February 16, 2010 16:13 WSPC/INSTRUCTION FILE GASknot'f

Journal of Knot Theory and Its Ramifications
© World Scientific Publishing Company

GENERALISED ATMOSPHERIC SAMPLING OF KNOTTED
POLYGONS

E.J. JANSE VAN RENSBURG! AND A. RECHNITZER?

I Department of Mathematics and Statistics, York University, Toronto, ON, Canada M3J 1P3
2 Department of Mathematics, University of British Columbia, Vancouver, BC, Canada
V6T 122

ABSTRACT
Self-avoiding polygons in the cubic lattice are models of ring polymers in dilute solu-
tion. The conformational entropy of a ring polymer is a dominant factor in its physical
and chemical properties, and this is modeled by the large number of conformations of
lattice polygons. Since cubic lattice polygons are embeddings of the circle in three space,
they can be knotted is a model of knotting in ring polymers. In this paper we study the
effects of knotting on the conformational entropy of lattice polygons and so determine
the relative fraction of polygons of different knot types at large lengths.
More precisely, we consider the number of cubic lattice polygons of n edges and knot
type K, pn(K). Numerical evidence strongly suggests that

pn(K) ~ Cx n* 3TNk

as n — oo, where po is the growth constant of unknotted lattice polygons, a is the
entropic exponent of lattice polygons, and N is the number of prime knot components
in the knot type K [35]. Determining the exact value of p,(K) is far beyond current
techniques for all but very small values of n. Instead we use the GAS algorithm [23] to
enumerate pn(K) approximately. We then extrapolate ratios [pn(K)/pn(L)] to larger
values of n for a number of given knot types.

We give evidence that for the unknot 0; and the trefoil knot 3;, there exists a
number Mo, 3, =~ 170000 such that pp(01) > pn(31) if n < Mo, 3, and pn(01) < pn(31)
if n > Mo, 3, . In addition, the asymptotic relative frequencies for a variety of knot types
are determined. For example, we find that [pn(31)/pn(41)] — 27.0 £ 2.2, so that there
are approximately 27 polygons of knot type the trefoil for every polygon of knot of type
41 (the figure eight knot), in the asymptotic limit.

Finally, we examine the dominant knot types at moderate values of n and conjecture
that the most frequent knot types in polygons of any given length n, are of the form
Ki(N) = (3N)IN/219(37)N/2] (or its chiral partner), where 37,3] are right- and
left-handed trefoils, and N increases with n.
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1. Introduction

The statistics of ring polymers in dilute solution can be modeled by lattice polygons
with excluded volume in three dimensions [5]. The most basic question in this model
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is the determination of p,, the number of self-avoiding polygons in Z3, a difficult
and unsolved combinatorial problem in statistical mechanics [13]. This model is
closely related to the self-avoiding walk model of excluded volume in linear polymers
[14,12,8,9,5,30].

A lattice polygon is an unrooted embedding of the unlabeled cycle graph in the
hypercubic lattice Z¢. The length of the polygon is the number of unit length edges
it contains and p,, is defined as the number of polygons of length n counted up to
equivalence under translation in the lattice. The limit

p= lim pi/" (1.1)

n—oo
is known to exist and p is the lattice dependent growth constant and it is equal to
that of self-avoiding walks [13]. Thus p,, grows exponentially, p,, = p o) and it
is generally believed that its asymptotic growth is given by

pn = An® 3™ (1 + o(1)) (1.2)

where « is the polygon entropic exponent (or specific heat exponent). The function
Py, also satisfies the limiting relation
lim 2242 = 2, (1.3)
n—oo pp
a result due to Kesten [27,28]; a simpler proof of this can be found in reference [30].
In the square lattice Z? the numerical value of y has been estimated using a
variety of different methods, including computer enumeration and series analysis of
square lattice polygons [25,26]. The best estimates for x4 and « is:

[ = 2.63815853034(10), (1.4)
a = 0.5000005(10) (1.5)

A slight improvement can be found in reference [25]*. The exponent « has also been
estimated using conformal field theory and Coulomb gas methods, giving the exact
value @ = 1/2 in two dimensions [33,34].

Estimates of g and « in Z3 are less accurate (mostly due to the difficulty of
computing p,, for even modest values of n). A good estimate for u was obtained in
reference [4]:

u = 4.684044(11), (1.6)

a =024 (1.7)
This estimate is based on the analysis of exact enumeration data generated by the
lace expansion. The exponent « in three dimensions has also been determined by
e-expansion techniques [11,29], giving o = 0.237 £ 0.002.

The main focus of this paper is the number of polygons of length n and knot
type K, p,(K), as measure of the conformational entropy of this class of polygons.

2Error bars and confidence intervals are those claimed in the original references.
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Fig. 1. The two elementary moves in the BFACF algorithm. Moves of type I are length preserving,
while moves of type II changes the length of the polygon by two steps or edges.

These polygons are constrained by both self-avoidance and the topology of the
embedding. It is widely believed that p,(K) ~ Cxn®x =3ul, where ug < p [36,44],
and there are evidence that the entropic exponent of unknots, ap, is equal to «,
the entropic exponent of three dimensional polygons [35].

Unfortunately, computing p,, (K) remains an exponential time problem and so
we turn to approximate enumeration techniques. In reference [39] a new statistic
called the atmosphere of a self-avoiding walk was introduced. This statistic was
shown (numerically) to converge to the growth constant p as the length of the
walk increases. This subsequently [40] led to GARM, a generalisation of the Rosen-
bluth algorithm [14,41]. Like Rosenbluth sampling, GARM can be considered an
approximate enumeration algorithm which forms precise estimates of the number
of conformations of a given size. It may be enhanced by pruning and enrichment in
a similar manner to Grassberger’s PERM algorithm [10], and flat histogram tech-
niques such as in [3,37]. The algorithm proved effective in sampling self-avoiding
walks, but cannot sample polygons in the cubic lattice. This deficiency was over-
come in [23] and the resulting GAS algorithm (Generalised Atmospheric Sampling)
can be used to approximate the number of polygons of fixed knot type.

In this paper we use GAS to sample polygons of fixed knot types using BFACF-
moves [2,1] as our basic “atmospheric moves” in the algorithm. These moves are
known to have ergodicity classes which coincide with the knot types of polygons in
the cubic lattice [16]. Running the algorithm on different knot types gives us esti-
mates of p,, (K) which we then compare and contrast. This allows us, for example,
to determine the relative frequencies of different knot types.

In Section 2 we give a brief overview of the implementation of the GAS algorithm
to sample polygons of fixed knot types. Some preliminary results of our simulations
are given in Section 3. We discuss in particular the sieving of polygons of fixed
knot types and minimal length - this is essential to the approximate enumeration
of p,(K). Our data complement results obtained in reference [42], in which the
BFACF algorithm was used to count (exactly) the numbers of polygons of minimal
length and given knot type.

In Section 4 we present our numerical results for a range of knots types. We give



February 16, 2010 16:13 WSPC/INSTRUCTION FILE GASknot'f

4 E.J. Janse van Rensburg and A. Rechnitzer

results on minimal knots in the cubic lattice; we state lower bounds on the number
of distinct shortest polygons of a given knot type. We describe the approximate

determination of p, (K) ~ Cgn® 3

1y for various knot types and discuss the
calculation of amplitude ratios C'x /Cr, of knot types K and L. We show how these
results can be used to relate p,, (K) and p,(L).

In Section 4.2 we discuss the unknot and the trefoil in some detail. We determine
the amplitude ratio and show (numerically) that there is a number My, 3, such that
Pn(01) > pp(31) for n < My, 3, and p,(01) < p,(31) for n > My, 3,. In this case,
our numerical data show that My, 3, ~ 170000. In Sections 4.3 and 4.4 we present
data for the figure eight knot 4; as well as 51,61, 62,65 and 819. Our data show,
in particular, that p,(31)/pn(41) — 27.0 £ 2.2 as n — oo, implying that for large
values of n the trefoil knot type is about 27 times more abundant than the figure
eight knot type. Similar results are presented for other knot types.

In Section 5 we present results for some compound knots. We consider the rela-
tive frequencies of knots of types 31#31, 31#41 and 4;#44, and also knots with three
prime components of type trefoil. These results lead us to conjecture that the most
abundant knot type in cubic lattice polygons is K (N) = (37)[¥/214(37)1V/2] (or
its chiral partner K_(N)), where 3] and 3] are right and left handed trefoils and
N is an increasing function of the polygon length n.

We conclude the paper in Section 6 with a few final observations and comments.

2. The Entropy of Knotted Polygons

Let K be a given knot type and consider the number p, (K) of polygons of knot
type K and length n. Before we begin the main body of this section, a few remarks
on chirality are in order.

If K is a chiral knot type, then we denote its right- and left-handed types by
KT and K. Observe that

Pr(K") = pa(K7) (2.1)

pn(K) :pn(K+)+pn(K_) :2pn(K+)- (2-2)

While this is quite straight-forward, the situation becomes a little confusing when
compounded knots are considered. For example, the knot 3?#3; is achiral, but

37#3] is chiral. Since we will study both left and right handed-versions of chiral
knots, it is convenient to define

[ pu(K) if K is achiral

Py () = {pn(K+) +pu(K™) if K is chiral 23)

So, for example, for the left and right handed granny knots we have
P BT #37) = pu(37#37) + pu(31 #31) = 2pa (37 #37). (2.4)

Note that the above does not enumerate any polygons of the achiral knot type
37 #3] (this is the square knot). An additional example of this definition for com-
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pounded right and left-handed trefoil is

P (BT #3T#31) = pa (BT #3T#31) + pa (37 #37 #37). (2.5)

Generally, define pi (K) as follows:

o (K) = (2.6)

pn(K*) +pu(K7), if K is chiral;
P (K), if K is achiral.

It follows for example that pi(41) = p,(41) while pif(31) = pn(37) + pu(37)-

2.1. Minimal Knotted Polygons

In order for the GAS algorithm to estimate p,(K) for a range of n, we need to
know this number exactly for at least one specific value of n. For convenience we
compute the number of polygons of minimal length for a given knot type. In the
case of unknotted polygons, we have ps(0;) = 3.

For each knot type K there is a number n,,(K) such that p,(K) = 0 if
n < Nmin(K) and otherwise p,(K) > 0 for even n. The number n,,,(K) is the
minimal length of the knot type K in the cubic lattice [21,15]. The number of
polygons of this knot-type and minimal length is p,,, . (x)(K).

Some care should be taken when K is chiral knot. The minimal length does
not depend on the handedness of the knot and as noted above pfmm( K) (K) =
Prinin () (K) + P (1) (K7) = 2110 (50) (K.

In the case of the trefoil knot, it has been proven that 7,,:,(31) = 24 [6] and
P, (31) = 3328 [7,42]. Thus, it follows that p,(3]) = 1664. Each embedding of a
minimal trefoil knotted polygon (of length 24) in the cubic lattice can be rotated
and reflected into other conformations by the 24 elements of the octahedral group.
In most cases this gives 24 distinct polygons of knot types 3f and 37 . However,
since 3328 is not a multiple of 24 it follows that there are minimal trefoils that are
symmetric under rotations in the cubic lattice.

This observation applies to other knot types. Each polygon may be reflected
and rotated by the elements of the octahedral group, defining a symmetry class of
polygons equivalent under these rotations and reflections. Most equivalence classes
obtained in this way will have 24 distinct elements. There are exceptions to this.
For example, the minimum length unknotted polygons of length 4 all belongs to
a symmetry class with just 3 distinct members. In the case of the trefoil, our
simulations show that there are 142 distinct symmetry classes of minimal length
polygons of length 24 edges.

The figure eight knot 4; is achiral, and it is known that n.,;,(41) = 30 and
p30(41) = 3648 [42]. Reflections and rotations of figure eight knots by the elements
of the octahedral group similarly gives equivalence classes, and our simulations will
show that there are 278 distinct equivalence classes for this knot. Observe that
278 x 24 = 3648 so that each equivalence class contains 24 members, and every
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embedded minimal length figure eight knot has 24 distinct images under reflections
and rotations in the cubic lattice.

2.2. Amplitude Ratios of Knotted Polygons
There are considerable numerical evidence that
P (K) = Cgen® 3TN g, (2.7)

so that the entropic exponent of polygons of knot type K is given by ax = a+ Nk
where N is the number of prime components in the knot type K and « is the
entropic exponent of lattice polygons. This form for p,, (K) was already conjectured
in reference [35]; see reference [38] for more results, and also reference [32] for strong
numerical evidence for this this ansatz.

Since p,(31) = 0 if n < 24 and pay = 3328, it is known that p,,(01) > pr(31)
for small even values of n. Non-rigorous arguments based on a pattern theorem for
knotted polygons (see reference [44]) and equation (2.7) strongly suggest that there
exists a least integer My, 3, such that

pa(01) < pE(31), for all even n > My, 3,. (2.8)

Since pX(3;) = 0 if n < 24, it follows that p, (0;) > p;(3;) for small values of n,
and there is a crossover at n = My, 3, where trefoils begin to dominate unknotted
polygons in the ensemble of lattice polygons.

In this paper we estimate My, 3, by examining amplitude ratios. Taking ratios
of equation (2.7) with K =0y, Nx =0 and K = 31, Nx =1 gives

= e]

where [Co, /Cs,] is an amplitude ratio. If we now set n = My, 3,, and assume that
we also have p,(01) = p,(31), then

as n — o0. (2.9)

Co
M, ~ L. 2.10
01,31 |:031 :| ( )
Therefore, the amplitude ratio estimates My, 3,, and by measuring the ratio we
can estimate when there is a change in dominance from the number of unknots to
trefoils in the ensemble of cubic lattice polygons. In other words,

> pt(3 if n < M,
an 1 nf 5 ?
pn(()l){ ( 1) o

. (2.11)
5 p%(?)l) ifn > M01,31'

Observe that if p(3;) is replaced by p,(37) in the above, then equation (2.9)
becomes

npa(01) [Col}

~ . 2.12
2pn(3f) Cs, as n — oo ( )
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and a similar argument shows
M01,31+ =2 My, 3,. (2.13)

Thus doubling My, 3, will give an estimate of the length at which one partner
in the chiral pair of knots will start to dominate the unknot. Thus, if polygons
of trefoil knot type (left- or right-handed) start to dominate unknotted polygons
at n ~ My, s,, then right-handed (or left-handed) trefoils will begin to dominate
unknots at n ~ M01,31+ =2 Moy, 3,-

More generally, if we take ratios of equation (2.7) for arbitrary given knot types
K and L, we define the amplitude ratio Mg by

oY WNL=NK)
M {Ti] lfNL>NK; (2 14)
K,L ~ .
[%ﬂ if N = Ng.

When Ng > Ny, then My, k can be defined by noting that My x = 1/Mkg r.
If Ny = Ny, then it follows that

pf(K) ~ [MK,L]pf(L), as n — 0o. (2.15)

so that M 1, is the relative asymptotic frequency of knot types K and L. On the
other hand, if Nz, > N, then it follows from equation (2.14) that p(K) ~ pE(L)
when n ~ Mg . In other words, My, is an estimate of the lengths where knotted
polygons of type L becomes more numerous than knotted polygons of type K. That
is,

(2.16)

£ (K) > pE(L), ifn< Mgr;
Pt <pt@), ifn > Mey,

so that Mg 1 approximates the length at which p;* (L) starts to dominate p;(K).

3. GAS Sampling of Knotted Polygons

Let w be a cubic lattice polygon of length n. Three successive edges in w form-
ing a U-conformation outline a megative atmospheric plaquette incident with the
polygon. On the other hand, if an edge in w can be replaced by three edges in
a L-conformation to create a polygon of length n + 2, then these edges outline a
positive atmospheric plaquette. These positive and negative atmospheric plaquettes
are induced by BFACF-moves of type II as shown in figure 1.

Similarly, two adjacent edges forming a right-angle and bounding a unit square
containing exactly two edges and three vertices of the polygon is a neutral at-
mospheric plaquette. Such neutral atmospheric plaquettes are induced by BFACF-
moves of type I as described in figure 1.

The size of the negative (plaquette) atmosphere of w is denoted by a_(w) and
is the number of negative atmospheric plaquettes along w. We similarly define
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Fig. 2. Plaquette atmospheres induced by the BFACF elementary moves. This polygon has pos-
itive atmosphere a4 = 11, neutral atmosphere ap = 6 and negative atmosphere a_ = 4.
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and denote the size of the positive atmosphere, a4 (w) and the size of the neutral
atmosphere, a,(w). Note that ai(w),a—(w) and a,(w) equivalently indicate the
number of possible different length increasing, length decreasing and fixed length
BFACF moves that can be performed on the current polygon w. In figure 2 we
illustrate the plaquette atmospheres of a polygon.

The GARM kinetic growth algorithm [40] can be implemented for polygons in
the square lattice using the plaquette atmospheres in figure 2. This follows because
it is known that by using negative (length reducing) and neutral (fixed-length)
BFACF-moves, any square lattice polygon can be reduced to the minimal polygon
of length 4 edges, for details, see the discussion preceding and following Theorem
2.1 in reference [19], and Theorem 9.7.2 in reference [31] for a proof.

Unfortunately, GARM based on plaquette atmospheres cannot be used to sam-
ple cubic lattice polygons, since the elementary moves of the BFACF algorithm are
not irreducible on the cubic lattice polygons. This follows in particular because the
knot type of a polygon cannot be changed by the moves in figure 1. Nor is it possible
to sample knotted polygons of fixed knot type using GARM. This is because the
shortest length polygons of any given knot type are not unique. For example there
are 3 unknotted polygons of length 4, and one cannot transform one of these into
the others by a sequence of neutral BFACF moves.

The GAS algorithm is a generalisation of GARM sampling to include fixed-
length, length-increasing and length-decreasing moves [19]. If it is implemented
with the BFACF moves described above then the following theorem shows that it
is ergodic on cubic lattice polygons of fixed knot type:

Theorem 3.1 (see reference [24]). The irreducibility classes of the BFACF
moves for unrooted polygons in the cubic lattice coincide with the knot types of
the polygons as closed simple curves in three dimensions. &

We have implemented GAS as described in reference [19]. Polygons of knot
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type K are sampled using positive, negative and neutral atmospheric moves (in
our implementation these correspond to the positive, negative and neutral BFACF-
moves — In other words, in the implementation of GAS in this paper, the terms
“atmospheric moves” and “BFACF moves” are synonymous).

The algorithm samples along a sequence of states ¢ = (¢;) = (¢o, d1,...,Pj,...)
where ¢ is a starting polygon of knot type K and ¢;1 is obtained from ¢; by
executing one of the possible atmospheric moves. In this context we call ¢;4; the
successor and ¢; the predecessor.

The precise move is chosen randomly according to the probabilities described
below. These depend on a sequence of parameters (, that only depend on the
length of the polygon. Given a polygon of length ¢ atmospheric moves are chosen
with probabilities

P, (positive atmospheric move) = PRER) +§§E; (;ﬁj_g Grar (@ .); (3.1)
-9 j j

Py(neutral atmospheric move) = PR az(()gé;)—i- e ‘); (3.2)
—\@j J J

P_(negative atmospheric move) = a-(2;) (3.3)

a—(¢;) +ao(d;) + Beas(¢;)

Clearly if (3, is large then length-increasing moves will tend to be chosen, while if
it is small then fixed-length or length-reducing moves will ten to occur. Hence the
sequence (3; controls the average length of polygons sampled. If one chooses

(a_(4))e
(at(#))e

then one balances the probability of selecting length increasing and length decreas-
ing moves. If, in addition, 3,,,,, = 0 then these choices should produce roughly
equal numbers of samples at all lengths ¢ < 1,4, of states sampled by GAS. This
is the flatGAS algorithm for polygons [23].

Suppose that flatGAS has sampled along a sequence ¢ of length |¢|, and with
states ¢; of lengths /; at levels j. We associate a weight W; with each state ¢;
along the sequence. Define the function o on the sequence ¢ by

Be = (3.4)

—1, if ¢;41 follows ¢; through a;

g is Pg =
(95, ®j+1) {+1’ if ¢j41 follows ¢; through a_.

That is, if ¢; — @41 through a positive atmospheric move, then o(¢;, $;+1) = —1,
and if ¢; — ¢;41 through a negative atmospheric move, then o(¢;, ¢;+1) = +1.
Let the weight of the first state ¢ be Wy = 1, and update the weights of the states
W; along the sequence by first computing

T = (a%(85) + af (95) + Be,a (05)) W;
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and then updating
W]{+1IBU(¢J‘»¢J‘+1)

Cit1
(a? (¢41) + af(Pj41) + Be, 11 0% (d511))
This produces the next state ¢;41 in the sequence ¢ with weight W) . The weight
of the sequence ¢ is given by

Wj+1 =

W(¢) =

a? (¢o) + af(do) + Beya’l (o) ] I(ﬁl 52(%’%“)- (3.5)
7=0

a? (o) + af(or) + Be,af (1)

It follows that the asymptotic average weight (W,,) of states of length n encountered
along the sequence ¢ is proportional to the number of polygons of length n. To see
this, run the process in reverse so that it terminates in the initial state ¢g. Then
the mean conditional probability (P(¢g|7)), that the backwards sequence ¢ will
terminate in ¢g, having started in a state 7 becomes independent of n, since the
backwards chain is an irreducible and recurrent Markov process in a finite state
space. In particular, (P(¢o|T)), is asymptotically independent of ¢ and 7. Thus if
ratios of the mean accumulated weights are taken, then

Z|U|:m<W(¢)>U p"L(K).
This means that if p,,(K) is known for any value of m, then one may estimate

pn(K) for n > m. Here we compute p,,, .. (K) for different knot types and use the
above equation to estimate p,, (K).

(3.6)

4. Numerical Results

FlatGAS simulations of knotted polygons were done in a series of runs of polygons
of (even) lengths in the interval [N,in (K), Nmaz (K)] for some convenient choice of
Nmaz (K) (usually equal to 2500) and where 7, (K) is the minimal length of knot
type K in the cubic lattice.

FlatGAS sequences, each of length 107 states were realised in this interval, and
the data collected, binned at each n, and then analysed. The number of sequences
is displayed in Table 1 in the column marked by “Iterations”. For example, a total
2500 sequences were realised for the unknot, and 2000 sequences for trefoils. The
value of n,q.(K) was put equal to 2500, except for 500 sequences in the cases
marked by a (*), were npe.(K) = 500. In each case, Ny, (K) is the minimal
length of the knot type K in the cubic lattice. For example, n,,:,(01) = 4 and
nmin(31) =24 [6]

4.1. Estimating the number of knots of minimal length

In order to estimate p(K) using equation (3.6), we need to know the number of
polygons of a given knot type at a particular length; it is arguably easiest to use the
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Table 1. Knotted Polygons of Minimal Length.
K Nmin (K) pffmm (K) | Symmetry classes | Iterations (x107)

01 1 3 1 2500*
3f 24 3328 142 2000*
4q 30 3648 152 1500*
57 34 6672 278 1000*

55 36 114912 4788 500

67 40 6144 258 500

65 40 32832 1368 500

63 40 3552 148 500

87 42 13992 592 500
3T#3T 40 143904 6056 500
37 #37 40 30576 1275 500
37 #4 46 359712 14988 500
41#4q 52 334824 13987 500
3F#3T 43 56 288816 12034 500
3T 43T #3] 56 8874648 369777 500
3T #3F 437 #31 72 2752304 114680 500

shortest possible length for each knot type. These numbers have been computed
independently [42] using a similar method.

The number pfmm(K ) was estimated by sieving all minimal knots as they are
encountered during the simulation. These knotted polygons were put in a standard
lexicographic least string, and then rotated and reflected by elements of the oc-
tahedral group to find all members of each equivalence class. These strings were
then hashed and listed as they were generated. This approach proved effective for
simpler knots, and produced the correct numbers for the trefoil and figure eight
knots observed elsewhere (see reference [42,43]).

| . /
7 @ — T
Vv )
X

Fig. 3. A minimal length lattice trefoil knot of length 24 and with only 8 distinct conformations
under rotations and reflections in the cubic lattice.
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Fig. 4. A minimal length lattice knot of type 61 and length 40 edges and with only 12 distinct
conformations under symmetry operations of the octahedral group. This particular polygon is

invariant under a 180° rotation and belongs to an equivalence class with only 12 distinct members
under reflections and rotation of the cubic lattice onto itself.

The results are listed in Table 1. The second and third columns list n,,;, and
p,fmin (K), while the fourth column is the number of distinct symmetry classes of
knots under symmetry operations of the octahedral group of rotations and reflec-
tions in the cubic lattice; two knotted polygons are equivalent if they can be made
identical under rotations and reflections. This group has 24 elements, and normally
each equivalence class will contain 24 elements. There are, however, some classes
with fewer than 24 polygons; for example, the equivalence class of minimal length
unknotted polygons of length 4 has only three distinct members while the minimal
length lattice polygon of knot type trefoil and length 24 illustrated in figure 3 has
only 8 distinct rotations and reflections of itself under elements of the octahedral
group and so in a symmetry class comprised of 8 distinct polygons.

In figure 4 an example of a minimal knot of type 6; belonging to an equivalence
class with only 12 distinct members is illustrated. In general, the examples such as
those in figures 3 and 4 seem to be rare. In Table 1 only the prime knot types 31,
61 and 819 produced such examples. Amongst the compound knots we considered,
the knot types 3?#3;, 3?#3?, 4144, and 3?#3?#3?#3f produced examples of
classes with rotational or reflection symmetry.

The numbers for pf(K ) and the symmetry classes in Table 1 are exact for
the unknot and for the knots 3; and 4y. For all the other knots, the data listed
are lower bounds. While we are confident that the estimates higher up in the table
are the correct values, our confidence declines as one descends the table (or as
pfmm (K) increases in size). The most challenging cases were compounded knots
with multiple components, such as 3] #3] #3; and 31"#3?‘#31‘#3?‘. The knot type
37 #37#3, #3] proved too much for our available hardware. Wherever possible,
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Table 2. Approximate Enumeration of Trefoil Polygons with GAS.

n pm(ol) pm(31) Pm (41)
4 3

6 22

8 || (2.0699 £ 0.0024) x 102
10 || (2.4143 40.0047) x 103
12 || (3.1863 & 0.0081) x 10%
14 (4.541 £ 0.014) x 105

16 (6.856 + 0.023) x 108

18 || (1.084 +0.0041) x 108
20 || (1.774 4 0.0032) x 10°
22 || (2.987 4 0.015) x 1010

3.537 £ 0.030) x 1020

24 || (5.156 +0.027) x 101! 3328

26 || (9.053 40.051) x 1012 281050 & 630

28 (1.618 4 0.010) x 10'* | (1.4339 £ 0.0053) x 107

30 || (2.931 +0.020) x 101° (5.769 £ 0.028) x 108 3648

32 || (5.380 £ 0.039) x 1016 (2.005 4 0.011) x 101° | (5.414 £0.017) x 10°

34 || (9.98040.076) x 107 (6.342 4 0.039) x 101! (4.341 £ 0.025) x 107

36 || (1.871+0.015) x 101° (1.862 4 0.012) x 1013 | (2.495 +0.018) x 10°
( ) ( )

5.204 £ 0.038) x 10 | (1.164 #+0.010) x 10!

we have compared our results with those obtained in reference [42], and found
agreement [43].

One may obtain estimates for p,(K) from pX(K) for n = n,,(K) by using
equation (2.3). For example, we observe that since the trefoil is chiral, 2p,(3]) =
pFr(31) and so p,(3]7) = 1664. Similarly the figure eight knot is achiral giving
pn(41) = pF(4;) = 3648.

After p,, , (K) is estimated, the flatGAS data can be used to estimate p,(K)
using the ratios of collected weights as in equation (3.6). Some data for the unknot,
the trefoil and the figure eight knot are listed in Table 2. Observe that series for
all polygons is known to n = 32 [4] and that a comparison (for n < 24 before
the first trefoils appear) shows that flatGAS gives good estimates: For example,
p18(01) = 108088232 and pa3(01) = 29764630632, close to the estimates in Table 2.

4.2. Estimating Mg 1,

We now turn to the problem of estimating the amplitude ratios of different knot
types described by equations (2.10) and (2.14). Our data for the unknot and the tre-
foil can be used to estimate My, 3, as follows: Take the logarithm of equation (2.9)
to see that

o [ty | =[] 0o =

Assuming that the o(1) term is approximated by C/n, we obtain from the above
the approximate expression

npn(Ol) 001 C 001 C1 Co
log | —/——=| =1 1 14+ — oo=1 —+=+... (42
Og{p%(Sl)] og[ogl +og( +n)+ % | G, + o+ (4.2)
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Fig. 5. The ratio [pn(01)/pi(31)] as a function of length n on logarithmic scales. For small
values of n, pr(01) > pi (31), but since this relation changes to pn(01) < pi (31) for large values
of n > Mo, 3,, it must cut through the X-axis if it is extrapolated. Extrapolation of the data
shows that this occurs near log n &~ 12.041+0.038 (see the text for details about the extrapolation).

1 pn(01)
P (31)

co + ¢1/n + c2/n? should produce an estimate of ¢y = {g—gl] = Moy, 3,-
1

In other words, a three parameter regression of log [ } against the model

More generally, estimates of M 1, for knots of types K and L, can be obtained
by considering the model

n” N py (K)
1 — | =1 — 1 14+ —
Og{nNLp?f(L)] g[ ]+ og( + >+
- CK C1 C2
1og{cL]+n+n2+... (4.3)

where one may replace p-(K) by p,(K) or p(L) by p,(L), or both (leading to
similar changes to C and Cyp). Thus, if pf(K) = p(L) then n = My 1 can be
determined by solving for M 1, in equation (2.14). Since Mk ;, = 1/M, g, assume
that L is the more complex knot (higher crossing number, more prime components)
than K and so we will in most cases orient the knots such that Mg ; > 1. Finally,
it is trivially the case that Mg x = Mumin(K). One can similarly determine Mk j,
in cases that Ny, > Nk > 0 by assuming that Mg j, is large and then truncating
the series on the right hand side of equation (4.3) at ca/n? before solving for M 1,
(using a linear least squares analysis).
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Fig. 6. Testing the hypothesis that N3, = 1 for the trefoil knot in equation (2.7). The data
approaches a non-zero constant as n — oo, and the value of this Y-intercept is an estimate of the
amplitude ratio [Co, /C3,]. These data also give the estimate Moy, 3, = 170000 £ 12000 so that
pn(01) ~ pit (31) when n &~ Mo, 3, and pn(01) < pn(31) for n > Mo, 3,. In other words, polygons
of knot type trefoil start to dominate unknotted polygons at lengths of about 170000 edges.

4.3. The Unknot and the Trefoil

Let us now focus on the results for the unknot and the trefoil. In Table 2 we give
some small-n estimates from our flatGAS simulations. These suggest that for small
values of n, [p,(01)/p(31)] > 1. The conjectured asymptotic behaviour of pi(3;)
given by equation (2.7) with N3, = 1 implies that p;*(3;) will exceed p, (0;) for
large values of n. There is evidence of this in the literature; see for example [35].
Thus, for large values of n, the relationship inverts to [p,(01)/pE(31)] < 1 and
trefoil polygons become more numerous than unknotted polygons. As described
above, the cross over occurs at n ~ My, 3,.

In figure 5 we graph log[p,(01)/pE(31)] against logn. With increasing values
of n, the curve decreases, and since [p,(01)/p(31)] < 1if n > My, 3,, the curve
should cut through the X-axis when n ~ My, 3,. Hence we estimate of My, 3, by
fitting the data in this figure to the model in equation (4.3) using a weighted least
squares model. This extrapolates the curve to its intersection with the X-axis in
the figure; we have indicated this estimate with a bullet.

This analysis is predicated on the assumption that N3, = 1 in equation (2.7).
We have tested this assumption by plotting [np,(01)/pE(31)] against 1/n. This
curve should approach a constant (non-zero) intercept with the Y-axis as n — oo
(see equation (2.9)). We have plotted log[n p,,(01)/pE(31)] against 1/n in figure 6.
This clearly shows that the data approaches a point between 10 and 15 on the
Y-axis with increasing n. This is strong numerical evidence that N3, = 1.

The value of the Y-intercept in figure 6 is exactly that of the X-intercept in
figure 5 and is equal to log[Cp, /C3,]. We have determined it by fitting our data to



February 16, 2010 16:13 WSPC/INSTRUCTION FILE GASknot'f

16  E.J. Janse van Rensburg and A. Rechnitzer

equation (4.2) using a three parameter weighted least squares linear regression of the
data in figure 6. We tracked the least squared error as a goodness-of-fit parameter;
this is distributed as a y2-statistic. The regression improved when data points at
both the smallest values of n (where there are strong corrections to the model)
and at the largest values of n (where the statistical uncertainties in the data are
largest) were discarded. In general, our data were best modeled by rejecting points
from n > 1500 edges, so that we assumed n € [Ny, (K), 1500], and then performed
regressions by discarding points for n = Npin (K), Nmin (K) + 2, npmin (K) + 4, . . ..

Discarding these data at small values of n eventually gives a regression ac-
ceptable at the 95%-level. We take this as our best estimate. We determined a
systematic error by incrementing n from its minimum value by 2 again, and then
taking the absolute difference in our results. This produces in general a systematic
error in size comparable to the 95% statistical error. The combined errors will give
our confidence interval

The results for the data in figure 6 was as follows: An acceptable regres-
sion is obtained with T = 34 and Nmee = 1500. For this fit, ¥? ~ 757 on
732 degrees of freedom, acceptable at the 75%-level. This gives log[Cy, /Cs,] =
12.0410 £ 0.0074. Incrementing n,,;, to 36 gives an acceptable regression with
log[Cl, /Cs,] = 12.0159 £ 0.0075. Putting these together gives our best estimate
for log My, 3, = log[Cy,/Cs,] = 12.0410 £ 0.0074 + 0.0251, were the format is
estimate + 67%-confidence interval + systematic error.

Exponentiating these estimates will give an estimate for My, 3,. We determine
a confidence interval by combining the estimated statistical and systematic errors
into a single confidence interval, and then doubling it in size again to obtain a
confidence interval of size larger than the 95% statistical error bar. The result is

Moy, 5, = 170000 + 12000 (4.4)

where we have rounded to the nearest 1000. In other words, the crossover between
unknot and trefoil polygons occur near n ~ 170000. For values of n less than this,
the ensemble of lattice polygons is dominated by polygons of knot type the unknot.
For values of n larger than this, the ensemble is first dominated by polygons of
knot type trefoil, and then later by polygons of other knot types. In addition, since
My, 5+ =2 My, 3, as in equation (2.13), it follows that

M01731+ = 340000 =% 24000. (4.5)

In other words, if n ~ 340000, then p,(01) ~ p,(3]7) = pn(37). For values of
n > M gt there are more polygons of knot type 31+ than there are polygons of
knot type 0.

4.4. The Figure Eight Knot

A similar analysis can be done for the figure eight knot. In figure 7
log[pn(01)/pn(41)] is plotted against logn. Again we see that curve decreases with
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Fig. 7. The ratio [pn(01)/pn(41)] against n on logarithmic axes. The proportion of polygons of
knot type 4; increases relative to the number of unknotted polygons with n, and extrapolation of
the curve shows that it approaches the X-axis when logn = 15.403 4 0.047.

n showing that the ratio of figure eights to unknots is increasing. Extrapolating
the data gives the X-intercept indicated by the bullet. The extrapolation was done
using the same method used in figure 6, and the plot of log[p,,(01)/pn(41)] against
1/n is given in figure 8. Again this plot also provides compelling evidence that
Ny, = 1.

The data in figure 8 exhibits strong corrections and we could not find a con-
sistent estimate for My, 4, when data with n > 700 is included in the regres-
sions. Discarding data at values of n > 700 gave consistent results, and incre-
menting Nyin = 30 to N = 58 gives an acceptable regression. The result is
that log[Cy, /Cy,] = 15.4030 &+ 0.0135 at np,:, = 48 with a least squares error
X2 ~ 343 on 325 degrees of freedom, acceptable at the 76.1%-level. A further in-
crease to Ny = 50 gives log[Cy, /C4,] = 15.3708 £+ 0.0140 with a least squares
error x2 =~ 303 on 324 degrees of freedom, acceptable at the 20%-level.

Putting these results together shows that log My, 4, = log[Co,/C4,] =
15.4030 4= 0.0135 4= 0.0328, were the format is estimate 4= 67%-confidence interval &
systematic error. The location of this point is marked by the bullet in figures 7 and
figure 8. Combining the error bars, exponentiating the estimate and doubling the
confidence interval again, gives

Mo, 4, = (4.89 +0.46) x 10° (4.6)

where the error bars have been combined to give a single confidence interval, and the
estimates are rounded to the nearest 1000. This shows that the crossover between
the unknot and the figure eight knot occurs near n =~ 4890000.
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Fig. 8. Extrapolation of the data in figure 7. The curve approaches a non-zero constant as n — oo
on the Y-axis, providing strong numerical evidence that N4, = 1 in equation (2.7) for the figure
eight knot. The amplitude ratio [Cp, /Cy4,] is estimated by the Y-intercept, and is an estimate
also of Mo, 4, = (4.89 4 0.46) x 10%. Thus, the unknot and the figure eight knot turn over at his
length.

Comparison to equation (4.4) shows that My, 4, > My, 3,. That is, polygons of
knot type 41 begin to dominate unknotted polygons at much larger lengths than
the crossover between unknotted polygons and trefoils. This observation implies
that figure eight knots are rarer than trefoils, and that this should persist for all
values of n.

We can examine this hypothesis by considering the ratio [p:*(31)/pn(41)]. Since
N3, = Ny, = 1in equation (2.14), plot log[p;F (31)/pn(41)] against 1/n as in figure 9.
We observe that this ratio does indeed approach a positive constant, confirming that
trefoils remain more numerous than figure eights. Extrapolating this data to Y-axis
gives an estimate of Ms, 4,.

A linear least-square regression of the data in figure 9 gives an acceptable fit for
Nmaz = 1000 and ng,, = 40. This fit gives log[Cs, /Cy,] = 3.2967 £ 0.0098, with
X2 = 435 acceptable at the 73.1%-level on 479 degrees of freedom.

Incrementing 7, = 42 gives log[Cs, /C4,] = 3.2665 + 0.0101. Comparison of
these results show that log[C3, /Cy,] = 3.2967 + 0.0098 £ 0.0302. Finally, exponen-
tiating these estimates and doubling the combined confidence interval gives

Ms, 4, =27.0+£2.2. (4.7)

This result implies that trefoil polygons are asymptotically 27.0 £ 2.2 times as
abundant as figure eight polygons. These results are similar to results reported in
reference [17], where the relative frequencies of figure eight and trefoil knot types in
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Fig. 9. Plotting log[p; (31)/pn(41)] against n to determine the asymptotic relative frequency of
trefoils and figure eights in polygons. Extrapolation to the Y-axis shows that M3, 4, = 27.0+£2.2;
in other words, for every 27 trefoils, we should observe one figure eight knot in the limit of large
n.

polygons were estimates using a different approach based on knotting probabilities
in random self-avoiding polygons. Observe that Mo, 3, X M3, 4, ~ 4.59 x 10° and
that this is comparable to My, 4, = (4.89 £ 0.46) x 10°. Since p(31) = 2p,(37),
it also follows that M31+741 ~ 13.5+1.1.

4.5. Results for Polygons of Prime Knot Types

We have also used flatGAS to collect data for the two five crossing prime knots
5; and 59, the three six crossing prime knots 61, 62 and 63, and for the (first)
non-alternating prime knot 8;9.

In figure 10 we plot log[np,, (01)/p (K)] against 1/n for the knots K = 31,4;,5;
and 5,. Extrapolating to n = co again produced estimates for My, . Discarding
data for n > 4, = 1800 and using the three parameter model in equation (4.3)
gives acceptable fits for 5; and 59 for n,,;, = 36 and 64 respectively.

In the case of 5; we estimate that log[Co, /Cs,] = 17.8362£0.0314 for 1,5, = 36
with x? ~ 42 acceptable atthe 0% level on 331 degrees of freedom. Increasing n,,x
to 38 gives log[Co, /Cs,] = 17.8057 & 0.0325 with x? ~ 34 acceptable at the 0%
level on 330 degrees of freedom. Comparing these to estimate the systematic error
produced our best estimate log[Co, /Cs,] = 17.8362 £ 0.0314 + 0.0305. Combining
the error bars, exponentiating the estimate and doubling the confidence interval
again, gives

Moy, 5, = (5.58 +0.70) x 107. 4.8
1,91
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Fig. 10. log[npn(01)/pi (K)] plotted against 1/n for K = 31, 41, 51 and 52. In each case the
curves approach a non-zero finite value as n increases, providing numerical evidence that Ng =1
in equation (2.7) for these knot types. Extrapolation of the data to the Y-axis gives the points
indicated by bullets. These points provide estimates of Mo, x of each of the knot types.

In the case of 55 we estimate that log[Cy, /C5,] = 17.1412+0.0187 for nyp;, = 64
with x? ~ 328 acceptable at the 68% level on 317 degrees of freedom. Increasing
Nmin t0 66 gives log[Co, /Cs,] = 17.1044 4 0.0191 with x? ~ 291 acceptable at
the 16% level on 316 degrees of freedom. Comparing these to estimate the system-
atic error produced our best estimate log[Cy, /Cs,] = 17.1412 + 0.0187 + 0.0368.
Combining the error bars, exponentiating the estimate and doubling the confidence
interval gives

Moy, 5, = (2.78 £ 0.32) x 10”. 4.9
1,92

In other words, the knot 5 crosses over the unknot near (2.78 4 0.32) x 107 before
5, crosses over the unknot at (5.5840.70) x 107. In a similar way we have estimated
My, k for six crossing knots and the results are given in Table 3.

Table 3. My, i for prime knots.

01/K Mo, .k 01/K Mo, .k
31 (1.70 £0.12) x 10° 61 (6.42 £0.64) x 108
44 (4.89 £ 0.46) x 106 62 (7.28 £0.74) x 108
51 (5.58 4 0.70) x 107 63 (1.54 4+ 0.22) x 10°
59 (2.78 £0.32) x 107 819  (2.78 £0.28) x 1010

One may similarly compute the amplitude ratios M3, 5,, M3, 5,, M4, 5,, M, 5,
and Ms, 5, of these prime knot types. The ratios are plotted in figure 11. The
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Fig. 11. Plotting log[p,jf (K)/p% (L)] against n to determine the asymptotic relative frequency of
knots of types K and L in polygons.

data are quite noisy for n > 1000, thus we chose 7,4, = 1000 in our analysis and
obtained the results in table 4. Observe that these results are internally consistent
within twice the stated confidence intervals. For example, M3, 4, X My, 5, = 438+£76

while Ms, 5, = 399 + 44.

Table 4. My 1, for prime knots (M, g = 1/Mg 1.).
K/L Mg, L K/L Mg 1,
31/4 270+ 2.2 5./61  108+18
31/51 399 + 44 5./62 11.8+1.2
31/52 216 + 24 51/65  22.2+27
31/61 5160 £ 560 51/819 447 + 56
31/62 6240 + 600 52/61 31.0£5.0
31/63 11900 £ 1800 52/62 34.6 £ 4.6

31/819 225100 4+ 28000 52/63 71+ 18

41/51 16.2+1.5 52/819 1280 + 170
41 /52 9.0+1.2 61/62 1.05+£0.13
41/61 218 + 30 61/63 1.83 £0.30
41 /62 258 £ 28 61/819 47.0+£5.2
41/63 475 + 72 62/63 2.06 +£0.32
41 /819 9000 £ 1100 62/819 40.3 +£4.6
51/52 0.417 4+ 0.040 63/819 25.5+6.4

A similar set of calculations for six crossing prime knots gives more data of this
kind, and we also list these results in Table 4. Observe that ratio for one chiral
partner of chiral knot types can be obtained by multiplication or dividing by a
factor of two. For example, if K and L are chiral knot types, then Mg+ + =
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Fig. 12. Extrapolating data for knots of type 3?#3;’ and 3?#3; to estimate M, and

01,37 #371)
M

01.(3F #31)" Also plotted are data for K = 31 for comparison.

Mg 1, =2Mpg+ 1 = 0.5 Mg 1+. Thus, one may check that M41751+ =32.4+3.0 and
Msj,ﬁl =5.44+0.9.

5. Numerical Results for Compound Knot Types

In this section we shift our attention to compound knots. We start by considering
knots of types 3{\[ = 31#31#31# ..., and then compare these to knots of type
31#41 and 41#41.

In figure 12 we plot ratio data comparing unknots to the knots 31, S;F#SI+ and
3743, . An estimate for My, 3, was already obtained in equation (4.4). In the other
two cases we must set N3z = 2 in equations (2.7) and (2.14) in order to extract
estimates of Mo, k.

In the case that K = 37#3] we can compute the limiting ratio of
n2p,(01)/pE (37 #37) (and we remind the reader that p* (37 #37) = p. (37 #37) +
D (37 #37). A three parameter linear regression assuming the model in equa-
tion (4.3) gives the result log[Co, /C’Bir#ﬁ] = 26.19940.016+0.050 with 1,4, = 700
and 7N, = 50. The least square error is x? < 316 acceptable at the 40% level
on 323 degrees of freedom. Taking into account that this ratio is computed from
P (37 #37]) gives the result

MOl,(ST#Sf) = 977000 £ 66000, (5.1)

where, as before, we have doubled up the confidence interval.
One may similarly compute M, (3F#37)" The regression with n,,4, = 700 and
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Fig. 13. Extrapolating data for compounded knots of type (3T)N for N =1,2,3,4.

Nmin = 50 has least squares error 2 < 286 on 324 degrees of freedom acceptable
at the 6.4% level. The result is that 10g[001/03;r#3;r] = 26.228 £ 0.015 £+ 0.045 so
that

My, 5+ 45 ) = 496000 + 30000, (5.2)

Thus the crossover between unknotted polygons and polygons of knot types 31 #3,
occurs approximately at length 496000 edges.

The curves for the amplitude ratios of pt (37 #37) and p, (3] #3]) are prac-
tically indistinguishable in figure 12. The relation between these knot types may
be checked by computing M(gir #31),(37 437" Acceptable fits with n,,,, = 700 and
Nomin = 42 are obtained, and the result is

M(31+#31+),(31+#3;) = (0.535 £ 0.066. (5.3)

In other words, the chiral knots 31+#31+ are roughly one half times as numerous
as the achiral knot 3?#3; in the asymptotic limit. This is consistent with equa-
tions (5.1) and (5.2).

We have also computed M3Tx3f’ 43t The regression for the ratio
[npE(37)/pit (37 #3])] using the model in equation (4.3) with n,,;,, = 48 and
Nmae = 700 is acceptable at the 0% level on 325 degrees of freedom and gives
1og[03;r/031+#31+] = 14.203 £ 0.016 £ 0.048. This gives the following estimate

My (35 g3ty = 1473000 = 190000, (5.4)

so that this compounded trefoil becomes more numerous than the prime trefoil at
about 1.5 million edges.



February 16, 2010 16:13 WSPC/INSTRUCTION FILE GASknot'f

24  E.J. Janse van Rensburg and A. Rechnitzer

3T 33T /3T #3T #3T#3T

40~ 3+#5+/ﬂ+#5+#3+
354 / 3+/3+#3+

1/n

Fig. 14. Extrapolating ratios [np?f ((BT)Nfl)/pf ((31+)N] for N = 1,2, 3,4. In each case the curve
approaches a non-zero finite constant. This is evidence that N(3+)M = M in equation (2.7).
1

We have also obtained results for the compounded knots 37 #3]#37 and
37 #37#3] #3] and some of this data is plotted in figures 13 and 14. Note that
Ng = 3,4 respectively. The regression for the ratio [n®p,(01)/pn (3] #37#37)]
using the model in equation (4.3) with n.,;, = 60 and nmye, = 700 is accept-
able at the 53% level on 314 degrees of freedom. It gives log[Col/C3l+#3;r#31+] =
41.712 + 0.021 4+ 0.032, which leads to

6
My, 5+ pa+yaty = (2.18 £0.80) x 10°. (5.5)

The situation for the knot 3f#3f#3f#3f is similar to the above. The regres-
sion for the ratio [np, (01)/p, (37 #3] #37 #3])] using the model in equation (4.3)
with 1,5, = 80 and n,,q, = 700 is acceptable at the 37% level on 307 degrees of
freedom. It gives log[Co, /Cyt s+ g+ yar] = 61.032 4 0.026 £ 0.077 which leads to
the following estimate

6
MOla(3T#3T#3T#3T) = (840 + 040) x 10°. (56)

A similar analysis can be done for the ratios in figure 14 and we list these results
in Table 5.

Further examination of the data above show that at a given length, compound
knots of type (37)" occur with higher frequency than other compound knots. For
example, a comparison of the knots 31 #3] and 3] #4, gives

Mgt yaty (37 pa,) = 94 £ 12, (5.7)

Hence knots of type 37 #3] are roughly 9 times more numerous than knots of type
3744, in the asymptotic limit. In addition, comparison of the knots 3] #3] and
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Table 5. Mg 1 for compounded trefoils.

K\L 37 (37)? ()3 GBH*
01 3.39(23) x 10° | 9.77(66) x 10° | 2.18(80) x 10° | 8.40(40) x 10°
3f 1 1.47(19) x 106 | 2.56(12) x 106 | 1.245(60) x 107
(37)2 — 1 5.08(56) x 106 | 3.90(28) x 107
(37)3 — — 1 3.80(52) x 108

41#4, gives
Mzt 3ty (ar4,) = 250 £ 40, (5:8)

so that knots of type 31"#3;r are roughly 250 times more numerous than knots of
type 41#41 in the asymptotic limit.

Amongst polygons with knot types of the form (3;)"V (connected sums of trefoils)
we have seen that at a given length, polygons of knot type 3f#3f are roughly twice
as numerous as those of knot type 3f#3f. Generally, polygons with knot types
which are connected sums of left- and right-handed trefoils appear to be more
numerous than polygons of the same length and knot type which are the connected
sum of only left- or right-handed polygons. For example, simulations of knot types
37 #37#3] and 3] #3]#3] show that

M

st sy, 3tpstyat) = 90 £ 1.4, (5.9)

This shows that polygons of knot type 3f#3f#3f are about 9 times more numerous
than with knot type 37 #3] #3] in the asymptotic limit.

Estimating Mol,(:ﬁ #37#37) produces results which were very sensitive to the
maximum length of polygons in our data. Discarding all polygons of length n >
700 gave acceptable fits for n,,;, = 68. Our best estimate (using Nx = 3) was
[001/031+#3;r#3;] = 39.595 £ 0.066 so that

My, 3+t pamy = (108 £0.11) x 105, (5.10)

where we noted that that 37437 #3] is chiral. This is less that the estimate of
Mol,(3{r#31+#31+) in equation (5.5), implying that this compound knot is more nu-
merous.

To further investigate this we also attempted simulations for the knot types
(37)%#(37)2. This knot type proved beyond the capacity of our available computers
— sieving out the shortest knots to set a scale for the simulation produced tens of
millions of polygons (far more than the 2752304 found for (37)*. Our preliminary
results are enough however to support the following conjecture about the frequencies
of knots types.

Conjecture: Consider the knot types

KL (N) = (31)IN/214(37)¥/2] and
K_(N) = (31_)|—N/21#(3-1i-)[N/2J
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where K (0) = K_(0) = 0y, K, (1) = 3] and K_(1) = 3] . Then amongst polygons
of a given even length n > 4 there is an N such that the most populous knot types
are both K (N) and K_(N). Moreover, N increases to infinity proportionally with
n, so that the complexity of the most populous knot type increases with the length
of the polygons. &

This conjecture in particular is also consistent with p,, (37 #37) > p. (37 #37)
for each value of n. It is also supported by the estimates in equations (5.7), (5.8),
and (5.9).

6. Conclusions

In this paper we have presented approximate enumeration data for polygons of
fixed knot types generated by using the GAS algorithm [23,20]. The algorithm was
implemented using elementary BFACF moves as atmospheric moves.

As part of the implementation, we sieved knotted polygons of minimal length for
many different knot types. Our results confirm numerical data obtained elsewhere
[42,43]. In addition, we were able to examine the numbers of symmetry classes of
minimal lattice knots. In most of the knot types we have examined, each symmetry
class contained 24 distinct polygons under rotations and reflections in the octahedral
group. Amongst the prime knot types we examined, only the knot types 01, 31, 61
and 819 produced minimal length conformation which are symmetric with respect
to some elements of the octahedral group. In all the other cases, each minimal
conformation belonged to a symmetry class of 24 distinct members under action of
cubic lattice symmetries. Amongst the compounded knots we considered, the knot
types 3?#3?, 3?#3;, 41#4, and ?;IL3|§£31+3|§£31+7#£31+ had symmetric embeddings.
Overall it appears that symmetric embeddings were the exception, rather than the
rule, and we expect this pattern to persist.

Careful extrapolation of our numerical estimates of p,(K) allowed us to both
examine (1) the relative frequencies of knot types in asymptotic long polygons,
and (2) the values of n (the lengths of polygons) at which various knot types start
to dominate in a relative sense. For example, we estimates that [p, (37)/pn(41)] —
27.0£2.2 as n — oo, and while pn(Sli) < pr (D) for small values of n, one nevertheless
expects that p,(3F) > p,(0) if n > My, 3, where My, 3, ~ 170000. Similar results
were obtained for other knot types, and in the cases we have examined in this paper,
it is possible for us to state with some level of certainty the dominating knot types
at a given value of n.

These results produced strong support for a conjecture about the most popular
knot-types in cubic self-avoiding polygons. While the probability that a polygon
will have a particular knot type goes to zero as its length increases, we conjecture
that the probability distribution over knot types peaks on knots of type K (N)
and K_(N) for polygons of every fixed length n. Moreover, we predict that N will
increase proportionally with n (where N is the number of prime factors of type 3%)
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We are continuing our investigations of this conjecture and in particular of our

results on the relative frequencies of knot types as defined by M ;. In particular,

if K and L are both prime knot types, or have the same number of prime compo-

nents, then Mp 1, is dimensionless, and may in fact be universal (independent of

the lattice). Currently we are examining this by computing My j, for other three

dimensional lattices.
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