Atmospheric Collapse in Self-Avoiding Walks: A
Numerical Study using GARM

J. Alvarez', M. Gara?, E. J. Janse van Rensburg' and A.
Rechnitzer?

IDepartment of Mathematics and Statistics, York University, Toronto, ON,
Canada M3J 1P3

2Department of Mathematics, University of British Columbia, Vancouver, BC,
Canada V6T 172

E-mail: jalvarez@chem.utoronto.ca, rensburg@yorku.ca, andrewr@math.ubc.ca

Abstract. The coil-globule collapse of dilute linear polymers in a poor solvent
is generally thought to be a second order phase transition through #-polymers at
the critical point [10]. A common model for the collapse transition of polymers
is a lattice self-avoiding walk with a nearest neighbour attraction [10, 38]. In this
paper we consider an alternative set of models for collapsing linear polymers. In
particular, we simulate lattice walks weighted by an atmospheric statistic using
the flatGARM-algorithm [40]. These models of walks undergo a collapse transition
at a critical value of the parameters of the model. This transition appears to be
discontinuous (first order), in contrast to the 6-transition in walks with nearest-
neighbour contacts. This places our models in a different universality class from
the #-transition in collapsing self-avoiding walks.

1. Introduction

Linear polymers in a poor solvent collapse into compact balls at the #-point of the
solvent. This continuous phase transition of polymers from extended coils to compact
balls is called the #-transition of linear polymers. It has received significant attention
in the polymer physics literature [10, 11, 38, 45] and its scaling theory is generally
well understood (see for example references [10, 32, 33]).

The #-transition in linear polymers can be modeled by a self-avoiding walk on a
lattice with a nearest neighbour attraction (or “contacts”) between non-consecutive
vertices of the walk which are adjacent in the lattice. This is the model of collapsing
lattice walks [8, 11, 32, 38, 42, 45]. This model has been the subject of numerous
numerical studies, but it remains difficult to simulate efficiently, and generally there
are reasons to improve on the current estimates of scaling exponents and critical points
(see for example references [2, 8, 22, 42, 46]).

The f-transition in a model of lattice self-avoiding walks with contacts remains
unsolved, and relatively little is known rigorously. If ¢,(s) is the number of self-
avoiding walks of length n starting from the origin and with s contacts, then the
partition function of this model is

Zu(B) = 3 cnls)e. (1)

s>0
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Figure 1. Collapsing walks: (a) Extended or coiled phase. (b) Compact or
globule phase.

The model has a single parameter § with critical point Sg; this is the #-point. The
limiting free energy is defined in the usual way: F(3) = lim, o n "' log Z,(3). This
limit is known to exist for § < 0, and the typical conformations of the walk in this
regime are in an expanded or coiled phase. Figure 1(a) illustrates a walk sampled from
this phase.

For positive values of 3, which correspond to a net attractive force between
adjacent vertices in the walk, the limiting free energy is not known to exist. The
f-transition corresponds to a singularity in F(8) at the critical point 8. For more
details on this model, see reference [46]. The model goes through the #-point when
8 = B, and for large positive values of 3 > (i the attractive forces between vertices
collapse the walk. This is the compact or globule phase of the walk [11]. A typical
conformation sampled from this phase is depicted in Figure 1(b).

The upper critical dimension for the f-transition is d. = 3. In dimensions
d > d. the model has mean-field critical scaling and exponents. For example, the
crossover exponent of collapse is ¢ = 1/2 if d > d.. Below d. (in the square lattice)
there is considerable variation in the estimates of ¢ in the literature. For example,
¢ = 0.64 + 0.05 [38] (exact enumeration), ¢ = 0.48 + 0.07 [41] (transfer matrix),
¢ = 0.52 £+ 0.07 [42, 43] (Monte Carlo), ¢ = 0.90 + 0.02 [27] (exact enumeration),
¢ < 0.53 4 0.004 [8] (Monte Carlo), and more recently ¢ = 0.435 £ 0.006 [19] (Monte
Carlo), among others. In d = 3 the critical exponents take on their mean field values,
but the scaling in the model is modified by logarithmic terms. Monte Carlo simulations
of the model in three dimensions were performed in references [17, 46, 47].

At the #-point the walk is said to be in 6-conditions. At this point the attractive
forces between contacts compensates (to first order) for the self-avoidance of the
vertices. The location of the #-point for square lattice self-avoiding walks has also
been estimated numerically as e’* = 1.941 & 0.047 [42], ¢’* = 1.95 + 0.11 [27],
ePr x 1.90 [6], e® = 1.93 4 0.03 [16], e’ ~ 1.93 [8], e’* = 1.944 + 0.004 [19],
and ef* = 1.948 £ 0.002 [3]. In the cubic lattice, numerical estimates have also been
obtained as e+ = 1.317 4 0.008 [47], e+ = 1.3204 + 0.0055 [46], and more recently
ePr = 1.3087 + 0.0003 [17], among others.

The #’-model of polymer collapse was introduced in reference [14]. In this two-
dimensional model, the collapse transition in linear polymers is modeled by driving a
collapse in walks with growing percolation clusters. This model was studied using
conformal invariance techniques [48] and exact values are known for its critical
exponents - for example the crossover exponent has value ¢ = 3/7 [14]. The
universality classes of the - and ’-transitions in two dimensions became a subject of
considerable interest following the publication of [14]. Initially, there was evidence that
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these models are in the same universality class [9, 14], but other studies suggested that
this may not be the case; see for example references [8, 15, 27, 28, 34, 35, 44]. (NOTE:
changed the rest of this paragraph.) The discrepancies suggesting different
universality classes are due to the distinction between ordinary and special surface
critical behaviour[14]. Calculations of the §-model in two dimensions in reference [19]
showed that the crossover exponent of this model is consistent with the value ¢ = 3/7,
providing numerical evidence that the #-transition is in the same universality class as
the #’-transition.

In this paper we (re)consider the collapse of self-avoiding walks from another
point of view. Our purpose is to consider the nature of collapse in polymers, and to
determine if a collapse transition distinct from the f-transition can be constructed.
We drive the collapse of walks by restricting its degrees of freedom by constraining its
atmospheric statistics, which were defined in references [24, 25, 39, 40]. Our results
show that in some cases we can induce collapse in walks, and that this transition has
the characteristics of a first order transition in the model.

We use the flatGARM-algorithm [40] to simulate collapsing walks where the
collapse is driven by fugacities conjugate to the atmospheric statistic. As in the cases
of the #- and #’- models, the collapse is essentially driven by confining or limiting
the walk to states in conformational space with low degrees of freedom, giving rise
to compact globules in the compact phase. Our numerical data suggest that in some
cases the transition has the signature of a first order transition: a sharp and apparently
discontinuous jump in the energy density.

The atmosphere of a self-avoiding walk can be defined in a number of different
ways [24, 39, 40], and we will consider some of them in this paper. The simplest
definition can be found in reference [39]; this is the endpoint atmosphere. This
atmosphere was used implicitly in even earlier studies involving the Monte Carlo
simulation of self-avoiding walks; see for example reference [5]. More general versions
of atmospheres have since been defined, in particular the plaguette atmosphere [1, 4, 24]
and the generalised atmosphere [40].

In Section 2 we describe endpoint atmospheres and a model of collapsing walks
driven by them. We prove that the limiting free energy of that model exists over the
entire parameter space and that it is equal to the logarithm of the growth constant of
self-avoiding walks.

In Section 3 we describe generalised atmospheres and their distributions. We also
describe several models of collapsing walks driven by generalised atmospheres and we
prove that the limiting free energy exists for non-negative values of the parameters.
The existence of such a limit remains unknown if any of the parameters are negative.
This situation is analogous to other collapsing walk models (see references [46, 47]).
We carry out a numerical analysis of the phase transition in these models of generalised
atmospheres for walks of length 600. The length of the walks we can analyse is limited
by the computational complexity of calculating the generalised atmospheres to obtain
the energy of the state, which is O(n), as well as that of calculating the radius of
gyration of each walk, which is O(n?). If the desired final length of the walks is N,
then the overall complexity from the energy calculations becomes O(N?), and O(N?)
from the radius of gyration. The data is obtained using the PERM algorithm [17] in
its flat histogram sampling implementation (flatPERM [36]) adapted to generalised
atmospheres (flatGARM [40]) for the microcanonical ensemble.

In Section 3.3 we focus in particular on a model of collapse driven by a negative
generalised atmospheric statistic and argue that there is a strong transition separating
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an expanded phase from a compact phase. Our calculations show that the crossover
exponent takes a value consistent with a first order transition. We consider the
crossover scaling and present evidence that the scaled internal energy and specific
heat curves collapse to universal curves with scaling consistent with first order critical
behaviour. We also consider the metric scaling of walks in this model and examine
the energy distribution over states to search for coexistence of phases at the critical
point. While our data remains very noisy in the low energy (compact) phase, there is
some evidence of the coexistence of coil and globule phases in this model.

A model with positive generalised atmospheric collapse is considered in Section
3.4. This model is qualitatively similar to the negative generalised atmospheric collapse
model. Then, in Section 3.5 we address a model with neutral generalised atmospheric
collapse. This model differs significantly from the other two generalised atmospheric
collapse models: there is apparently a continuous crossover between expanded and
collapsed regimes but we do not observe scaling or critical behaviour which would
signal a critical point. Thus we conclude that there is no phase transition in this
model.

We make a few final observations in the conclusions in Section 4.

2. Endpoint atmospheres

The endpoint atmosphere of a self-avoiding walk from the origin is defined in terms
of the number of ways an edge can be added, removed, or rotated at the end of the
walk to obtain another self-avoiding walk. For example, if w is a self-avoiding walk
of length n > 0, then a self-avoiding walk v of length n — 1 > 0 can be obtained by
removing the last edge in w. We call the last edge in w a negative atmospheric edge.
The set of such negative atmospheric edges is the negative endpoint atmosphere of w.

(a) (b) (c) (d)

Figure 2. Examples of endpoint atmospheres for the two-dimensional self-
avoiding walk w. (a) w. (b) a® (w) = 1. (c) a5 (w) = 2. (d) a§(w) = 2.

If wis a walk from the origin of length n > 0, then its negative endpoint
atmosphere is the set containing only the last edge in w. If w is the trivial walk,
then its negative endpoint atmosphere is empty. We denote by a® (w) the size of the
negative endpoint atmosphere of w. Observe that a® (w) = 0 if w is the trivial self-
avoiding walk and a® (w) = 1 otherwise. Figure 2(b) depicts an example of negative
endpoint atmospheres.

The positive endpoint atmosphere of a self-avoiding walk w is defined by
considering the set of edges which can be added at the endpoint of the walk w to
obtain another self-avoiding walk. The size of the positive endpoint atmosphere is
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denoted by af (w). In the d-dimensional hypercubic lattice a$ (w) = 2d for the trivial
walk and 0 < a9 (w) < 2d — 1 otherwise. Figure 2(c) depicts an example of positive
endpoint atmospheres. A walk w with af (w) = 0 is said to be trapped, because it
cannot be extended by adding an edge to its endpoint.

A neutral endpoint atmosphere of size af(w) can be defined by considering the
number of ways in which the last edge in the walk w can be changed into a new
direction to create a different conformation of the same length. For example, if w is
a walk of length n = 1, then ag(w) = 2d — 1 in the d-dimensional hypercubic lattice,
while more generally 0 < a§(w) < 2d — 2 for n > 1, and ag(w) = 0 if n = 0. Figure
2(d) depicts an example of neutral endpoint atmospheres.

A model of walks with endpoint atmospheric collapse can be defined by
introducing fugacities {04, 50, 8-} conjugate to the atmospheric statistics. The
partition function is

Zn(ﬁ—i—a o, ﬁ_) = Z Cn((li, a(er ae_)eﬁ+ai+ﬁoa8+ﬁfai7 (2)

ay,a0,a—
where ¢, (a$, af, a® ) is the number of self-avoiding walks of length n with atmospheric
statistics (a%,a§,a®).  The limiting free energy of this model is given by
F(B+,Bo,0-) = lim,_ontlogZ,(B+, B0, ) and it is a constant function, as we
prove in the next theorem.

Theorem 2.1. The limiting free energy F(B+, Bo,8—) for the model of endpoint
atmosphere collapsing walks exists for all wvalues of (B+,Bo,B-)- Moreover,
F(B+,P0,8-) = logpu = K, where p is the growth constant and k the connective
constant for self-avoiding walks.

Proof. We note that 0 < ay < 2d,0 < ap < 2d—1, and 0 < a_ < 1. Thus, the
partition function is bounded by
Cn63min{2dﬁ+,(2d71)ﬁg,ﬁ,,0}

S Zn(ﬁ-i—aﬁf)u ﬁ—)

S cne?) max{2dﬁ+,(2d—l)ﬁo,ﬁ,,0},

where ¢, is the number of self-avoiding walks of length n.
Take logarithms of the above, divide by n and take n — oo to obtain

lim (10gcn n 3min{2dg,, (2d — 1) 50, 5—, O})
n— oo n n
< F(B+, B0, B-)
< lm (10gcn n 3max{2df;, (2d — 1)60,6_,0}) '
n—oo n n

It follows by the squeeze theorem for limits that the free energy exists for all finite
values of (84, B0, 8-), and is equal to log p. O

3. Generalised atmospheres

In this section we consider generalised atmospheres of a self-avoiding walk (see [40]).
Suppose that w is a self-avoiding walk of length n. If v is a vertex in w, then w may
be cut into two subwalks wq and wy at v.
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If we consider a lattice edge e incident with v, then a new walk of length n + 1
may be constructed by concatenating the subwalks and e as follows: W' = wiews.
Equivalently, one may insert e in w at v, and then complete the walk by translating
wo one step in the direction of e. If the resulting walk w’ is a self-avoiding walk (of
length n + 1), then e is a positive generalised atmospheric edge of w. In Figure 3 we

depict an example of a walk and all its positive generalised atmospheric edges.

Figure 3. Example of a two-dimensional self-avoiding walk w with positive

generalised atmosphere af (w) = 10. The thicker (red) edge is the edge that

is inserted.

The collection of all positive generalised atmospheric edges of w is its positive
generalised atmosphere and its size is denoted by af (w). Clearly, 0 < af(w) <
(2d—1)(n+1) for n > 0 and if w is the trivial walk then a9 (w) = 2d. Examples of two-
dimensional self-avoiding walks with small and large positive generalised atmospheres
are depicted in Figures 4 and 5.

(a) (b) (©)

Figure 4. Two-dimensional self-avoiding walks of length n = 200 with small
positive generalised atmospheres per vertex. (a) af (w) = 8, (b) a%.(w) =7, (¢)
af (w) = 15.

If w is a walk of length n, and e is an edge in w, then e is a negative generalised
atmospheric edge in w if the walk w”, obtained by contracting e in w, is self-avoiding.
Figure 6 depicts an example of a walk and all its negative generalised atmospheric
edges.

The collection of all negative generalised atmospheric edges of w is the negative
generalised atmosphere, and its size is denoted by a? (w). Clearly, 2 < a% (w) < n, if
w is a walk of length at least 2 edges. If w is a walk of length 1, then ¢/ (w) = 1 and if
w is the trivial walk, then a? (w) = 0. Examples of two-dimensional walks with small
and large negative generalised atmospheres are depicted in Figures 7 and 8.

Suppose that e; and e;4; are consecutive edges in a walk w. That is, w =
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(a) (b) (©)

Figure 5. Two-dimensional self-avoiding walks of length n = 200 with large
positive generalised atmospheres per vertex. (a) af (w) = 448, (b) af.(w) = 519,
(c) af (w) = 503.

Figure 6. Example of a two-dimensional self-avoiding walk w with negative
generalised atmosphere a? (w) = 2. The thicker (red) edge is the edge that is
removed.

(a) (b) (©)

Figure 7. Two-dimensional self-avoiding walks of length n = 200 with small
negative generalised atmospheres per vertex. (a) a’ (w) = 6, (b) a? (w) = 7, (c)
a? (w) =9.

wieie;1wa, where wy and wo are subwalks, possibly trivial. If the walk W'’ =
w1€ir16ws is self-avoiding and w”' # w (this occurs when e; L e;y1), then the pair
(e, ei1) is a pair of neutral atmospheric edges. Figure 9 depicts an example of a walk
and all its neutral generalised atmospheric edges.

The neutral atmosphere of w is the collection of all pairs of neutral atmospheric
edges, and it has size af(w). Clearly, 0 < af(w) < n —1 for n > 0 and if w is the
trivial walk of length n = 0 then afj(w) = 0. Examples of two-dimensional walks with
large and small neutral atmospheres are depicted in Figures 10 and 11.
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(a) (b) (©)

Figure 8. Two-dimensional self-avoiding walks of length n = 200 with large
negative generalised atmospheres per vertex. (a) a? (w) = 200, (b) a? (w) = 198,
(¢) a? (w) = 195.

Figure 9. Example of a two-dimensional self-avoiding walk w with neutral
generalised atmosphere af (w) = 1. The thicker (red) edges constitute the pair of
edges that is reordered.

LS

(a) (b) (c)

Figure 10. Two-dimensional self-avoiding walks of length n = 100 with large
neutral generalised atmospheres per vertex. (a) af(w) = 76, (b) af(w) = 76, (c)
ad(w) = 83.

W

(a) (b) (©)

Figure 11. Two-dimensional self-avoiding walks of length n = 100 with small
neutral generalised atmospheres per vertex. (a) aj(w) = 1, (b) af(w) = 5, (c)
al(w) =8.

0
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8.1. Atmospheric distributions in walks

The mean size of an atmospheric statistic over walks of length n is denoted by (a$)y,
where ¢ = +,— 0. The bounds on the sizes of generalised atmospheres suggest
that (ad), ~ Cn for some constant C' depending on the lattice and on the type
of atmosphere. In the case of endpoint atmospheres, C' = 0, but it appears that
C > 0 for generalised atmospheres. However we have been unable to prove this. An
argument in references [24, 39] shows that

<a’{]‘r>n Cn+1 (3)

<a£i>n B Cn '

Since ¢,41/¢n is thought to approach the growth constant u of self-avoiding walks as
n — 00, it follows that measuring the constant C' for positive and negative atmospheres
allows us to estimate p.

Define ¢, (a?) to be the number of self-avoiding walks of length n from the origin

with atmospheric statistic of size ag. For example, c,(a%) is the number of walks

of length n and with positive atmosphere of size ai. Then, the mean value of the
positive generalised atmosphere is defined by (a¥ ), = [ a%.cn(a?)]/cn, and similarly
for ¥ and af.

We estimated the mean sizes of generalised atmospheres in the square lattice by
generating walks using the flatGARM-algorithm [40]. Analysing our data gives the

following results:
(%), ~0.82(n+ 0.4+ o(1))
(af)n = 217(n+ 1.7+ o(1))
(ad)n ~0.38(n— 0.9+ 0(1)) (

Observe that [2.17/0.82] = 2.646 = u, as one would expect.

The peak of the distribution of c,(ad) as a function of ag should increase
proportionally to ¢, as n increases, so ¢, (a$)/c, would be a normalised distribution of
atmospheres. Since 0 < a < Kn for some constant K, the support of the distribution
also increases at most linearly in n, and thus one would expect that for some € € [0, 1],
plots of [c,(al)/cn]n® against (ad/n — C)n'~¢ should collapse to a universal curve
which describes the scaling of c,(ag). The value of C is given in equations 4, 5
and 6. For example, one would expect that for some value of ¢, [c,(a?)/cp]n® plotted
against (a? /n — C)n'~¢ would give a curve independent of n if C ~ 0.82 . Our
best results are obtained for C' = 0.81 and for ¢ = 2/3 in Figure 12, for values of
n = 32,45,64,91,128,181 and 256 (these rounded values of powers of v/2 provide
a good range of n values). The family of curves collapse to a single universal curve
describing the scaling of the distribution of negative generalised atmospheres in square
lattice walks.

Similar data have been obtained for positive generalised atmospheres and are
plotted in Figure 13(a). In this case we obtain our best results when C' = 2.08, which
is slightly smaller than the C' = 2.17 obtained above. The value of € is e = 2/3. Thus,
the peak height of the distribution [c,,(a%.)/c,] grows as n?/3 while its width decreases
as n'/3, for both positive and negative generalised atmospheres. Additionally note
that the shapes of the limiting distributions of positive and negative atmospheres are
very similar.

In contrast, when we fitted the distribution of neutral atmospheres we found the
best data collapse when ¢ = 1/2 and C = 0.38 (see Figure 13(b)). Furthermore, the

D
=
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Figure 12. The scaled distribution of negative generalised atmospheres for two-
g
dimensional walks. We have plotted La:)} n2/3 against (a? /n—0.81)n'/3 for

Cr
n = 32,45, 64,91, 128, 181, 256.

collapsed curve is quite symmetric about its peak, unlike the asymmetric distributions
observed for the positive and negative atmospheres.

0.8 T T T T T

1 0.6 - 1
05 1 1
0.4 r 1

0.3 ]

scaled density
scaled density

1 0.2 r 1

1 0.1 1

0 . . . .
3 -3 -2 -1 0 1 2 3

scaled atmosphere scaled atmosphere

(a) (b)

Figure 13. The scaled distribution [%&2)] n¢ plotted against (ad/n — C)nt=¢

for: (a) positive generalised atmospheres, where e = 2/3 and C = 2.08. (b) neutral
generalised atmospheres, where ¢ = 1/2 and C = 0.38. The curves correspond to
walks of length n = 32,45, 64,91, 128, 181, 256.

8.2. Atmospheric collapse

In this section we consider models of walks with a collapse transition driven by

generalised atmospheric statistics. Let ¢, (a9, a§,a?) be the number of self-avoiding

walks from the origin with generalised atmospheric statistics (af,af,a”). The
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partition function of this model is

Zn(By, B0, B-) = Z cn(ad.,af, a? )eP+atthoagtial (7)

g9

9 .9
a’,ap,a

We prove the existence of the limiting free energy in this model, F (54, 5o, 6-) =
lim,, 0o n "t log Z,, (B4, Bo, B—), by using unfolded walks (see reference [20]).

Let w be a self-avoiding walk with vertices {v;}7_,. Suppose that the coordinates
of a vertex v are given by (X (v),Y (v),...,Z(v)) in d dimensions, with X (v) the first
coordinate, Y'(v) the second coordinate, and Z(v) the last (or d-th) coordinate of
v. In two dimensions, Y (v) = Z(v). The self-avoiding walk is X -unfolded (or just
unfolded) if X (vg) < X (v;) < X(vy) for all i = 1,2,...,n — 1. We say that a walk
is strongly unfolded if the last inequalities are strict: X (vo) < X (v;) < X (vy,) for all
1=1,2,...,n—1.

Two strongly unfolded walks w; and wy can be concatenated by translating wy so
that its first vertex coincides with the last vertex in w;. The resulting walk w = wiws
is itself strongly unfolded, and the atmospheric statistics of the walks w; and ws are
almost additive under this construction (the positive generalised atmosphere decreases
by exactly 2d — 1, while the negative and neutral atmospheres are additive).

Define ¢} (a%,ad,a’) to be the number of strongly unfolded self-avoiding walks
of length n from the origin with generalised atmospheric statistics (a%,ad,a?). The
partition function of these walks is

g g g
Zﬁ(ﬂ*’ﬂo’ﬂf) = Z Ci(ai,ag,a{)eﬁ+ai+ﬁoa0+ﬁfai' (8)

g 9 -9
ay ,ag,a”

The existence of a limiting free energy for the model of strongly unfolded walks is
established by the following theorem.

Lemma 3.1. The limiting free energy of strongly unfolded self-avoiding walks

FHB., o 00) = Tim ~log Z4 (B4, o, ) )
exists for all By, Bo, f— < 0.

Proof. We first determine an upper bound on the partition function. As indicated
in Section 3, the number of positive atmospheres is bounded above by (2d —1)(n+1),
the number of neutral atmospheres by n — 1, and the number of negative atmospheres
by n.

Two strongly unfolded self-avoiding walks can be concatenated by identifying the
last vertex of the first with the first vertex of the second. This gives again a strongly
unfolded walk. We note that the negative and neutral generalised atmospheres
are additive under this construction, but the positive generalised atmosphere of
the resulting walk decreased by (2d — 1) over the sum of the positive generalised
atmospheres of the two given strongly unfolded walks. That is, since this construction
is an injection, one obtains

Z ck (a4, a0,a_)ch(a? — a4, af — ag,a’ —a_) < cfler (af — (2d —1),a8,a?).
Gy ,G0,0—

Multiply both sides of the last inequality by elaf—@d=D))B+Boag +8-a 14 sum over

a’,al,a?, to get the inequality

(2481 50, 80)] [ 28,85 B0, 80)] < [eCaD9 22 (84,60, 50)]
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That means that [e(2d_1)5+ Z}l(@r, Bo, B— )} is a supermultiplicative function of n.

The number of strongly unfolded self-avoiding walks of length n is bounded above
by (2d—1)""2 in the square lattice because each step, except the first and the last, can
be in any of 2d — 1 lattice directions. With the bounds on the sizes of the atmospheres
above, this gives the upper bound

Z£(6+7 605 67) < (2d _ 1)77,72emax{0,(2d71)(n+1)ﬁ+}+max{0,(nfl)ﬁo]»erax{O,nﬁ,]»7

for any (4,00,0- < oo on the partition function. Together with the
supermultiplicative inequality for e(zd’l)mZA}L(ﬁjL,ﬁo,ﬁ,)} this proves that the

limiting free energy ﬁi(ﬁ+,ﬁo,ﬁ_) exists for all B4, By, f— < o0, see for example
reference [21]. o

The existence of a limiting free energy of atmospherically driven collapsing walks
can be demonstrated for non-negative values of the parameters [F,. For negative
values of (3,, we will assume that the model has a limiting free energy; this situation is
analogous to (nearest neighbour contact driven) collapsing walk models (see references
[46, 47]), where the existence of a limiting free energy is generally believed to exist for
attractive forces but remains unproved.

Theorem 3.2. The limiting free energy
.1
‘F(6+7605 6*) = nh—>ngo E 1Og Zn(6+7605 6*)

exists for all By, Bo,B— > 0. Furthermore, F (B4, B0,5-) = F*(By,Bo,B-) for all
ﬁ-i—vﬁOu ﬁ— 2 0.

Proof. The proof proceeds similarly to the Hammersley-Welsh argument relating
walks to unfolded walks - details of the construction can be found in reference [20].

Observe that ¢} (a?,af,a?) < c(a?,al,a?). Therefore, the partition functions
are similarly related: Z} (84, Bo, B-) < Zn(B+, Bo, B—).

Next, a walk can be strongly unfolded by first unfolding the walk as in reference
[20] and then by adding two new edges in the X-direction; one edge on each endpoint
of the walk.

The strongly unfolding of a walk increases the generalised atmospheric statistics in
general. To see this consider the two subwalks involved in a single unfolding operation,
then any atmosphere that was present in the full walk is still present in the subwalks,
and reflecting a subwalk to unfold the full walk will not change this fact. Therefore,
if the strongly unfolded walk w* (of length n + 2) is obtained by unfolding the walk
w, then af (w) < af (wh), af(w) < af(w?), and a? (w) < a? (w). This can be seen
by noting that if e is a positive or negative atmospheric edge in w, then it is also a
positive or negative atmospheric edge in w*. A similar observation is valid for neutral
atmospheric edges.

Therefore, it follows that ePraf (@) thoag(W)+h-a? (w) < hral (@) +Boag (wF)+6-aZ (wF)
for all B4, By, - > 0. Summing over all walks and strongly unfolded walks, while
noting that at most e?(vV?) walks are unfolded to the same strongly unfolded walk, it
follows that

Zn (B, Bo, B-) = Zeﬁ+ai(@+ﬁoa3(w)+ﬁfai (w)

IN

w
Z eP+ad (w*)+Boad (wh)+8-a? (wh)
w
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< OWm) Z eB+af (wh)+Boaf (w?)+B-a? (w?)
wi

= eO(\/ﬁ)Z'ripFQ(ﬁ-‘r? 6075—)7

because the resulting strongly unfolded walks have length n + 2.
In other words, it follows that

Z}z(ﬁ+7ﬁ@7ﬁ—) S Zn(6+7607ﬁ—) S eo(ﬁ)zi+2(ﬁ+7607ﬁ—)'

Take logarithms on both sides, divide by n on both sides, and let n — oo to get
-7:(6"1‘76075—):fi(ﬁ+7607ﬁ—)' <

In the remainder of this section, we analyse three special cases of this generalised
atmospheric collapse model: one related only to negative atmospheres, another related
only to positive atmospheres, and one related only to neutral atmospheres.

3.3. Negative atmospheric collapse in walks

The flatGARM algorithm [40] was implemented to simulate self-avoiding walks while
tracking negative atmospheric statistics. flatGARM is a kinetic sampling algorithm
with pruning and enrichment moves similar to flatPERM [17, 36]. We grew walks of
lengths up to n = 600 and collected data in increments of 10. A total of 3.74 x 10°
walks were started, and the pruning and enrichment processes eventually produced a
sample of 2.23 x 100 walks for data analysis, of which 2.12 x 10® walks reached the
full length. The number of walks that reach the full length is larger than the number
of started walks because the number of walks at each length n is dependent of the
walk length in the flatGARM algorithm. These walks were analysed to determine free
energies and metric properties. The length of the walks analysed is limited by the
computational complexity of calculating the generalised atmospheres to obtain the
energy of the state at each walk length. If the desired final length of the walks is NV,
then the overall complexity from the energy calculations becomes O(N?), and O(N?)
from the radius of gyration.

The partition function of walks with negative atmospheric collapse is given by
Zn(B-) = Zn(0,0,3-) as in equation 7. We define ¢,(a) to be the number of

walks of length n with negative generalised atmosphere equal to a? . Then Z,(8-) =
Doat cn(ag)eB*“g . For large negative values of 5, Z,(3-) will be dominated by walks

with small a? , and for large positive values of 3_, it will be dominated by walks with
large a? . Since walks with large negative atmospheres tend to assume conformations
which appear expanded and walks with small negative atmospheres tend to assume
conformations which appear to be more compact, one expects two regimes in this
model: A regime of expanded walks for large positive f_ and a regime of compact
walks for large negative 3_. For convenience we will refer to these as the coil and
globule phases - indeed we find a phase transition between them and additionally see
that the metric exponents indicate a transition from an extended phase to a more
compact phase. Typical conformations of two-dimensional walks with small and large
negative atmospheres are depicted in Figures 7 and 8.
The intensive free energy of this model is defined by

Fa(B) = 108 Zu(5-), (10)
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and the limiting free energy F(6_) = limy_,o0 Fn(f-) exists for all values of f_ > 0;
this follows from Theorem 3.2 because F,,(6-) = F,, (0,0, 5_). Existence of a limiting

free energy in this model for 5_ < 0 remains an open question: see reference [46] for
a similar situation for collapsing walks in the #-model.

1.6¢

1.4¢

%'
q8.8 -0.6 -04 -0.2 0 0.2 04

Figure 14. Intensive free energy, Fn (3—) of collapsing walks driven by a negative
atmospheric fugacity S—. For negative values of S_ the curves increase with n,
while for large positive values of 3_, the curves appears to have stabilised along
a line. The sharp transition at 8* ~ —0.01 corresponds to a coil-globule collapse
transition in this model.

In Figure 14 we plot the intensive free energy F,(5-) for two-dimensional
walks. There appears to be a sharp transition at a critical point of the fugacity
8- = (* ~ —0.01. The sharp turn in F,,(6-) at 8* from an almost horizontal line to
an increasing limiting curve suggests a discontinuous (first order) collapse transition.

1,

U (8)

Figure 15. Internal energy per monomer, U, (8—) for n € [100, 600] in intervals
of 10. The curves approach a limiting curve with a jump discontinuity with
increasing n, consistent with a first order coil-globule collapse in this model.

The nature of the transition may be examined by considering the internal energy
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of the model. This is given by (a?),, = dﬁ%}"n (B-), while the energy density (internal
energy per monomer) is defined by U, (8-) = (a”),,/n. We plot the energy density
in Figure 15. Observe that the energy density accumulates with increasing n on a
limiting curve with a jump discontinuity consistent with a first order phase transition
at g*.

The transition should also be visible in the specific heat of the model, defined by
the variance of the negative atmospheric statistic per monomer:

2
Cn(B-) = ((a)?)n — (a®)2)jm = L 8TnlB)

—_— 11

55 )

The specific heat for finite length n should diverge near the critical point with

increasing n. In Figure 16 C,(6-) is plotted as a function of (_ for values of
n € [100, 600] separated by intervals of 10.

n

50r

40

30

c.(B)

20

A
2

il

Figure 16. Specific heat, Cp,(8-). The height of the peak in the specific heat
increases with n, and moves to the right.

Critical scaling of the specific heat in models of collapsing polymers (see reference
[11]) is described by tricritical exponents a (the specific heat exponent), ¢ (the
crossover exponent) and a universal scaling function f such that:

Co(B=) ~n** 7 f(n® (B — 57)) (12)
where 2 — a = 1/¢ is a hyperscaling relation relating the singular behaviour of C,
with crossover scaling in the limiting free energy as B_ ' 3*. The height of the peak
in the specific heat grows as An2?~!, for some real positive constant A = f(0) and a
real crossover exponent ¢. For continuous transitions, 0 < ¢ < 1, while ¢ = 1 would
be consistent with a first order transition in the model.
We examined the scaling of C,,(6_) to determine ¢ from the data in Figure 16
for n > 200. The resulting fit of the peak height against n suggest that A ~ 0.0176
and ¢ ~ 1.12, and it is plotted in Figure 17(a) along with the actual values of the
peak heights. These results are subject to strong corrections to scaling in the data,
and normally one would not expect values of ¢ larger than one.
The appearance of our data suggest a first order transition, and we proceeded
by assuming that ¢ = 1 and that the height of the peak in the specific heat grows
as An??~1 + G to account for the strong small n corrections. This produced the
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Figure 17. Least-squares fits of the peak height h(n) of the specific heat Cy, (8-)
of collapsing walks with a negative atmospheric fugacity. The fits are carried out
for n > 200. (a) If one assumes that h(n) = An??~1 then a regression of the
data in Figure 16 gives this left panel with A = 0.0176 and ¢ = 1.12. (b) If one
assumes that ¢ = 1 and h(n) = An2%—! + 4, then the regression gives the results
in this right panel with A = 0.0929 and & = —6.8425.

linear regression estimate for n > 200 of A ~ 0.0929 and a ~ —6.8425. We plot this
regression result in Figure 17(b), along with the actual values of the peak heights.
The larger value of ¢ describes the data better, but we cannot rule out the possibility
that ¢ = 1 from our results. The theoretical bound ¢ < 1 implies that our data is
consistent with ¢ = 1, and this result suggests a first order transition in this model.

The argument of the scaling function f in equation (12) suggest that the location
of the peak in the specific heat curves in Figure 16, denoted by b(n), should move with
increasing n at a rate b(n) = 3* + Bn~?. Least squares regressions using the data in
Figure 16 for n > 200, assuming that ¢ = 1.12 gives B = —27.9968 and 3* = —0.0087.
On the other hand, assuming that ¢ = 1 gives B = —15.5836 and 3* = —0.004. The
results of these fits are plotted in Figure 18, along with the actual peak locations.

In the vicinity of the critical point the energy per monomer should scale as

Uy ~ 071 (8- - 67) ). (13)

where f is a a scaling function. Thus, plotting U,n'~? against (ﬁ_ — ﬁf) n? should
collapse data for different values of n to a single curve. In Figure 19 we plot these
data for n > 200. Observe that the curves collapse onto a single curve in Figure 19(b),
where we chose the regression estimates ¢ = 1 and $* = —0.004.

The specific heat scales with n as in equation (12). Similarly to the energy per
monomer, the specific heat data in Figure 16 will collapse to a single curve if one plots
Cp,n'=2?/A as a function of n® (ﬁ_ — ﬁi), where A is a constant. These plots are
presented in Figure 20 for n > 200.

8.8.1. Metric scaling: The scaling of collapsing walks can also be examined by
considering the scaling of metric quantities. We focus in particular on the mean
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squared end-to-end distance <R721(6,)> and on the mean squared radius of gyration
(S2(B-)). One expects that the scaling of any quantity with dimensions [length] will
be determined by a metric exponent v(G_), where v(0) = v = 3/4 is the exact value
of expanded (free) self-avoiding walks in two dimensions [13, 29]. In order to obtain
precise estimates of the cross-over exponent and 3* we ran two sets of simulations:
one that did not measure the radius of gyration and one that did. This is because
(as noted earlier) simulations that measure the radius of gyration require O(N?) time
which is considerably slower than the O(N?) time required by simulations that only
measure atmospheric statistics. For the metric data, we also grew walks of lengths up
to n = 600 and collected data in increments of 10. A total of 2.18 x 10° walks were
started, and the pruning and enrichment processes eventually produced a sample of
1.31 x 100 walks for data analysis, of which 1.27 x 108 walks reached the full length.
In Figure 21(a) it appears that the end-to-end distance of walks is close to zero
for negative values of S_. In this compact or globule phase, the endpoints of the walks
tend to be close together in space, and this depends only weakly on n (see Figure 7).
For positive values of 3_, the end-to-end distances increases proportional to n3/4; this
can be observed in Figure 21(b).
Generally, one may assume that the metric exponent is a function of S_, in
particular, assume that (R2(3-)) ~ n?#(%-). One may estimate vg(B3-) by looking

at the ratio (R3,(8-))/(R%(8-)) because
()

In Figure 22 we plot these estimates, which show that vr(8-) =~ 3/4 as f_ > B*. The

e TS S TS 0.0
100 200 300 400 500 600 100 200 300 400 500 600
n n
-0.11 0.1
= =
=024 = 021
031 ¢ 034 4

(a) (b)

Figure 18. The locations of the peak in the specific heat data compared with
regressions of the location given by b(n) = 3* + Bn~?% of the peak locations of the
specific heat, based on data from Figure 16. The fits are carried out for n > 200.
On the left panel (a) we assumed that ¢ = 1.12, and obtained B = —27.9968
and 8* = —0.0087. On the right panel (b) we assumed that ¢ = 1, and obtained

B = —15.5836 and #* = —0.004.
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Figure 19. Scaled internal free energy per monomer U,nl~% plotted against
(B= — B ) n? for n > 200 with (a) ¢ = 1.12 and B* = —0.0087, and (b) ¢ = 1
and 8* = —0.004.
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Figure 20. Scaled specific heat Cy,/An??~1 plotted against (,B, — ,Bi) n? for
n > 200 with (a) A =0.0176, ¢ = 1.12, and $* = —0.0087; and (b) A = 0.0929,
¢ =1, and g* = —0.004.

curves collapse to a single single curve for §_ > (8, but when §_ < #* these curves
accumulate on zero with increasing n.

The behaviour of the mean squared radius of gyration is more complex. We
examine these statistics in Figures 23(a) and (b), and estimates for the metric exponent
vs(B—_) can be obtained as in Figure 24. The scaling of the radius of gyration is
proportional to n3/% for values of 3_ > 3*, as can be seen in Figure 23(b).

Estimates of vg((_) are plotted against S_ in Figure 24, and again the data
collapse to a single curve for §_ > (*. For smaller values of S_ the behaviour is
noisy, but with increasing n settles down near the critical point, while it still retains
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an expanded value for negative values of _ < (*. The figures of collapsing walks
(see Figure 7) suggest that the expanded phase is dominated by conformations with
vs ~ 3/4, while the compact or globule phase (for negative f_ < [*) are instead
populated by conformations with endpoints close together. These conformations are
polygon-like, and their mean squared radius of gyration scaling may be dominated by
conformations with polygon statistics. If this is so, then this phase will have different
scaling for end-to-end and mean squared radius of gyration quantities in the compact
phase; this is a breakdown of universality in this regime. Comparing Figures 22 and
24 supports this conclusion strongly.

8.83.2. Discussion: Our data suggest the notion that this model has a first order
phase transition at the critical point f_ = (*, where the model collapses from a
phase of expanded conformations with self-avoiding walk statistics (8- > (%) to a
phase of globular or compact conformations dominated by walks with endpoints close
together in space. This transition is most clearly seen in the energy per monomer data
plotted in Figure 15, which has the appearance of a jump discontinuity at the critical
point B*. Overall, our data is consistent with a crossover exponent ¢ = 1.

The metric data paints a more complex picture, and in the compact phase we
see different scaling behaviour for the mean end-to-end and mean square radius of
gyration data.

To gather more evidence for a first order transition in this model, we search our
numerical results for evidence of a co-existence of two distinct phases at the critical
point B*. Our attempts were made difficult with noisy data in the compact phase.

In Figure 25(a) we plot the energy distribution for walks of length n = 600
and a value of f_ <« B*. The resulting distribution shows a single dominant peak
corresponding to walks with low values of negative atmospheres. This demonstrates
a single phase of compact walks.

In Figure 25(b) we plot the energy distribution for walk of length n = 600
and a value of f_ > (*. The resulting distribution shows a single dominant peak

150007 1r
g 08
/ <A
1 + 1 ~N
A 0000 < 06
e‘ / ,/\\l
NQ: 1 N% 0.4f
v ; o
5000 / vV
0.2f
0 05 0 0‘5 —8.8 -06 -04 -0.2
' B_ ' B

Figure 21. Mean squared end-to-end distance data. (a) < R2(B_) >. (b)
< R2(B-) > /n?R for v = 3/4.
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Figure 22. Estimate of vgr(f-) from end-to-end distance, obtained from

)
vr(B-) =In ((R3,(8-)) / (R%(8-))) /2In2.

corresponding to walks with large values of negative atmospheres. This is the expanded
or self-avoiding walk phase in this model, and this shows that a single phase of
expanded walks dominate the model in this regime.

The peaks in Figure 25 do not move much with increasing or decreasing values
of §_; instead, they tend to grow or shrink in size. Close to 3* more peaks appear in
the data between these peaks. This can be seen in Figure 26(a), where the two peaks
at 0.05 and 0.90 are still present (and slightly displaced from their extreme positions),
but where new peaks at intermediate values of §_ have appeared. These peaks at
intermediate values (0.3 and 0.45) appear in the data with increasing values of [_,
but vanish once f_ > [* while only the peak at 0.9 remains. The data plotted in
Figure 26(a) show the situation near the critical point (close to the location of the
peak in the heat capacity for walks of length n = 600), and the presence of the peaks
at the extreme values of the atmospheric statistics can be taken as evidence for the

1500
1000

500

<@ )>
<52(B_)> / n20.75)

Figure 23. Mean squared radius of gyration data. (a) < S2(B-) >. (b)
< S2(B-) > /n?s for vg = 3/4.
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Figure 24. Estimate of vg from radius of gyration, obtained from vg(8-) =

In ((S3,(8-)) / (SA(B-))) /2In2.

coexistence of the two phases. The intermediate peaks appear to be noise in the data,
however they were quite persistent and repeating our simulations for other values of
n or extending the length of the simulations did not substantially change the picture.

In Figures 26(b) and (¢) we show plots for the energy distribution for two different
values of S_ close to the critical point. In Figure 26(b) we plot the distribution for
the value of S_ where the peak from the compact phase and a peak at intermediate
energy densities are equal in height. In Figure 26(c) we plot the energy distribution
for a value of §_ where the peak at the intermediate energy density dominates both
the peaks from both the compact and the extended phase.

The appearance of peaks in the energy distribution between low and high energy
phases in Figure 25 together with the jump discontinuity in the energy seen in the
rescaled quantities plotted in Figure 19 shows a sharp transition in this model. The
scaling of the rescaled energy in Figure 19 and the rescaled specific heat in Figure 20 is
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x 10° x 107 3
6 ‘ ‘ ‘ ‘
5 5’
34 2
= 5 2r
33 2
> >
52 g
5 sl

[y

o
o

0.2 0.4 0.6 0.8

)
o
(V)
oL
~
o
o
o
)

o

(a) (b)

Figure 25. Energy distribution among states for walks of length n = 600 and
(a) B— < B%, and (b) B> B~.
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Figure 26. Energy distribution among states for walks of length n = 600 and
B~ p.
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Figure 27. Location of peak in energy distribution per state for negative
atmospheric collapse of walks of length n = 600.

consistent with ¢ = 1, and with a first order transition in this model. This presumption
is backed up by the metric data in Figures 22 and 24.

Further evidence can be found by tracking the highest peak in Figure 26 as
a function of f_. For f_ <« (* the peak is located at small energy densities, as in
Figure 25(a), while for S_ > (§* it is located at high energy densities as in Figure 25(b).
The switch-over of the dominant peak position at _ ~ 3* is sudden, and is plotted
in Figure 27. This shows a sudden transition from a low energy density state to a
high energy density, rather than a continuous transition, which is further evidence
suggesting a first order phase behaviour in this model.

8.4. Positive atmospheric collapse in walks

Consider a model of positive atmospheric collapse whose partition function is given by
Zn(By) = Zn(B+,0,0) (see equation (7)). The behaviour of this model is qualitatively
similar to that of the negative generalised atmospheres (Section 3.3). Large negative
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values of 3 are characterised by conformations which appear compact, while positive
values of 3 are characterised by conformations which appear to be expanded. Typical
conformations of two-dimensional walks with small and large positive atmospheres are
depicted in Figures 4 and 5.

In Theorem 3.2 the limiting intensive free energy of this model is given by
F(By) = F(B4,0,0) = limy, oo = n~tlogZ,(B:) and this exists for all values of
B+ > 0. The existence of a limiting free energy in this model for f; < 0 remains an
open question.

Numerical data, analogous to those for presented for negative atmospheric
collapse (Section 3.3), were collected for two-dimensional walks of length n from
n = 100 to n = 600. These data were obtained using flatGARM with 1.12 x 10°
started walks, and the pruning and enrichment processes eventually produced a sample
of 2.49 x 100 walks for data analysis, of which 2.18 x 10® walks reached the full length.

In Figure 28(a) we plot the intensive free energy F,(08+). There appears to be
a sharp transition around g7 ~ 0, below which the curves increase with n to an
apparently horizontal limiting curve, and above which the free energy curves collapse
onto a single curve that appears to increase linearly with ;.

This suggests a first order phase transition similar to the transition in negative
atmospheric collapsing walks. The internal energy per monomer, U, ((;.), accumulates
with increasing n on a limiting curve with a jump discontinuity consistent with a
first order phase transition, as can be observed in Figure 28(b). The location of
the transition between the compact and the extended phases is approximated by the
vertical part of the curve.

The specific heat for finite length n, C,(08+), diverges near the transition point
(% as n increases, as can be observed in Figure 28(c).

2
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Figure 28. Two-dimensional positive atmospheric collapse. (a) Intensive free
energy, Fn(B+). (b) Internal energy per monomer, Un(B+). (c) Specific heat,

Cn(B+)-

We investigated the critical scaling of the specific heat (see the discussion around
Equation (12)) for this positive atmospheric collapse model. The height of the peak in
Cy (B4 ) was used to determine the crossover exponent ¢ from the data in Figure 28(c).
The resulting least squares fit of the form An2?~! suggests that A ~ 0.2344 and
¢ ~ 1.07. Values of ¢ larger than 1 and strong correction to scaling in our data
indicated that we cannot rule out that ¢ = 1. Assuming that ¢ = 1 and then fitting
our data to An??~! 4+ & produced A ~ 0.599 and & ~ —24.8169.
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We also analysed the location of the peak in C),(84+) by regressions against
B% + Bn~?. Assuming that ¢ = 1.07 gives B = —8.3324 and % = —0.0027. On
the other hand, assuming that ¢ = 1 gives B = —5.9799 and 3} = —0.0016. These
results are consistent with ¢ = 1.

In the vicinity of the critical point, the internal energy per monomer should scale
as Equation (13). Thus, plotting U,n'~% against (6+ — Bi) n? should collapse data
for different values of n to a single curve. Figure 29 plots the scaled internal energy per
monomer. Observe that when (6+ - Bj) n? = 0 the curves collapse onto a single curve
in Figure 29(b), where we chose the regression estimates ¢ = 1 and 8* = —0.0016.
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Figure 29. Scaled internal free energy per monomer U,n!'~? (84 ) plotted against
(B+ — B%) n® for n > 200 with (a) ¢ = 1.07 and 3% = —0.0027, and (b) ¢ =1
and B} = —0.0016.

One can again analyse the scaling by considering metric quantities like the mean
squared end-to-end distance < R2 (3, ) >, whose scaling is expected to be determined
by a metric exponent vg(f+). One may estimate vg(f8y) by looking at the ratio
(R3,,(B+))/(R2(B)), as indicated by Equation (14). The metric data were obtained
using flatGARM with 6.8 x 10* started walks, and the pruning and enrichment
processes eventually produced a sample of 1.54 x 10'° walks for data analysis, of
which 1.37 x 10% walks reached the full length.

It appears that the mean squared end-to-end distance (R2(3.)) of the two-
dimensional positive atmospheric collapse is close to zero for large negative values
of B4+ (see Figure 30(a)). In this compact or globule phase, the endpoints of the walks
tend to be close together in space, and this depends only weakly on n (see Figure 4).
For positive values of 3, the mean squared end-to-end distance increases proportional
to n3/4, as can be seen in Figures 30(b) and (c).

The behaviour of the mean squared radius of gyration is again slightly more
complex, as observed in Figure 31. For values of 8, > [} the scaling of the radius
of gyration is proportional to n®/4, as can be seen in Figures 31(b) and (c). For
smaller values of 5, the behaviour is noisy, but as n increases it settles down near the
critical point, while it still retains an expanded value for negative values of 3, < §7.
The figures of collapsing walks (see Figure 4) suggest that the expanded phase is
dominated by conformations with vg & 3/4, while the compact or globule phase
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Figure 30. Mean squared end-to-end distance data. (a) < R2(B4+) >. (b)
< R2(B4+) > /n?R for vg = 3/4. (c) Estimate of vgr(B+) from end-to-end
distance, obtained from vr(B+) =In ((R2, (B4)) /(R2(B4))) /2In2.

(for negative 3 < (%) are instead populated by conformations with endpoints close
together. These conformations are polygon-like, and their mean squared radius of
gyration scaling may be dominated by conformations with polygon statistics. If this
is so, then this phase will have different scaling for end-to-end and mean squared
radius of gyration quantities in the compact phase; this is a breakdown of universality
in this regime. Comparing Figures 30 and 31 supports this conclusion strongly.

1500
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Q
® 500 .
90.60402 0 0204 -0.60.40.2 0 0.20.4 -0.6-0.402 0 0.20.4
B, B, B,

(a) (b) (©)

Figure 31. Mean squared radius of gyration data. (a) < S2(8+) >. (b)
< S%2(B4) > /n?s for vg = 3/4. (c) Estimate of vg from radius of gyration,

obtained from vs(B4) =In ({S2,(8+))/(S2(B+))) /2In2.

As in the case of negative atmospheric collapse (Section 3.3), our data suggest that
the model has a first order transition at the critical point 3, = 3}, where the model
collapses from a phase of expanded conformations with self-avoiding walk statistics
(B4 > B7) to a phase of globular or compact conformations dominated by walks with
endpoints close together in space. Overall, our data is consistent with a crossover
exponent ¢ = 1.

We searched our numerical results for evidence of a co-existence of two distinct
phases at the critical point 37, and again, our attempts were made difficult by noisy
data in the compact phase. In particular, we analysed the energy distribution for
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walks as a function of 1. A single dominant peak in the energy distribution indicates
the dominance of one phase over the other, while the co-existence of the two phases
would be characterised by a pair of co-dominant peaks.

Figure 32 plots the location of the dominant peak(s) of the energy distribution.
For 3, < (3% the peak is located at small energy densities, while for 3, > 3% it is
located at high energy densities. The switch-over of the dominant peak position at
B+ =~ B} is sudden. This shows a sudden transition from a low energy density state
to a high energy density, rather than a continuous transition. This is further evidence
suggesting a first order phase behaviour in this model.
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Figure 32. Location of peak in energy distribution per state for positive
atmospheric collapse walks of length n = 600.

3.5. Neutral atmospheric collapse

In this section we examine neutral atmospheric collapse in self-avoiding walks. The
partition partition function of this model is given by Z,(8p) = Z,(0,050,0) (see
Equation (7)). We collected numerical results for the neutral atmospheric collapse
of two-dimensional walks of lengths n = 100 to n = 600 using flatGARM with a
total of 2.32 x 10° started walks. The pruning and enrichment processes eventually
produced a sample of 2.82 x 10'° walks for data analysis, of which 1.92 x 10® walks
reached the full length.

For large positive values of 0y the model is dominated by walks with many 90°
turns and staircase-like conformations, as illustrated in Figure 10. This is an expanded
regime of walks. For large negative values of §y, the model is dominated by walks with
few 90° turns and a layered appearance, as illustrated in Figure 11. We refer to this
as a layered regime.

As indicated by Theorem 3.2, the limiting free energy of this model F,,(5p) =
Fn(0, B0,0) = lim,, oo n~tlog Z,(Bo) exists for all values of 3y > 0.

In Figure 33(a) we plot the intensive free energy F,,(0o) as a function of Jy. The
curves are smooth functions of By, with no evident singularities suggesting a phase
transition in this model.

The internal energy per monomer, defined by U,(8y) = (af)/n is plotted in
Figure 33(b) and the specific heat C,(By) = [{(af)?) — (ad)?]/n is plotted in



Atmospheric Collapse in Self-Avoiding Walks: A Numerical Study using GARM 27

1 0.3
0.6
_ _ ~, 0.2
=08 0.4 =
VC VC c
w > 0o O 01
0.6 :
0
-6 -4 -2 0 % 4 2 o -6 -4 -2 0
By By B

Figure 33. Two-dimensional neutral atmospheric collapse. (a) Intensive free
energy, Fn(Bo). (b) Internal energy per monomer, Un(Bo). (c) Specific heat,

Ch (60)

Figure 33(c). It appears that there is no increase in height or width of the peak
in Cp,(Bp) with n. There is no evidence of critical scaling in the specific heat: Both
the location of the peak, and the width of the peak, are insensitive to n. We also
carried out a least-squares fit to the peaks of the specific heat and obtained a value of
crossover exponent ¢ ~ 0.5, which is consistent with no transition. Hence, we conclude
that there is no critical behaviour in this model, and the crossover from the layered
to an expanded regime is not a critical phenomenon. This is similar to observations
made in other models of self-avoiding walks, for example, in models of walks and lattice
ribbons examined for critical behaviour in torsion and twist statistics; see references
[23, 30, 31].

4. Conclusions

We analysed several models of self-avoiding walk collapse based on endpoint and
generalised atmospheric statistics. The collapse is essentially driven by confining or
limiting the walk to states in conformational space with low degrees of freedom, as it
occurs in the case of the 6- and #’- models.

We proved that the limiting free energy of collapse driven by endpoint
atmospheres exists over the entire parameter space and that it is equal to the logarithm
of the connective constant for self-avoiding walks.

We also proved that the limiting free energy of collapse driven by generalised
atmospheres exists for non-negative values of the parameters. The existence of the
limiting free energy remains unknown if at least one of the parameters is negative.
This situation is analogous to other collapsing walk models (like nearest neighbour
contacts).

We carried out a numerical analysis of the phase transition in these models of
generalised atmospheres using the flatGARM algorithm [17]. Our analysis indicates
that the models of collapse driven by negative generalised atmospheres and by positive
generalised atmospheres exhibit a strong transition separating an expanded phase
from a compact phase, which is characterised by walks with endpoints close together
in space, illustrated in Figures 4 and 7. Our calculations for those two models
yielded thermodynamic behaviour and crossover exponents consistent with a first order
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transition.

The internal energy per monomer approaches a discontinuous function as the
length of the walks increases, the peak heights of the specific heat diverge near the
location of the discontinuity, and it appears that the energy distribution consists of
a pair of co-existent peaks near that point as well (although our data remains very
noisy in the compact phase). We also considered the metric scaling of walks in these
models. The expanded phase is dominated by conformations with their endpoints far
apart, while the compact phase is populated by conformations with their endpoints
close together. These compact conformations are polygon-like, and they have different
scaling for their end-to-end and their mean squared radius of gyration.

We also analysed a model of collapse driven by neutral generalised atmospheres.
This model differs significantly from the the other two and we find no evidence for a
first order transition. Indeed we find little evidence for any sort of critical behaviour
in this model.

A comparison of our results to the results in the literature for the #- and 6'-
transitions in models of collapsing walks shows that the atmospheric collapsing walks
in this paper do not belong to the f-universality class. In particular, atmospheric
collapse driven by positive or negative generalised atmospheres appears to be a first
order phase transition, while the #- and #’-transitions are continuous phase transitions.
Overall the numerical simulations in our atmospheric collapse models proved difficult,
and required tremendous numerical resources. Further examination of these models
will improve our data, and should provide more evidence of a first order phase change
in these models.
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