The generating function P(1; q, y) is given by

P(1)=
A(1)

1−B(1)

with

A(s)= C
n \ 0

c(s) c(sQ) · · · c(sQn−1) a(sQn),

B(s)= C
n \ 0

c(s) c(sQ) · · · c(sQn−1) b(sQn).
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and more specifically

A(1)= C
n \ 0

qn+1(q−Q)n Qn2

(q; Q)n (q; Q)n+1 (Q; Q)n

B(1)= C
n \ 0

qn+1(q−Q)n Qn2

(q; Q)n (q; Q)n+1 (Q; Q)n+1

where (z; Q)n=(1−z)(1−zQ) · · · (1−zQn−1) is a q-deformation of the
factorial.

Proof. Solve the equation using the iteration method described in
Bousquet-Mélou.(5) L

In order to find the phase diagram of this model, we must attempt to
determine the scaling behaviour of the generating function given by:

P(1)=
C
n \ 0

qn+1(q−Q)n Qn2

(q; Q)n (q; Q)n+1 (Q; Q)n

1− C
n \ 0

qn+1(q−Q)n Qn2

(q; Q)n (q; Q)n+1 (Q; Q)n+1

. (4.9)

We have not been able to completely determine this. Instead, we examined
P(1) for Q [ q < 1 and at Q=1. Singularities in P(1) are determined either
by singularities in the numerator or denominator in Eq. (4.9), or there is a
simple pole when the denominator is equal to zero. At some special values
of Q the generating function simplifies considerably, we shall consider these
points first. We shall then show that for 0 [ Q < q [ 1/2 that the asymp-
totics of the generating function are dominated by a simple pole due to a
zero demoninator in Eq. (4.9).

If Q=0 then all interactions are forbidden and the only allowed
animals are directed walks, because the outdegree of any vertex in the
animal is either 0 or 1, and the animal is unable to branch. The generating
function reduces to:

P(1)|Q=0=
q

1−2q
(4.10)

and so the generating function has a simple pole at q=1/2. Notice also
that qc(Q) is monotonic decreasing and so qc(Q) [ 1/2.

Adsorbing and Collapsing Directed Animals 87



If Q=q (or y=1) the generating function reduces to the area
generating function of directed column-convex animals:

P(1)=
q(1−q)

1−3q+q2 , (4.11)

and the generating function has a simple pole at q=3−`5

2
% 0.381966...

(Klarner(46)). This seems to indicate that a line of simple poles exists
between the pole at y=0 and q=1/2, and this pole. To see this, assume
that q < 1 and let Q < q. It can be shown that the denominator in Eq. (4.9)
is uniformly convergent for both Q [ r0 and q [ r0 where r0 < 1 is arbi-
trary. Thus, the denominator in Eq. (4.9) is a continuous function for
(q, Q) ¥ [0, 1)×[0, 1). If 0 [ Q [ q [ 1/2 then each term in B(1) is a series
with positive terms and is convergent. B(1) can be bound from below by its
first term which is b(1)=q/(1−q)(1−Q). This lower bound is equal to 1
if q=(1−Q)/(2−Q), thus the denominator of P(1) is zero for some value
of q [ (1−Q)/(2−Q) [ 1/2. This gives a simple pole in P(1).

If Q=1 then the above expression is singular, however one can obtain
a non-singular expression by returning to the original functional equation
and solving it using the kernel method:(26)

P(s)=
sq

1−sq
+

sq
(1−s)(1−sq)

P(1)+
s2q(q−1)

(1−s)(1−sq)2
P(s) (4.12)

We solve for P(1) by moving all the P(s) terms to the left hand-side of the
equation:

P(s) 11− s2q(q−1)
(1−s)(1−sq)2

2= sq
1−sq

+
sq

(1−s)(1−sq)
P(1). (4.13)

We then choose a value of s=s0 such that the coefficient of P(s) in
this equation is equal to 0. There is only one value of s such that
(1−s)(1−sq)2−s2q(q−1)=0, whose coefficients (with respect to q and Q)
are real and we define this to be s0. Setting s=s0 in this equation gives:

P(1)=s0 −1. (4.14)

If q=5/32 and Q=1 then this function behaves as P(1) ’ (y−32/5)−cu

with cu=−1/2. The remaining exponents seem difficult to extract, even if
the original functional recursion is examined instead.

In the case that Q > q the series B(1) is alternating, but still absolutely
convergent, and even uniformly convergent for Q [ r0 < 1. However, we
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were unable to show that B(1)=1 for some value of q < 1/2 and fixed
q < Q < 1. If one puts Q=yq in the above, then it can be shown, using
techniques similar to those in Section 2.1, that the limiting free energy of
directed column-convex animals exists, and it has limiting free energy
defined the radius of convergence of P(1). Moreover, it is a convex func-
tion of log y, and there is a critical point yc such that the radius of conver-
gence is given by

qc(y) ˛
=1/y, if y > yc;
< 1/y, if y < yc.

(4.15)

One might guess that yc=32/5 from the above, but even this is not
known. The above also show that the limiting free energy is non-analytic,
and that a collapse transition takes place at y=yc [ 32/5.

5. CONCLUSIONS

Although classic directed animals without additional statistics are well
understood, it appears that the addition of new properties such as contacts,
or cycles, makes the problem very difficult to deal with. The introduction
of a geometric constraint, such as a hard wall, is another compounding
factor. In its own right, this problem is therefore interesting from a com-
binatorial point of view, and we have only managed to solve it in the very
special case with the presense of an adsorption generating variable in
Section 4.1. Our attempts to find a full solution for the model which
includes generating variables for contacts, cycles and contacts proved
unsuccessful, and we considered the more limited model of a column
convex animal. Even in that case, we are only able to find exact expressions
only for specific values of the activities, and so our results in Section 4.2
remain incomplete.

The full model can be studied perhaps more fruitfully by using analytic
techniques, which we did in Sections 2 and 3. In Section 2 we showed
explicitly the presence of a critical surface zc(x, y) of adsorption transitions
in the phase diagram. If the collapse activities are schwitched off (x=
y=1), then the location of the critical adsorption point is given by Eq. (4.8),
zc=3. The crossover exponents associated with the adsorption is f=1/2;
which is the value usually associated with adsorption transitions in models
of adsorbing random systems. This value for f is of course obtained if
expanded (not collapsed) directed animals undergo adsorption, and should
retain the same value along the entire critical adsorption curve separating
desorbed expanded directed animals from adsorbed (and expanded) directed
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animals. While we are uncertain about the shape of the critical adsorption
curve, we were able to prove that zc(x, y) > 1 (Theorem 2.5).

The collapse transition in this model can be examined by using a
model of directed site-bond percolation. In Section 3.1 we examine this
transition for desorbed directed animals, and found a critical surface of
collapsed transitions (in the xyz-parameter space). By Theorem 2.6 this
surface is a constant function of z, and together with the adsorption critical
surface bound the phase of expanded desorbed directed animals.

While the results in Section 3.1 indicates a collapsed transition from
desorbed directed animals, it seems intuitive that a collapse transition
should also be possible from adsorbed directed animals. This question is
addressed in Section 3.2. By examining directed percolation in a wedge, the
presence of a collapsed phase of directed animals, for arbitrarily large
values of the adsorption activity z, is shown. It is unclear from our results
whether this is a phase of adsorbed-collapsed, or of desorbed-collapsed,
directed animals. This can only be done if more about the density function
for the full model is known: in particular, is there a density of visits for
arbitrarily large x or y, and z fixed and large?
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