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ABSTRACT. We derive explicit upper bounds for various counting functions for
primes in arithmetic progressions. By way of example, if q and a are integers with
gcd(a, q) = 1 and 3 ≤ q ≤ 105, and θ(x; q, a) denotes the sum of the logarithms
of the primes p ≡ a (mod q) with p ≤ x, we show that∣∣θ(x; q, a)− x/ϕ(q)∣∣ < 1

160

x

log x

for all x ≥ 8 · 109, with significantly sharper constants obtained for individual
moduli q. We establish inequalities of the same shape for the other standard prime-
counting functions π(x; q, a) and ψ(x; q, a), as well as inequalities for the nth
prime congruent to a (mod q) when q ≤ 1200. For moduli q > 105, we find
even stronger explicit inequalities, but only for much larger values of x. Along the
way, we also derive an improved explicit lower bound for L(1, χ) for quadratic
characters χ, and an improved explicit upper bound for exceptional zeros.
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1. INTRODUCTION AND STATEMENT OF RESULTS

The Prime Number Theorem, proved independently by Hadamard [13] and de la
Vallée Poussin [44] in 1896, states that

π(x) =
∑
p≤x
p prime

1 ∼ x

log x
, (1.1)

or, equivalently, that

θ(x) =
∑
p≤x
p prime

log p ∼ x and ψ(x) =
∑
pn≤x
p prime

log p ∼ x, (1.2)

where by f(x) ∼ g(x) we mean that limx→∞ f(x)/g(x) = 1. Quantifying these
statements by deriving explicit bounds upon the error terms

|π(x)− Li(x)| , |θ(x)− x| and |ψ(x)− x| (1.3)

is a central problem in multiplicative number theory (see for example Ingham [15]
for classical work along these lines). Here, by Li(x) we mean the function defined
by

Li(x) =

∫ x

2

dt

log t
∼ x

log x
. (1.4)

Our interest in this paper is the consideration of similar questions for primes in
arithmetic progressions. Let us define, given relatively prime positive integers a and
q,

θ(x; q, a) =
∑
p≤x

p≡a (mod q)

log p and ψ(x; q, a) =
∑
pn≤x

pn≡a (mod q)

log p, (1.5)

where the sums are over primes p and prime powers pn, respectively. We further let

π(x; q, a) =
∑
p≤x

p≡a (mod q)

1 (1.6)

denote the number of primes up to x that are congruent to a modulo q. We are in-
terested in upper bounds, with explicit constants, for the analogues to equation (1.3),
namely the error terms∣∣∣∣π(x; q, a)− Li(x)

ϕ(q)

∣∣∣∣ , ∣∣∣∣θ(x; q, a)− x

ϕ(q)

∣∣∣∣ , and
∣∣∣∣ψ(x; q, a)− x

ϕ(q)

∣∣∣∣ . (1.7)

Such explicit error bounds can take two shapes. The first, which we will term bounds
of Chebyshev-type, are upper bounds upon the error terms that are small multiples of
the main term in size, for example inequalities of the form∣∣∣∣ψ(x; q, a)− x

ϕ(q)

∣∣∣∣ < δq,a
x

ϕ(q)
, (1.8)
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for (small) positive δq,a and all suitably large values of x. The second, which we
call bounds of de la Vallée Poussin-type, have the feature that the upper bounds upon
the error are of genuinely smaller order than the size of the main term (and hence,
in particular, imply the Prime Number Theorem for the corresponding arithmetic
progression, something that is not true of inequality (1.8)).

Currently, there are a number of explicit inequalities of Chebyshev-type in the
literature. In McCurley [21], we find such bounds for “non-exceptional” moduli q
(which is to say, those q for which the associated Dirichlet L-functions have no real
zeros near s = 1), valid for large values of x. McCurley [22] contains analogous
bounds in the case q = 3. Ramaré and Rumely [33] refined these arguments to
obtain reasonably sharp bounds of Chebyshev-type for all q ≤ 72 and various larger
composite q ≤ 486; the first author [3] subsequently extended these results to primes
73 ≤ q ≤ 347. Very recently, these results have been sharpened further for all moduli
q ≤ 105 by Kadiri and Lumley [19].

Bounds of de la Vallée Poussin-type are rather less common, however, other than
the classical case where one considers all primes (that is, when q = 1 or 2), where
such inequalities may be found in famous and oft-cited work of Rosser and Schoen-
feld [35] (see also [36, 39] for subsequent refinements). When q ≥ 3, however, the
only such result currently in the literature in explicit form may be found in a 2002
paper of Dusart [6], which treats the case q = 3. Our goal in the paper at hand is to
deduce explicit error bounds of de la Vallée Poussin-type for all moduli q ≥ 3, for
each of the corresponding functions ψ(x; q, a), θ(x; q, a) and π(x; q, a). In each case
with 3 ≤ q ≤ 105, exact values of the constants cψ(q), cθ(q), cπ(q), xψ(q), xθ(q),
and xπ(q) defined in our theorems can be found in data files accessible at:

http://www.nt.math.ubc.ca/BeMaObRe/

We prove the following results.

Theorem 1.1. Let q ≥ 3 be an integer and let a be an integer that is coprime to q.
There exist explicit positive constants cψ(q) and xψ(q) such that∣∣∣∣ψ(x; q, a)− x

ϕ(q)

∣∣∣∣ < cψ(q)
x

log x
for all x ≥ xψ(q). (1.9)

Moreover, cψ(q) and xψ(q) satisfy cψ(q) ≤ c0(q) and xψ(q) ≤ x0(q), where

c0(q) =

{
1

840 , if 3 ≤ q ≤ 104,
1

160 , if q > 104,
(1.10)

and

x0(q) =

{
8 · 109, if 3 ≤ q ≤ 105,

exp(0.03
√
q log3 q), if q > 105.

(1.11)

Similarly, for θ(x; q, a) and π(x; q, a) we have:

http://www.nt.math.ubc.ca/BeMaObRe/
http://www.nt.math.ubc.ca/BeMaObRe/


DRAFT

EXPLICIT BOUNDS FOR PRIMES IN ARITHMETIC PROGRESSIONS 5

Theorem 1.2. Let q ≥ 3 be an integer and let a be an integer that is coprime to q.
There exist explicit positive constants cθ(q) and xθ(q) such that∣∣∣∣θ(x; q, a)− x

ϕ(q)

∣∣∣∣ < cθ(q)
x

log x
for all x ≥ xθ(q). (1.12)

Moreover, cθ(q) ≤ c0(q) and xθ(q) ≤ x0(q), where c0(q) and x0(q) are as defined
in equations (1.10) and (1.11), respectively.

Theorem 1.3. Let q ≥ 3 be an integer and let a be an integer that is coprime to q.
There exist explicit positive constants cπ(q) and xπ(q) such that∣∣∣∣π(x; q, a)− Li(x)

ϕ(q)

∣∣∣∣ < cπ(q)
x

(log x)2
for all x ≥ xπ(q). (1.13)

Moreover, cπ(q) ≤ c0(q) and xπ(q) ≤ x0(q), where c0(q) and x0(q) are as defined
in equations (1.10) and (1.11), respectively.

See Appendices A.4 and A.6 for more details on these various constants. We
note here that many of our results, including those stated here, required considerable
computations; the relevant computational details are available at

http://www.nt.math.ubc.ca/BeMaObRe/

and are discussed in Appendix A.
The upper bounds c0(q) and x0(q) are, typically, quite far from the actual values

of, say, cθ(q) and xθ(q). By way of example, for 3 ≤ q ≤ 10, we have

q cψ(q) cθ(q) cπ(q) xψ(q) xθ(q) xπ(q)

3 0.0003964 0.0004015 0.0004187 576470759 7932309757 7940618683
4 0.0004770 0.0004822 0.0005028 952930663 4800162889 5438260589
5 0.0003665 0.0003716 0.0003876 1333804249 3374890111 3375517771
6 0.0003964 0.0004015 0.0004187 576470831 7932309757 7940618683
7 0.0004584 0.0004657 0.0004857 686060664 1765650541 1765715753
8 0.0005742 0.0005840 0.0006091 603874695 2261078657 2265738169
9 0.0005048 0.0005122 0.0005342 415839496 929636413 929852953
10 0.0003665 0.0003716 0.0003876 1333804249 3374890111 3375517771

For instance, in case q = 3 and a ∈ {1, 2}, Theorem 1.2, using the true values of
cθ(3) and xθ(3), rather than their upper bounds c0(3) and x0(3), yields the inequality∣∣∣∣θ(x; 3, a)− x

2

∣∣∣∣ < 4.015 · 10−4
x

log x
for all x ≥ 7,932,309,757. (1.14)

Here the constant 4.015 · 10−4 sharpens the corresponding value 0.262 in Dusart [6]
by a factor of roughly 650. We remark that x ≥ 7,932,309,757 is the best-possible
range of validity for the error bound (1.14); indeed this is true for each xψ(q), xθ(q),
and xπ(q), for 3 ≤ q ≤ 105.

For 3 ≤ q ≤ 105, we observe that (as a consequence of our proofs), we have

cψ(q) ≤ cθ(q) ≤ cπ(q) ≤ c0(q).

http://www.nt.math.ubc.ca/BeMaObRe/
http://www.nt.math.ubc.ca/BeMaObRe/
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For larger moduli q > 105, the inequalities

cψ(q) ≤ c0(q), cθ(q) ≤ c0(q), and cπ(q) ≤ c0(q)

are actual equalities by our definitions of the left-hand sides, and similarly

xψ(q) = xθ(q) = xπ(q) = x0(q) = exp(0.03
√
q log3 q),

for these large moduli. We note that one can obtain a significantly smaller value
for x0(q) if one assumes that Dirichlet L-functions modulo q have no exceptional
zeros (see Proposition 6.18, which sharpens the results of McCurley [21] mentioned
above). Theorems 1.1 and 1.2, even if one appeals only to the inequalities cψ(q) ≤
c0(q) and cθ(q) ≤ c0(q), sharpen Theorem 1 of Ramaré and Rumely [33] for q ≥ 3
and every other choice of parameter considered therein.

An almost immediate consequence of Theorem 1.3, just from applying the result
for q = 3 and performing some routine computations (see Appendix A.8 for details),
is that

|π(x)− Li(x)| < 0.0008375
x

log2 x
for all x ≥ 1,474,279,333. (1.15)

While, asymptotically, this result is inferior to the state of the art for this problem, it
does provide some modest improvements on results in the recent literature for certain
ranges of x. By way of example, it provides a stronger error bound than Theorem
2 of Trudgian [43] for all 1,474,279,333 ≤ x < 10621 (and sharpens corresponding
results in [4] and [7] in much smaller ranges).

Exploiting the fact that Li(x) is predictably close to x/ log x, we can readily de-
duce from Theorem 1.3 the following two results, which are proved in Section 5.2.
We define pn(q, a) to be the nth smallest prime that is congruent to a modulo q.

Theorem 1.4. Let q ≥ 3 be an integer, and let a be an integer that is coprime to q.
Suppose that cπ(q)ϕ(q) < 1. Then for x > xπ(q),

x

ϕ(q) log x
< π(x; q, a) <

x

ϕ(q) log x

(
1 +

5

2 log x

)
(1.16)

We remark that Dusart [6] proved the lower bound in Theorem 1.4 in the case q = 3.

Theorem 1.5. Let q ≥ 3 be an integer, and let a be an integer that is coprime to q.
Suppose that cπ(q)ϕ(q) < 1. Then either pn(q, a) ≤ xπ(q) or

nϕ(q) log(nϕ(q)) < pn(q, a) < nϕ(q)
(

log(nϕ(q)) + 4
3 log log(nϕ(q))

)
. (1.17)

Thanks to our computations of the constants cπ(q), we can produce a very explicit
version of the above two results for certain moduli q (see Appendix A.7 for details).

Corollary 1.6. Let 1 ≤ q ≤ 1200 be an integer, and let a be an integer that is
coprime to q.

• For all x ≥ 50q2, we have
x

ϕ(q) log x
< π(x; q, a) <

x

ϕ(q) log x

(
1 +

5

2 log x

)
.
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• For all positive integers n such that pn(q, a) ≥ 22q2, we have

nϕ(q) log(nϕ(q)) < pn(q, a) < nϕ(q)
(

log(nϕ(q)) + 4
3 log log(nϕ(q))

)
.

The lower bounds 50q2 and 22q2 present here have no especially deep meaning;
they simply arise from fitting envelope functions to the results of routine computa-
tions for x < xπ(q) and 1 ≤ q ≤ 1200.

Bounds like those provided by Theorems 1.1, 1.2, and 1.3 are of a reasonable
size for most purposes, when combined with tractable auxiliary computations for the
range up to x0(q). We may, however, weaken the error bounds to produce analogous
results that are easier still to use, in that they apply for smaller values of x (see
Section A.8 for the details of the computations involved).

Corollary 1.7. Let a and q be integers with 1 ≤ q ≤ 105 and gcd(a, q) = 1. If
x ≥ 103, then ∣∣∣∣ψ(x; q, a)− x

ϕ(q)

∣∣∣∣ < 0.19
x

log x∣∣∣∣θ(x; q, a)− x

ϕ(q)

∣∣∣∣ < 0.40
x

log x∣∣∣∣π(x; q, a)− Li(x)

ϕ(q)

∣∣∣∣ < 0.53
x

log2 x
.

Moreover, if x ≥ 106, then∣∣∣∣ψ(x; q, a)− x

ϕ(q)

∣∣∣∣ < 0.011
x

log x∣∣∣∣θ(x; q, a)− x

ϕ(q)

∣∣∣∣ < 0.024
x

log x∣∣∣∣π(x; q, a)− Li(x)

ϕ(q)

∣∣∣∣ < 0.027
x

log2 x
.

In another direction, if we want somewhat sharper uniform bounds and are willing
to permit the parameter x to be very large, we have the following corollary (see
Appendix A.9 for details of the computation). We remark that for q ≥ 58 we can
weaken the restriction on x to x ≥ exp(0.03

√
q log3 q).

Corollary 1.8. Let a and q be integers with q ≥ 3 and gcd(a, q) = 1. Suppose that
x ≥ exp(8

√
q log3 q). Then

max

{∣∣∣∣ψ(x; q, a)− x

ϕ(q)

∣∣∣∣, ∣∣∣∣θ(x; q, a)− x

ϕ(q)

∣∣∣∣} <
1

160

x

log x

and ∣∣∣∣π(x; q, a)− Li(x)

ϕ(q)

∣∣∣∣ < 1

160

x

log2 x
.
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Finally, to complement our main theorems, we should mention one last result,
summarizing our computations for “small” values of the parameter x (and extending
and generalizing Theorem 2 of Ramaré and Rumely [33]) :

Theorem 1.9. Let q and a be integers with 1 ≤ q ≤ 105 and gcd(a, q) = 1, and
suppose that x ≤ x2(q), where

x2(q) =



1012 if q = 1

x2(q/2), if q ≡ 2 (mod 4)
4 · 1013, if q ∈ {3, 4, 5},
1013, if 5 < q ≤ 100, q 6≡ 2 (mod 4)
1012, if 100 < q ≤ 104, q 6≡ 2 (mod 4)
1011, if 104 < q ≤ 105, q 6≡ 2 (mod 4).

(1.18)

We have

max
1≤y≤x

∣∣∣∣ψ(y; q, a)− y

ϕ(q)

∣∣∣∣ ≤ 1.745
√
x,

max
1≤y≤x

∣∣∣∣θ(y; q, a)− y

ϕ(q)

∣∣∣∣ ≤ 2.072
√
x

and

max
1≤y≤x

∣∣∣∣π(y; q, a)− Li(y)

ϕ(q)

∣∣∣∣ ≤ 2.734

√
x

log x
.

It is worth observing that the bounds here may be sharpened for (most) individual
moduli q (the extremal cases for each function correspond to q = 2). We provide
such bounds and links to related data for moduli 3 ≤ q ≤ 105 in Appendix A.3.

The outline of the paper is as follows. In Section 2, we derive an explicit upper
bound for |ψ(x; q, a)− x/ϕ(q)|, valid for the “small” moduli 3 ≤ q ≤ 105. In Sec-
tion 4, this bound is carefully refined into a form which is suitable for explicit calcu-
lation; we establish Theorem 1.1 for these small moduli at the end of Section 4.4. In
Section 5, we move from bounds for approximating ψ(x; q, a) to analogous bounds
for θ(x; q, a) and π(x; q, a). In particular, we establish Theorem 1.2 for these mod-
uli at the end of Section 5.1, and Theorems 1.3–1.5 for small moduli (as well as
Corollary 1.6) in Section 5.2.

Section 6 contains upper bounds for |ψ(x; q, a)− x/ϕ(q)|, |θ(x; q, a)− x/ϕ(q)|,
and |π(x; q, a)−Li(x)/ϕ(q)| for larger moduli q > 105. We establish Theorems 1.1
and 1.2 for these large moduli in Section 6.3 (see the remark before Corollary 6.17),
and Theorem 1.3 for these moduli in Section 6.4. Indeed, in those sections, we
also deduce a number of explicit results with stronger error terms (saving greater
powers of log x), as well as analogous results for an improved range of x that hold
under the assumption that there are no exceptional zeros for the relevant Dirichlet L-
functions. Finally, in Appendix A, we provide details for our explicit computations,
with links to files containing all our data. We provide a summary of the notation
defined throughout the paper in Appendix B.
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Before we proceed, a few remarks on our methods are in order. The error terms
(1.3) depend fundamentally upon the distribution of the zeros of the Riemann zeta
function, as evidenced by von Mangoldt’s formula:

lim
ε→0

ψ(x− ε) + ψ(x+ ε)

2
= x−

∑
ρ

xρ

ρ
− log 2π +

1

2
log

(
1− 1

x2

)
,

where the sum is over the zeros ρ of the Riemann zeta function in the critical strip, in
order of increasing |Im ρ|. Deriving good approximations for ψ(x; q, a), θ(x; q, a),
and π(x; q, a) depends in a similar fashion upon understanding the distribution of
the zeros of Dirichlet L-functions. Note that, as is traditional in this subject, our
approach takes as a starting point von Mangoldt’s formula, and hence we are led to
initially derive bounds for ψ(x; q, a), from which our estimates for θ(x; q, a) and
π(x; q, a) follow. The fundamental arguments providing the connection between ze-
ros of Dirichlet L-functions and explicit bounds for error terms in prime counting
functions derive from classic work of Rosser and Schoenfeld [35], as extended by
McCurley [21], and subsequently by Ramaré and Rumely [33] and Dusart [6]. The
main ingredients involved include explicit zero-free regions for DirichletL-functions
by Kadiri [17] and McCurley [23], explicit estimates for the zero-counting function
for Dirichlet L-functions by Trudgian [42], and the results of large-scale compu-
tations of Platt [31], all of which we cite from the literature. Other necessary re-
sults include lower bounds for L(1, χ) for quadratic characters χ, upper bounds for
exceptional zeros of L-functions with associated character χ, and explicit inequali-
ties for b(χ), the constant term in the Laurent expansion of L′

L (s, χ) at s = 0 (see
Definition 6.6 below). In each of these cases, our results sharpen existing explicit
inequalities and thus might be of independent interest:

Proposition 1.10. If χ is a primitive quadratic character with conductor q > 6677,

then L(1, χ) >
12
√
q

.

Proposition 1.11. Let q ≥ 3 be an integer, and let χ be a quadratic character
modulo q. If β > 0 is a real number for which L(β, χ) = 0, then

β ≤ 1− 40
√
q log2 q

.

Proposition 1.12. Let q ≥ 105 be an integer, and let χ be a Dirichlet character
(mod q). Then |b(χ)| ≤ 0.2515q log q.

Proposition 1.10 is established in Section A.10. For larger values of q, we can
improve on Proposition 1.10 by a little more than a factor of 10; see Lemma 1.10 for
a more precise statement. Propositions 1.11 and 1.12 are established in Sections 6.1
and 6.2, respectively. We also remark that under the assumption that L(s, χ) has
no exceptional zero, our proof would yield a substantially stronger explicit bound of
the shape C

√
q log q; however, such an improvement is immaterial to our eventual
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applications. Notice that the conclusion of Proposition 1.12 holds for both primitive
and imprimitive characters χ.

Throughout our work, we have made every effort to avoid specifying many of our
“free” parameters, such as a constant R that defines the size of a zero-free region
for Dirichlet L-functions (even though, at the end of the day, we do make specific
choices of these parameters). The reason for this is to make it easy to sharpen our
bounds in the future when one has available stronger zero-free regions (and more
computational power). The constants present in, for example, Theorem 1.1, decrease
roughly as a linear function in R. We have chosen to split our “small q” and “large
q” results at the modulus q = 105 (even though Platt’s calculations extend through
the modulus 4 · 105) partially due to limitations of computational time and partially
because it is a convenient round number.

2. PREPARATION OF THE UPPER BOUND FOR |ψ(x; q, a)− x/ϕ(q)|, FOR q ≤ 105

In this section, we will derive our initial upper bound upon |ψ(x; q, a)− x/ϕ(q)|
for “small” moduli q, that is, for q ≤ 105. This bound (given as Proposition
2.20) will turn out to be independent of x except for a single complicated function
Fχ,m,R(x;H2), defined in Definition 3.2, multiplied by various powers of log x. Our
starting point is an existing version of the classical explicit formula for ψ(x; q, a) in
terms of zeros of Dirichlet L-functions; by the end of this section, all dependence
on the real parts of these zeros will be removed, and the dependence on their imag-
inary parts will be confined to the single function Fχ,m,R(x;H2). In this (and, in-
deed, in subsequent) sections, our operating paradigm is that any function that can
be easily programmed, and whose values can be calculated to arbitrary precision in
a negligible amount of time, is suitable for our purposes, even when there remains a
layer of notational complexity that we would find difficult to work with analytically.
Of course, our choices when we do eventually optimize these various functions are
guided by our heuristics (and hindsight) about which pieces of our upper bounds are
most significant in the end.

Along the way, we will use as input existing explicit bounds for the number of
zeros of N(T, χ) (see Proposition 2.5 below), and we will derive an explicit upper
bound, contingent on GRH(1), for the sum of 1/

√
β2 + γ2 over all zeros β + iγ of

a given Dirichlet L-function (see Lemma 2.11). We mention also that the explicit
formula we use contains a parameter δ that can be chosen to be constant to obtain
bounds of Chebyshev-type. However, we must choose δ to be a function of x that
decreases to 0 in order to obtain our bounds of de la Vallée Poussin-type; we make
that choice of δ in displayed equation (2.19) (and motivate our choice in the remarks
following that equation).

We pause to clarify some terminology and notation. Throughout this paper, q will
be a positive integer (we will usually assume that q ≥ 3), and a will be a positive
integer that is relatively prime to q. There are ϕ(q) Dirichlet characters with modulus
q; when we use “modulus” or “ (mod q)” in this way, we always allow both primitive
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and imprimitive characters. On the other hand, the conductor of a character is the
modulus of the primitive character that induces it, so that the same character can
simultaneously have modulus q and conductor d < q. For a Dirichlet character
χ (mod q), the symbol q∗ always denotes the conductor of χ, and χ∗ denotes the
primitive character (mod q∗) that induces χ.

For any Dirichlet character χ (mod q), the Dirichlet L-function is defined as usual
by

L(s, χ) =

∞∑
n=1

χ(n)

ns
(2.1)

when <s > 1, and by analytic continuation for other complex numbers s. We adopt
the usual convention of letting ρ = β + iγ denote a zero of L(s, χ), so that β = <ρ
and γ = =ρ by definition; and we define

Z(χ) = {ρ ∈ C : 0 < β < 1, L(ρ, χ) = 0} (2.2)

to be the set of zeros of L(s, χ) inside the critical strip (technically a multiset, since
multiple zeros, if any, are included according to their multiplicity). Notice in partic-
ular that the set Z(χ) does not include any zeros on the imaginary axis, even when
χ is an imprimitive character; consequently, if χ is induced by another character χ∗,
then Z(χ) = Z(χ∗).

We recall, by symmetry and the functional equation for DirichletL-functions, that
if ρ = β+ iγ ∈ Z(χ) then also 1− ρ̄ = 1−β+ iγ ∈ Z(χ). Finally, we say such an
L-function satisfies GRH(H), the generalized Riemann hypothesis up to height H ,
if

β + iγ ∈ Z(χ) and |γ| ≤ H =⇒ β =
1

2
.

2.1. Previous work based on the explicit formula. We quote the following propo-
sition from Ramaré–Rumely [33, Theorem 4.3.1, p. 415]. The proposition, which
also appears in Dusart’s work [6, Theorem 2, pp. 1139–40], is a modification of Mc-
Curley’s arguments [21, Theorem 3.6] that themselves hearken back to Rosser [34].

Proposition 2.1. Let q be a positive integer, and let a be an integer that is coprime
to q. Let x > 2 and H ≥ 1 be real numbers, let m be a positive integer, and let δ
be a real number satisfying 0 < δ < x−2

mx . Suppose that every Dirichlet L-function
with modulus q satisfies GRH(1). Then

ϕ(q)

x

∣∣∣∣ψ(x; q, a)− x

ϕ(q)

∣∣∣∣ < Uq,m(x; δ,H) +
mδ

2
+ Vq,m(x; δ,H) +Wq(x), (2.3)
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where we define

Am(δ) =
1

δm

m∑
j=0

(
m

j

)
(1 + jδ)m+1 (2.4)

Uq,m(x; δ,H) = Am(δ)
∑

χ (mod q)

∑
ρ∈Z(χ)
|γ|>H

xβ−1

|ρ(ρ+ 1) · · · (ρ+m)|
(2.5)

Vq,m(x; δ,H) =
(

1 +
mδ

2

) ∑
χ (mod q)

∑
ρ∈Z(χ)
|γ|≤H

xβ−1

|ρ|
(2.6)

Wq(x) =
ϕ(q)

x

((1

2
+
∑
p|q

1

p− 1

)
log x+ 4 log q + 13.4

)
. (2.7)

To offer some context, the genesis of this upper bound is the classical explicit
formula for ψ(x; q, a), smoothed by m-fold integration over an interval near x of
length δx. The term Uq,m(x; δ,H) bounds the contribution of the large zeros to this
smoothed explicit formula (in which the factor Am(δ) arises from some combina-
torics of the multiple integration), while the term Vq,m(x; δ,H) bounds the contribu-
tion of the small zeros. The term mδ

2 arises when recovering the original difference
ψ(x; q, a)− x/ϕ(q) from its smoothed version. Finally, Ramaré–Rumely work only
with primitive characters, in contrast to McCurley, to avoid the zeros of L(s, χ) on
the imaginary axis (see [33, p. 399], although their remark on [33, p. 414] is easy to
misconstrue). This choice, which we follow (as evidenced by the definition of Z(χ)
in equation (2.2)), simplifies the analytic arguments but results in a mild error on the
prime-counting side, which is bounded by Wq(x). In practice, we will be choosing δ
so that the first term Uq,m(x; δ,H) is almost exactly δ

2 ; for most moduli q, that term
together with the quantity mδ

2 will provide the dominant contribution to our eventual
upper bound. For very small moduli q, however, it is the term Vq,m(x; δ,H) that
provides the dominant contribution.

We remark that the aforementioned work of Kadiri and Lumley [19] incorpo-
rates a different smoothing mechanism that is inherently more flexible than simple
repeated integration; such an approach would be a promising avenue for possible
sharpening of our results.

In this upper bound, which is a function of x for any given modulus q, the pa-
rameters m, δ, and H are at our disposal to choose. We will, in each case, choose
H ≤ 108/q, so that every Dirichlet L-function with modulus q satisfies GRH(H) by
Platt’s computations [31]; this choice allows for a strong bound for Vq,m(x; δ,H).
Without some choice of δ that tended to 0 as x tends to infinity, it would be impos-
sible to achieve a de la Vallée Poussin-type bound, because of the term mδ

2 in the
upper bound; our choice, as it turns out, will be a specific function of x and the other
parameters which decays roughly like exp(−c

√
log x) for large x. Finally, after the
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bulk of the work done to estimate the above upper bound, we will compute the re-
sulting expression for various integer values of m and select the minimal such value.
It will turn out that we always choose m ∈ {6, 7, 8, 9}, for q ≤ 105, although we
have no theoretical explanation for how we could have predicted these choices to be
optimal in practice.

2.2. Some useful facts about the zeros of L-functions. The quantities defined in
equations (2.5) and (2.6) are both sums over zeros of Dirichlet L-functions, and we
will require some knowledge of the distribution of those zeros. That information is
essentially all classical, except that of course we require explicit constants in every
estimate, and we can also take advantage of much more extensive modern computa-
tions. Specifically, we draw information from three sources: Trudgian’s work on the
zeros of the Riemann ζ-function and Dirichlet L-functions with explicit constants,
Platt’s computations of many zeros of Dirichlet L-functions, and direct computation
using Rubinstein’s lcalc program [37].

Definition 2.2. We write N(T, χ) for the standard counting function for zeros of
L(s, χ) with 0 < β < 1 and |γ| ≤ T . In other words,

N(T, χ) = #{ρ ∈ Z(χ) : |γ| ≤ T},

counted with multiplicity if there are any multiple zeros.

We turn now to explicit bounds for the zero-counting functions N(T, χ), begin-
ning with a bound when χ is the principal character.

Proposition 2.3. Let χ0 be the principal character for any modulus q. If T > e,
then ∣∣∣∣N(T, χ0)−

(
T

π
log

T

2πe
+

7

4

)∣∣∣∣ < 0.34 log T + 3.996 +
25

24πT
. (2.8)

Proof. We adopt the standard notation N(T ) for the number of zeros of ζ(s) in
the critical strip whose imaginary part lies between 0 and T , as well as S(T ) =
1
π arg ζ( 1

2 + iT ) for the normalized argument of the zeta-function on the critical
line. Trudgian [40, Theorem 1] gives the explicit estimate

|S(T )| ≤ 0.17 log T + 1.998, (2.9)

valid for T > e. It is well known that the error term in the asymptotic formula for
N(T ) is essentially controlled by S(T ); for an explicit version of this relationship,
Trudgian [41, equation (2.5)] gives∣∣∣∣N(T )−

(
T

2π
log

T

2πe
+

7

8

)∣∣∣∣ ≤ 1

4π
arctan

1

2T
+
T

4π
log

(
1+

1

4T 2

)
+

1

3πT
+|S(T )|

for T ≥ 1. In our notation, N(T, χ0) is exactly equal to 2N(T ) (since the former
counts zeros lying both above and below the imaginary axis). Using the inequalities
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arctan y ≤ y and log(1 + y) ≤ y which are valid for y ≥ 0, it follows from (2.9)
that the quantity on the left-hand-side of inequality (2.8) is bounded above by twice

1

4π
arctan

1

2T
+

T

4π
log

(
1 +

1

4T 2

)
+

1

3πT
+ 0.17 log T + 1.998

and hence∣∣∣∣N(T, χ0)−
(
T

π
log

T

2πe
+

7

4

)∣∣∣∣ ≤ 2

(
1

4π

1

2T
+
T

4π

1

4T 2
+

1

3πT
+0.17 log T+1.998

)
,

which is equivalent to the asserted bound. �

Definition 2.4. Set C1 = 0.399 and C2 = 5.338.

Proposition 2.5. Let χ be a character with conductor q∗. If T ≥ 1, then∣∣∣∣N(T, χ)− T

π
log

q∗T

2πe

∣∣∣∣ < C1 log(q∗T ) + C2. (2.10)

Proof. If χ is nonprincipal, this follows immediately from Trudgian [42, Theorem
1] (which sharpens McCurley [21, Theorem 2.1]). For χ principal, we have q∗ = 1
and the desired inequality is implied by Proposition 2.3, provided T ≥ 1014. For
1 ≤ T ≤ 1014, we may verify the bound computationally (see Appendix A.1),
completing the proof. �

It is worth mentioning that the main result of [42] contains a number of inequali-
ties like equation (2.10), with various values for C1 and C2. The one we have quoted
here is the best for small values of q∗T , but could be improved for larger q∗T ; the
end result of such a modification to our proof is negligible.

Definition 2.6. We define

h3(d) =

{
30,610,046,000, if d = 1,

108/d, if 1 < d ≤ 105.

Platt [31] has verified computationally that every Dirichlet L-function with con-
ductor q∗ ≤ 4 · 105 satisfies GRH(108/q∗) (see [29] for more details of these com-
putations). Platt [30] has also checked that ζ(s) satisfies GRH(30,610,046,000),
confirming unpublished work of Gourdon [12]. Therefore,

Proposition 2.7 (Platt). Let χ be a character with conductor d ≤ 105. If ρ = β+ iγ
is a zero of L(s, χ) and |γ| ≤ h3(d), then β = 1/2.

2.3. Upper bounds for Vq,m(x; δ,H), exploiting verification of GRH up to
bounded height. We begin by a standard partial summation argument relating the
inner sum in Vq,m(x; δ,H) to the zero-counting functionN(T, χ); we state our result
in a form that has some flexibility built in.
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Definition 2.8. Let d and t be positive real numbers. We set

Θ(d, t) =
1

2π
log2

(
dt

2πe

)
− C1 log(edt) + C2

t
,

which is a convenient antiderivative of the upper bound implicit in Proposition 2.5:

∂

∂t
Θ(d, t) =

1

t2

(
t

π
log

dt

2πe
+ C1 log dt+ C2

)
.

Definition 2.9. Let ϕ∗(d) denote the number of primitive characters with modulus d.
Thus,

∑
d|q ϕ

∗(d) = ϕ(q), and we have the exact formula (see [16, page 46])

ϕ∗(d) = d
∏
p‖d

(
1− 2

p

)∏
p2|d

(
1− 1

p

)2

.

Definition 2.10. Suppose that χ is a character with conductor q∗. For H0 ≥ 1, we
define

ν1(χ,H0) = −Θ(q∗, H0)− N(H0, χ)

H0
+

∑
ρ∈Z(χ∗)
|γ|≤H0

1√
γ2 + 1/4

,

while for 0 ≤ H0 < 1 we define

ν1(χ,H0) = −Θ(q∗, 1) +
∑

ρ∈Z(χ∗)
|γ|≤H0

1√
γ2 + 1/4

+

(
1√

H2
0 + 1/4

− 1

)⌊
1

π
log

q∗

2πe
+ C1 log q∗ + C2

⌋
− N(H0, χ)√

H2
0 + 1/4

.

We further define, for each positive integer q and each function H0 from the set of
Dirichlet characters (mod q) to the nonnegative real numbers, the functions

ν2(q,H0) =
∑

χ (mod q)

ν1(χ,H0(χ)),

ν3(q,H) = −ϕ(q)
( 1

2π
+
C1

H

)
+

1

2π

∑
d|q

ϕ∗(d) log2
(dH

2π

)

and set

ν(q,H0, H) = ν2(q,H0) + ν3(q,H).

We will limit the abuse of notation by using the function H0 involved in ν2 and ν
only to fill in the H0-arguments of the function ν1 in sums over characters.
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Lemma 2.11. Let χ be a character with conductor q∗, and let H and H0 be real
numbers satisfying H ≥ 1 and 0 ≤ H0 ≤ H . If χ satisfies GRH(max{H0, 1}), then∑

ρ∈Z(χ)
|γ|≤H

1

|ρ|
< ν1(χ,H0) +

1

2π
log2

(q∗H
2π

)
− 1

2π
− C1

H
.

Proof. Let χ∗ be the character that induces χ, so that Z(χ) = Z(χ∗). First, we
assume that 1 ≤ H0 ≤ H . If |γ| ≤ H0 then |ρ| =

√
γ2 + (1/2)2 by our assumption

of GRH(H0); on the other hand, if |γ| > H0, then we have the trivial bound |ρ| >
|γ|. As a result, ∑

ρ∈Z(χ)
|γ|≤H

1

|ρ|
≤

∑
ρ∈Z(χ∗)
|γ|≤H0

1√
γ2 + 1/4

+
∑

ρ∈Z(χ∗)
H0<|γ|≤H

1

|γ|
.

Using partial summation,∑
ρ∈Z(χ∗)
H0<|γ|≤H

1

|γ|
=

∫ H

H0

dN(T, χ∗)

T

=
N(T, χ∗)

T

∣∣∣∣H
H0

−
∫ H

H0

N(T, χ∗) d

(
1

T

)
=
N(H,χ∗)

H
− N(H0, χ

∗)

H0
+

∫ H

H0

N(T, χ∗)

T 2
dT.

We now use Proposition 2.5 and Definition 2.8:∫ H

H0

N(T, χ∗)

T 2
dT <

∫ H

H0

1

T 2

(
T

π
log

q∗T

2πe
+ C1 log q∗T + C2

)
dT

= Θ(q∗, H)−Θ(q∗, H0).

Proposition 2.5 also gives us

N(H,χ∗)

H
<

1

π
log

q∗H

2πe
+
C1 log q∗H + C2

H
,

from which it follows, with Definition 2.8, that

N(H,χ∗)

H
+ Θ(q∗, H) <

1

2π
log2

(q∗H
2π

)
− 1

2π
− C1

H
.

Combining these gives us∑
ρ∈Z(χ∗)
H0<|γ|≤H

1

|γ|
< −N(H0, χ

∗)

H0
−Θ(q∗, H0)+

1

2π
log2

(q∗H
2π

)
− 1

2π
−C1

H
, (2.11)

which, by the definition of ν1(χ,H0) for H0 ≥ 1, concludes this case.
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We now consider 0 ≤ H0 < 1. We need to bound a sum over zeros ρ = β + iγ
with |γ| ≤ H , which we break into three pieces∑

ρ∈Z(χ∗)
|γ|≤H

1

|ρ|
=

∑
ρ∈Z(χ∗)
|γ|≤H0

1

|ρ|
+

∑
ρ∈Z(χ∗)
H0<|γ|≤1

1

|ρ|
+

∑
ρ∈Z(χ∗)
1<|γ|≤H

1

|ρ|
.

The second sum on the right-hand side hasN(1, χ)−N(H0, χ) terms, each of which
is bounded by

1

|ρ|
≤ 1

|γ|
≤ 1√

H2
0 + 1/4

thanks to GRH(1). The first and third sums on the right-hand side have already been
treated in the argument above; in particular, by equation (2.11),∑

ρ∈Z(χ∗)
1<|γ|≤H

1

|ρ|
≤ −N(1, χ)−Θ(q∗, 1) +

1

2π
log2

(q∗H
2π

)
− 1

2π
− C1

H
.

Therefore∑
ρ∈Z(χ∗)
|γ|≤H

1

|ρ|
≤

∑
ρ∈Z(χ∗)
|γ|≤H0

1√
γ2 + 1/4

+
N(1, χ)−N(H0, χ)√

H2
0 + 1/4

−N(1, χ)−Θ(q∗, 1)

+
1

2π
log2

(q∗H
2π

)
− 1

2π
− C1

H
.

Now by Proposition 2.5,

N(1, χ)−N(H0, χ)√
H2

0 + 1/4
−N(1, χ) =

(
1√

H2
0 + 1/4

− 1

)
N(1, χ)− N(H0, χ)√

H2
0 + 1/4

≤

(
1√

H2
0 + 1/4

− 1

)⌊
1

π
log

q∗

2πe
+ C1 log q∗ + C2

⌋
− N(H0, χ)√

H2
0 + 1/4

,

and the proof is complete. �

Lemma 2.12. Let q and m be positive integers, and x, δ,H be real numbers satisi-
fying x > 2 and 0 < δ < x−2

mx . Let H0 be a function on the characters modulo q
satisfying 0 ≤ H0(χ) ≤ H . If every Dirichlet L-function with modulus q satisfies
GRH(H), then

Vq,m(x; δ,H) <
(

1 +
mδ

2

)ν(q,H0, H)√
x

.
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Proof. By our assumption of GRH(H), we have xβ−1 = x−1/2, and therefore by
Lemma 2.11,

Vq,m(x; δ,H) =

(
1 +

mδ

2

) ∑
χ (mod q)

∑
ρ∈Z(χ)
|γ|≤H

xβ−1

|ρ|

=
1 +mδ/2√

x

∑
χ (mod q)

∑
ρ∈Z(χ)
|γ|≤H

1

|ρ|

<
1 +mδ/2√

x

∑
χ (mod q)

(
ν1(χ,H0(χ)) +

1

2π
log2

(q∗H
2π

)
− 1

2π
− C1

H

)
.

By Definition 2.10, ∑
χ (mod q)

ν1(χ,H0(χ)) = ν2(q,H0)

and ∑
χ (mod q)

(
1

2π
log2

(q∗H
2π

)
− 1

2π
− C1

H

)
= ν3(q,H),

concluding this proof, as ν(q,H0, H) = ν2(q,H0) + ν3(q,H). �

2.4. Further estimates related to vertical distribution of zeros of Dirichlet L-
functions. We continue by defining certain elementary functions, which we shall
use when our analysis calls for upper bounds on the zero-counting functionsN(T, χ)
from the previous sections, and establishing some simple inequalities for them.

Definition 2.13. Let d, u, ` be positive real numbers satisfying 1 ≤ ` ≤ u. Define

Md(`, u) =
u

π
log

(
du

2πe

)
− `

π
log

(
d`

2πe

)
+ C1 log(d2`u) + 2C2,

so that
∂

∂u
Md(`, u) =

1

π
log

(
du

2π

)
+
C1

u
. (2.12)

Note that for fixed d and `, we have Md(`, u)� u log u.

Clearly, N(u, χ)−N(`, χ) counts the number of zeros of χ with height between
` and u. The following lemma is the reason we have introduced Md(`, u).

Lemma 2.14. Let χ be a character with conductor d, and let ` and u be real numbers
satisfying 1 ≤ ` ≤ u. Then N(u, χ)−N(`, χ) < Md(`, u).

Proof. The assertion follows immediately from subtracting the two inequalities

N(u, χ) <
u

π
log

du

2πe
+ C1 log du+ C2

N(`, χ) >
`

π
log

d`

2πe
− C1 log d`− C2,
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each of which is implied by Proposition 2.5. �

Lemma 2.15. Let d, u and ` be real numbers satisfying d ≥ 1 and 15 ≤ ` ≤ u.
Then Md(`, u) < u

π log du.

Proof. Set

ε = π
(u
π

log(du)−Md(`, u)
)

= u log(2πe)− 2C2π − C1π log(d2`u) + ` log
(
`d
2πe

)
,

so that we need to prove that ε > 0. First, we have

∂ε

∂u
= log(2πe)− C1π

u
,

∂ε

∂d
=
`

d
− 2C1π

d
,

which are positive for u > C1π/ log(2πe) ≈ 0.44 and ` > 2C1π ≈ 2.51, while by
hypothesis u ≥ ` ≥ 15. Thus, we may assume that u = ` and d = 1. We then have

ε = (`− 2C1π) log `− 2C2π,

which is clearly an increasing function of ` and is already positive at ` = 15. �

2.5. Preliminary statement of the upper bound for |ψ(x; q, a)−x/ϕ(q)|. Our
remaining goal for this section is to establish Proposition 2.20, which is an upper
bound for |ψ(x; q, a)− x/ϕ(q)| in which the dependence on x has been confined to
functions of a single type (to be defined momentarily). Building upon the work of the
previous two sections, we invoke certain hypotheses on the horizontal distribution of
the zeros of Dirichlet L-functions to estimate many of the terms in the upper bound
of Proposition 2.1. We have left these hypotheses in parametric form for much of
this paper, in order to facilitate the incorporation of future improvements; for our
present purposes, we shall be citing work of Platt and Kadiri (see Proposition 4.34)
to confirm the hypotheses for certain values of the parameters.

Definition 2.16. Let q be a positive integer, and let m, r, x, and H be positive real
numbers satisfying x ≥ 1 and H ≥ 1. Define

Υq,m(x;H) =
∑

χ (mod q)

∑
ρ∈Z(χ)
|γ|>H

xβ−1

|γ|m+1

Ψq,m,r(x;H) = Hm+1Υq,m(x;H)(log x)r.

Definition 2.17. For integers m with 3 ≤ m ≤ 25, define real numbers H1(m)
according to the following table:

m 3 4 5 6 7 8 9 ≥ 10
H1(m) 1011 391 231 168 137 120 109 102

For the values of m we will actually choose, later in this paper, we note that the
product mH1(m) is roughly constant (and somewhat less than 1000).
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Lemma 2.18. Let q and m be integers satisfying 3 ≤ q ≤ 105 and 3 ≤ m ≤ 25,
and let x and H be real numbers satisfying x ≥ 1000 and H ≥ H1(m). Then

Υq,m(x;H) <

(
x− 2

2mx

)m+1

.

Proof. Since β < 1 for every ρ = β + iγ ∈ Z(χ), we have by partial summation∑
ρ∈Z(χ)
|γ|>H

xβ−1

|γ|m+1
<

∑
ρ∈Z(χ)
|γ|>H

1

|γ|m+1

=

∫ ∞
H

d(N(u, χ)−N(H,χ))

um+1
du

=
N(u, χ)−N(H,χ)

um+1

∣∣∣∣∞
H

+ (m+ 1)

∫ ∞
H

N(u, χ)−N(H,χ)

um+2
du

= (m+ 1)

∫ ∞
H

N(u, χ)−N(H,χ)

um+2
du,

since N(u, χ) − N(H,χ) ≤ N(u, χ) � u log u. From the assumption that H ≥
100 > 15, Lemmas 2.14 and 2.15 thus imply the inequalities

N(u, χ)−N(H,χ) <
u

π
log(q∗u) ≤ u

π
log(qu)

(where q∗ is the conductor of χ), whereby

Υq,m(x;H) <
∑

χ (mod q)

m+ 1

π

∫ ∞
H

u log(qu)

um+2
du

=
ϕ(q)

Hm

m+ 1

π

m log qH + 1

m2

≤ 105

Hm

m+ 1

π

m log(102H) + 1

m2
(2.13)

<
105

100m
m+ 1

π

m log(107) + 1

m2

by monotonicity in H and q. On the other hand, monotonicity also implies that(
x− 2

2mx

)m+1

≥
(

499

1000m

)m+1

for x ≥ 1000. It therefore suffices to check that

105

400m
m+ 1

π

m log(107) + 1

m2
<

(
499

1000m

)m+1

for 11 ≤ m ≤ 25, which is a simple exercise.
For each m between 3 and 10, we carry on from line (2.13), using H ≥ H1(m),

but otherwise continuing in the same way. �
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At this point, we rewrite Proposition 2.1, with a particular choice for δ and some
other manipulations that, with foresight, are helpful.

Definition 2.19. Let m be a positive integer and δ a positive real number. We set
αm,0 = 2m and, for 1 ≤ k ≤ m+ 1,

αm,k =

(
m+ 1

k

) m∑
j=0

(
m

j

)
jk.

We note that

Am(δ) =

m+1∑
k=0

αm,kδ
k−m.

Proposition 2.20. Let q andm be integers satisfying 3 ≤ q ≤ 105 and 3 ≤ m ≤ 25,
and let a be an integer that is coprime to q. Let x, x2, and H be real numbers with
x ≥ x2 ≥ 1000 and H ≥ H1(m). Let H0 be a function on the characters modulo
q with 0 ≤ H0(χ) ≤ H for every such character. If every Dirichlet L-function with
modulus q satisfies GRH(H), then

ϕ(q)

x

∣∣∣∣ψ(x; q, a)− x

ϕ(q)

∣∣∣∣ log x

< Wq(x2) log x2 + ν(q,H0, H)
log x2√
x2

(2.14)

+
m

H
Ψq,m,m+1(x;H)

1
m+1

(
1 +

ν(q,H0, H)
√
x2

) m
m+1

(2.15)

+

m∑
k=0

αm,k
2m−kHk+1

Ψq,m,m+1
k+1

(x;H)
k+1
m+1

(
1 +

ν(q,H0, H)
√
x2

)m−k
m+1

(2.16)

+
2αm,m+1

Hm+2
Ψq,m,m+1

m+2
(x;H)

m+2
m+1 . (2.17)

We note in passing that since αm,0 = 2m, the term on line (2.15) is identical to the
k = 0 term on line (2.16) except for the factor of m on the former line. We will
combine these terms together in the analogous Definition 4.32 below.

Proof. Our starting point is Proposition 2.1: for any real number 0 < δ < x−2
mx ,

ϕ(q)

x

∣∣∣∣ψ(x; q, a)− x

ϕ(q)

∣∣∣∣ < Uq,m(x; δ,H) +
mδ

2
+ Vq,m(x; δ,H) +Wq(x),

where the notation is defined in equations (2.4)–(2.7). Since trivially∑
ρ∈Z(χ)
|γ|>H

xβ−1

|ρ(ρ+ 1) · · · (ρ+m)|
<

∑
ρ∈Z(χ)
|γ|>H

xβ−1

|γ|m+1
,
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a comparison of equation (2.5) and Definition 2.16 shows that

Uq,m(x; δ,H) < Am(δ)Υq,m(x;H).

Using Lemma 2.12 to bound Vq,m(x; δ,H), we therefore have

ϕ(q)

x

∣∣∣∣ψ(x; q, a)− x

ϕ(q)

∣∣∣∣ log x < Am(δ)Υq,m(x;H) log x+
mδ

2
log x

+

(
1 +

mδ

2

)
ν(q,H0, H)√

x
log x+Wq(x) log x,

which we rewrite as

ϕ(q)

x

∣∣∣∣ψ(x; q, a)− x

ϕ(q)

∣∣∣∣ log x < Wq(x) log x+ ν(q,H0, H)
log x√
x

+m

(
1 +

ν(q,H0, H)√
x

)
δ log x

2
+Am(δ)Υq,m(x;H) log x. (2.18)

It is easily seen from its definition (2.7) that Wq(x) log x, much like the function
(log x)2/x, is decreasing for x ≥ 1000 > e2, and the same is true for (log x)/

√
x.

Therefore

Wq(x) log x+ν(q,H0, H) log x/
√
x ≤Wq(x2) log x2+ν(q,H0, H)(log x2)/

√
x2,

which yields the terms on line (2.14).
We now set

δ = 2

(
Υq,m(x;H)

1 + ν(q,H0, H)/
√
x

) 1
m+1

. (2.19)

Our motivation for this choice is as follows. To achieve a de la Vallée Poussin-type
bound, we must choose δ tending to 0 as x increases. Since Am(δ) ∼ (2/δ)m when
δ → 0, we choose the value of δ that minimizes

m

(
1 +

ν(q,H0, H)√
x

)
δ log x

2
+

(
2

δ

)m
Υq,m(x;H) log x,

which is easily checked to be the right-hand side of equation (2.19). This value of
δ is clearly positive, and Lemma 2.18 implies that δ < x−2

mx ; hence this δ is a valid
choice. We now have

m

(
1 +

ν(q,H0, H)√
x

)
δ log x

2

= m

(
1 +

ν(q,H0, H)√
x

)(
Υq,m(x;H)

1 + ν(q,H0, H)/
√
x

) 1
m+1

log x

=
m

H

(
Hm+1Υq,m(x;H) logm+1 x

) 1
m+1

(
1 +

ν(q,H0, H)√
x

) m
m+1

=
m

H
Ψq,m,r(x;H)

1
m+1

(
1 +

ν(q,H0, H)√
x

) m
m+1
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by Definition 2.16. Certainly

1 + ν(q,H0, H)/
√
x ≤ 1 + ν(q,H0, H)/

√
x2

for x ≥ x2, and therefore the first term on line (2.18) can be bounded above by the
term on line (2.15).

Lastly, from Definition 2.19,

Am(δ)Υq,m(x;H) log x

=

(
m+1∑
k=0

αm,kδ
k−m

)
Υq,m(x;H) log x

=

m+1∑
k=0

αm,k

(
2

(
Υq,m(x;H)

1 + ν(q,H0, H)/
√
x

) 1
m+1

)k−mΥq,m(x;H) log x

=

m+1∑
k=0

αm,k
2m−k

(
Υq,m(x;H)(log x)

m+1
k+1
) k+1
m+1

(
1 +

ν(q,H0, H)√
x

)m−k
m+1

=

m+1∑
k=0

αm,k
2m−kHk+1

Ψq,m,m+1
k+1

(x;H)
k+1
m+1

(
1 +

ν(q,H0, H)√
x

)m−k
m+1

by Definition 2.16. For 0 ≤ k ≤ m, the factor (1 + ν(q,H0, H)/
√
x)

m−k
m+1 is nonin-

creasing, hence is bounded by
(
1 + ν(q,H0, H)/

√
x2
)m−k
m+1 , which accounts for the

terms on line (2.16). Finally, when k = m+1, this factor is increasing but is bounded
by 1, which accounts for the term on line (2.17), thus completing the proof. �

Of note in Proposition 2.20 is that the bound is independent of x except in the
form of the terms Ψq,m,r(x;H) for various values 4

5 ≤ r ≤ m + 1. The next two
sections are devoted to bounding functions of this form; those bounds will be inserted
into the conclusion of Proposition 2.20 at the end of Section 4, at which point we will
be able to prove Theorem 1.1 for moduli q up to 105.

3. ELIMINATION OF EXPLICIT DEPENDENCE ON ZEROS OF DIRICHLET
L-FUNCTIONS

From the work of the preceding section, it remains to establish an upper bound
for the function Ψq,m,r(x;H) that does not depend upon specific knowledge of the
zeros of a given Dirichlet L-function. To achieve this, we will appeal to a zero-free
region for such functions, together with estimates for N(T, χ).

3.1. Estimates using a zero-free region for L(s, χ).

Definition 3.1. Given positive real numbers H2 and R, we say that a character χ
with conductor q∗ satisfies Hypothesis Z(H2, R) if every nontrivial zero β + iγ of
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L(s, χ) satisfies either

|γ| ≤ H2 and β = 1
2 , or |γ| > H2 and β ≤ 1− 1

R log(q∗|γ|)
.

In other words, zeros with small imaginary part (less than H2 in absolute value)
lie on the critical line, while zeros with large imaginary part lie outside an explicit
zero-free region.

We say that a modulus q satisfies Hypothesis Z1(R) if every nontrivial zero β+iγ
of every Dirichlet L-function modulo q satisfies

β ≤ 1− 1

R log(qmax{1, |γ|})
,

except possibly for a single “exceptional” zero (which, as usual, will necessarily be a
real zero of an L-function corresponding to a quadratic character—see [25, Sections
11.1–11.2]).

Definition 3.2. Let m and d be positive integers, and let R,H,H2, x and u be pos-
itive real numbers satisfying 1 ≤ H ≤ H2. Let χ be a character with conductor q∗.
Define the functions

g
(1)
d,m(H,H2) =

H

πm2

(
(1 +m log

dH

2π
)−

(
H
H2

)m
(1 +m log

dH2

2π
)

)
+

(
2 log(dH) +

1

m+ 1

(
1−

(
H
H2

)m+1
))

C1 + 2C2

g
(2)
d,m(H,H2) =

(
H
H2

)m H

2πm2

(
1 +m log

dH2

2π

)
+
(
H
H2

)m+1
(

1

2(m+ 1)
+ log dH2

)
C1 +

(
H
H2

)m+1
C2

g
(3)
d,m,R(x;H,H2) = g

(1)
d,m(H,H2) · 1

x1/2
+ g

(2)
d,m(H,H2) · x

1/(R log dH2)

x
.

Further define

Yd,m,R(x, u) = u−(m+1)x−1/(R log du) =
1

um+1
exp

(
− log x

R log du

)
and

Fχ,m,R(x;H2) =
∑

ρ∈Z(χ)
|γ|>H2

Yq∗,m,R(x, |γ|) .

Note that all of these functions are strictly positive.

Definition 3.3. Let q and m be positive integers, let R,H, x and u be positive real
numbers with H ≥ 1, and let H2 be a function on the divisors of q satisfying 1 ≤



DRAFT

EXPLICIT BOUNDS FOR PRIMES IN ARITHMETIC PROGRESSIONS 25

H ≤ H2(d) for d | q. Define

Fd,m,R(x;H2) = Hm+1
∑

χ (mod q)
q∗=d

Fχ,m,R(x;H2(d))

and

Gq,m,R(x;H,H2) =
∑

χ (mod q)

(
g
(3)
q∗,m,R(x;H,H2(q∗)) +

Hm+1

2
Fχ,m,R(x;H2(q∗))

)

=
∑
d|q

(
ϕ∗(d)g

(3)
d,m,R(x;H,H2(d)) +

1

2
Fd,m,R(x;H2(d))

)
.

As before, we will use the function H2 involved in Fd,m,R and Gq,m,R only to fill in
the H2-arguments of the functions defined earlier in this section.

Lemma 3.4. Let q and m be positive integers. Let x,H and R be real numbers
satisfying x > 1 and H ≥ 1, and let H2 be a function on the divisors of q satisfying
H ≤ H2(d) for d | q. Suppose that every character χ with modulus q satisfies
Hypothesis Z(H2(q∗), R), where q∗ is the conductor of χ. Then

Hm+1Υq,m(x;H) < Gq,m,R(x;H,H2) .

Proof. Note that it suffices, for a fixed character χ with conductor d, to establish the
upper bound

∑
ρ∈Z(χ)
|γ|>H

xβ−1

|γ|m+1
<
g
(3)
d,m,R(x;H,H2(d))

Hm+1
+

1

2
Fχ,m,R(x;H2(d)) , (3.1)

since multiplying by Hm+1 and summing this bound over all characters modulo q
yields the statement of the proposition, by comparison to Definition 3.3. We begin
by using Hypothesis Z(H2(d), R) to write

∑
ρ∈Z(χ)
|γ|>H

xβ−1

|γ|m+1
=

1√
x

∑
ρ∈Z(χ)

H<|γ|≤H2(d)

1

|γ|m+1
+

1

x

∑
ρ∈Z(χ)
|γ|>H2(d)

xβ

|γ|m+1
. (3.2)
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By partial summation, integration by parts, and Lemma 2.14, we find that∑
ρ∈Z(χ)

H<|γ|≤H2(d)

1

|γ|m+1

=

∫ H2(d)

H

d(N(t, χ)−N(H,χ))

tm+1

=
N(H2(d), χ)−N(H,χ)

H2(d)m+1
+ (m+ 1)

∫ H2(d)

H

N(t, χ)−N(H,χ)

tm+2
dt

<
Md(H,H2(d))

H2(d)m+1
+ (m+ 1)

∫ H2(d)

H

Md(H, t)

tm+2
dt

=
g
(1)
d,m(H,H2(d))

Hm+1
, (3.3)

where the last equality follows from Definitions 2.13 and 3.2 and tedious but straight-
forward calculus.

We now turn to the zeros with height above H2(d), making use of the fact that
β + iγ is a nontrivial zero of L(s, χ) if and only if 1− β + iγ is such a zero, by the
functional equation. Consequently,∑

ρ∈Z(χ)
|γ|>H2(d)

xβ

|γ|m+1
=

1

2

( ∑
ρ∈Z(χ)
|γ|>H2(d)

xβ

|γ|m+1
+

∑
ρ∈Z(χ)
|γ|>H2(d)

x1−β

|γ|m+1

)

=
1

2

∑
ρ∈Z(χ)
|γ|>H2(d)

xβ + x1−β

|γ|m+1
,

since the two sums inside the parentheses are equal to each other. For a fixed x > 1,
the function xβ + x1−β increases as β moves away from 1

2 in either direction; and
by Hypothesis Z(H2(d), R),

1

R log d|γ|
≤ min{β, 1− β} ≤ max{β, 1− β} ≤ 1− 1

R log d|γ|
.

Therefore,

1

2

∑
ρ∈Z(χ)
|γ|>H2(d)

xβ + x1−β

|γ|m+1
≤ 1

2

∑
ρ∈Z(χ)
|γ|>H2(d)

x1/(R log d|γ|) + x1−1/(R log d|γ|)

|γ|m+1

=
x1/(R log dH2(d))

2

∑
ρ∈Z(χ)
|γ|>H2(d)

1

|γ|m+1
+
x

2
Fχ,m,R(x;H2(d)) .
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Again by partial summation and some tedious calculus,

1

2

∑
ρ∈Z(χ)
|γ|>H2(d)

1

|γ|m+1
<
m+ 1

2

∫ ∞
H2(d)

Md(H2(d), t)

tm+2
dt =

g
(2)
d,m(H,H2(d))

Hm+1
,

from which we conclude that

1

x

∑
ρ∈Z(χ)
|γ|>H2(d)

xβ

|γ|m+1
<
x1/(R log dH2(d))

x

g
(2)
d,m(H,H2(d))

Hm+1
+

1

2
Fχ,m,R(x;H2(d)) .

Combining this upper bound with equation (3.2) and inequality (3.3) establishes in-
equality (3.1), thanks to Definition 3.2, and thus completes the proof of the lemma.

�

To turn Proposition 2.20 into something amenable to computation, in light of
Lemma 3.4, we are left with the problem of deriving an absolute upper bound for the
quantity

Ψq,m,r(x;H) = Hm+1Υq,m(x;H)(log x)r

for various positive r; we will eventually obtain this in Proposition 4.31. As

g
(3)
d,m,R(x;H,H2(d)) = O(1/

√
x),

it is an easy matter to majorize g(3)(log x)r for any r. The problem that remains,
therefore, is to deduce a bound upon

Fχ,m,R(x;H2) (log x)r,

for various r. Our bounds for this function consist of several pieces, each of which
can be optimized using calculus; we simply add the individual maxima together
to deduce a uniform upper bound for Fχ,m,R(x;H2) (log x)r. That optimization,
however, can only take place once we have provided bounds of a simpler form for
these pieces.

3.2. Conversion to integrals involving bounds forN(T, χ). As we see in Defini-
tion 3.2, the function Fχ,m,R(x;H2) still depends on the vertical distribution of zeros
of Dirichlet L-functions (mod q). A standard partial summation argument, combined
with the bounds on N(T, χ) we established in Section 2.4, allows us to remove that
dependence on zeros of L-functions in favor of more elementary functions.

Definition 3.5. Let d and m be positive integers, and suppose that R > 0, x ≥ 1
and H2 ≥ 1 are real numbers. Define

H
(1)
d,m,R(x) =

1

d
exp

(√
log x

R(m+ 1)

)
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and

H
(2)
d,m,R(x;H2) = max{H2, H

(1)
d,m,R(x)}

=

{
H2, if 1 ≤ x ≤ exp

(
R(m+ 1) log2(dH2)

)
,

H
(1)
d,m,R(x) , if x ≥ exp

(
R(m+ 1) log2(dH2)

)
.

Straightforward calculus demonstrates that the function Yd,m,R(x, u) from Defini-
tion 3.2 is, as a function of u, increasing for 1/q < u < H

(1)
d,m,R(x) and decreasing

for u > H
(1)
d,m,R(x),

Proposition 3.6. Let m and d be positive integers, let H , H2, and R be positive
real numbers satisfying 1 ≤ H ≤ H2, and let χ be a character with conductor d
satisfying Hypothesis Z(H2, R). Then

Fχ,m,R(x;H2) ≤Md(H2, H
(2)
d,m,R(x;H2))Yd,m,R

(
x,H

(2)
d,m,R(x;H2)

)
+

∫ ∞
H2

(
∂

∂u
Md(H2, u)

)
Yd,m,R(x, u) du, (3.4)

where Fχ,m,R(x;H2) and Yd,m,R(x, u) are as in Definition 3.2 and Md(`, u) is as
in Definition 2.13.

Proof. For this proof, write Y (u) for Yd,m,R(x, u) and H(2) for H(2)
d,m,R(x;H2).

Then, from Definition 3.2 and integration by parts,

Fχ,m,R(x;H2) =

∫ ∞
H2

Y (u) d (N(u, χ)−N(H2, χ))

= lim
u→∞

(N(u, χ)−N(H2, χ))Y (u)− (N(H2, χ)−N(H2, χ))Y (H2)

−
∫ ∞
H2

(N(u, χ)−N(H2, χ))Y ′(u) du

=

∫ ∞
H2

(N(u, χ)−N(H2, χ)) (−Y ′(u)) du,

where the limit equals 0 because

N(u, χ)−N(H2, χ) < Md(H2, u)� u log u,

by Lemmas 2.14 and 2.15, while Y (u) < u−m−1 ≤ u−2. By the remarks in Def-
inition 3.5, the −Y ′(u) factor is negative when u < H

(1)
d,m,R(x) and positive when

u > H
(1)
d,m,R(x). Therefore, by Lemma 2.14,

Fχ,m,R(x;H2) <

∫ ∞
H(2)

(N(u, χ)−N(H,χ)) (−Y ′(u)) du

<

∫ ∞
H(2)

Md(H2, u)(−Y ′(u)) du.
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Via integration by parts, this last quantity is equal to

− lim
u→∞

Md(H2, u)Y (u) +Md(H2, H
(2))Y (H(2)) +

∫ ∞

H(2)

(
∂

∂u
Md(H2, u)

)
Y (u) du.

The limit here again equals 0, yielding

Fχ,m,R(x;H2) ≤Md(H2, H
(2))Y (H(2)) +

∫ ∞
H(2)

(
∂

∂u
Md(H2, u)

)
Y (u) du.

Since this last integrand is positive, we may extend the lower limit of integration
from H(2) down to H2 and still have a valid upper bound. �

The remainder of this section is devoted to finding an upper bound for the bound-
ary term in equation (3.4). Other than dealing with two cases depending on the size
of x relative to H , this optimization is simply a matter of calculus and notation.

Definition 3.7. Let d and m be positive integers, and let x, r,H,H2 and R be real
numbers satisfying x > 1, 1

4 < r ≤ m+ 1, and x > 1. We define the functions

B
(1)
d,m,R(x; r,H2) = Md(H2, H2) · Yd,m,R(x,H2) (log x)r

= 2 (C1 log(dH2) + C2) · 1

Hm+1
2

exp

(
− log x

R log(dH2)

)
(log x)r,

B
(2)
d,m,R(x; r) =

dm

π

(
logr+1/2 x√
R(m+ 1)

)
exp

(
− 2m+ 1√

R(m+ 1)

√
log x

)
and

Bd,m,R(r,H,H2) =
(
H
H2

)m+1
Rr(log dH2)r

×max

{
Md(H2, H2)

(
r

e

)r
,

(m+ 1)r logr+1(dH2)

πdm+1Hm
2

}
.

Proposition 3.8. Let d and m be positive integers, and let x, r, H and H2 be real
numbers satisfying 15 ≤ H ≤ H2 and 1

4 < r ≤ m+ 1. If

0 < log x ≤ R(m+ 1) log2(dH2),

then

Md(H,H
(2)
d,m,R(x;H2))Yd,m,R

(
x,H

(2)
d,m,R(x;H2)

)
(log x)r = B

(1)
d,m,R(x; r,H2) ,

(3.5)
while if log x > R(m+ 1) log2(dH2), then

Md(H,H
(2)
d,m,R(x;H2))Yd,m,R

(
x,H

(2)
d,m,R(x;H2)

)
(log x)r < B

(2)
d,m,R(x; r) .

(3.6)
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Proof. When 0 < log x ≤ R(m+1) log2(dH2), we haveH(2)
d,m,R(x;H2) = H2 and

so equation (3.5) follows.
On the other hand, when log x ≥ R(m+ 1) log2(dH2), we have

H
(2)
d,m,R(x;H2) = H

(1)
d,m,R(x) ≥ H2 ≥ 15,

and so by Lemma 2.15,

Md(H,H
(2)
d,m,R(x;H2)) <

H
(1)
d,m,R(x)

π
log
(
dH

(1)
d,m,R(x)

)
=

1

πd

√
log x

R(m+ 1)
· exp

(√
log x

R(m+ 1)

)
and

Yd,m,R

(
x,H

(2)
d,m,R(x;H2)

)
=

1

(H
(1)
d,m,R(x))m+1

· exp

(
− log x

R log(dH
(1)
d,m,R(x))

)

= dm+1 exp

(
−
√

(m+ 1) log x

R

)
· exp

(
−
√

(m+ 1) log x

R

)
= dm+1 exp

(
−2

√
(m+ 1) log x

R

)
.

Therefore, as 2
√

m+1
R −

√
1

R(m+1) = 2m+1√
R(m+1)

, we have

Md(H,H
(2)
d,m,R(x;H2))Yd,m,R

(
x,H

(2)
d,m,R(x;H2)

)
(log x)r

<
dm

π

(√
log x

R(m+ 1)

)
exp

(
− 2m+ 1√

R(m+ 1)

√
log x

)
(log x)r = B

(2)
d,m,R(x; r) .

�

Lemma 3.9. Let c1, c2, λ, and µ be positive real numbers, and define

Φ(u; c1, c2, λ, µ) = c1 exp(−c2 logλ u) logµ u.

Then Φ(u; c1, c2, λ, µ), as a function of u, is increasing for 1 < u < u0 and decreas-
ing for u > u0, where

u0 = exp
(
( µ
λc2

)1/λ
)
.

In particular, Φ(u; c1, c2, λ, µ) ≤ Φ(u0; c1, c2, λ, µ) = c1
(

µ
eλc2

)µ/λ
for all u ≥ 1.

Proof. This is a straightforward calculus exercise. �

Lemma 3.10. Let d and m be positive integers, and let u, µ, H , H2, and R be
positive real numbers satisfying u > 1, µ ≤ m + 1, and 15 ≤ H ≤ H2. Then with
B(1), B(2), and B as in Definition 3.7, we have the following inequalities:

(i) Hm+1B
(1)
d,m,R(u;µ,H2) ≤ Bd,m,R(µ,H,H2);
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(ii) If log u ≥ R(m+ 1) log2(dH2), then

Hm+1B
(2)
d,m,R(u;µ) ≤ Bd,m,R(µ,H,H2) .

Proof. Using the notation and final conclusion of Lemma 3.9, we find that

Hm+1B
(1)
d,m,R(u;µ,H2) = Φ

(
u;Hm+1 · Md(H2, H2)

Hm+1
2

,
1

R log(dH2)
, 1, µ

)
≤ Hm+1 · Md(H2, H2)

Hm+1
2

(
µR log(dH2)

e

)µ
=
(
H
H2

)m+1
Rµ(log dH2)µ ·Md(H2, H2)

(
µ
e

)µ
≤ Bd,m,R(µ,H,H2) ,

which establishes claim (i).
Next, observe that

Hm+1B
(2)
d,m,R(u;µ) = Φ

(
u;

Hm+1dm

π
√
R(m+ 1)

,
2m+ 1√
R(m+ 1)

,
1

2
, µ+

1

2

)
, (3.7)

which by Lemma 3.9 is decreasing for

u > exp

((
µ+ 1/2

1
2 ·

2m+1√
R(m+1)

)1/(1/2))
= exp

(
R(m+ 1)

(
2µ+ 1

2m+ 1

)2)
.

As log(dH2) ≥ log 15 > 5
3 ≥

2µ+1
2m+1 under the hypotheses of this lemma, we know

by the hypothesis of claim (ii) that log u > R(m + 1)
(
2µ+1
2m+1

)2
. It follows that the

right-hand side of equation (3.7) is indeed decreasing. Therefore,

Hm+1B
(2)
d,m,R(u;µ)

≤ Φ

(
exp

(
R(m+ 1) log2(dH2)

)
;

Hm+1dm

π
√
R(m+ 1)

,
2m+ 1√
R(m+ 1)

,
1

2
, µ+

1

2

)

=
Hm+1

πdm+1H2m+1
2

Rµ(m+ 1)µ log2µ+1(dH2)

=
(
H
H2

)m+1
Rµ(log dH2)µ · (m+ 1)µ logµ+1(dH2)

πdm+1Hm
2

≤ Bd,m,R(µ,H,H2) ,

as claimed. �

We have thus bounded the first term on the right-hand side of equation (3.4); it
remains to treat the second term∫ ∞

H2

(
∂

∂u
Md(H2, u)

)
Yd,m,R(x, u) du, (3.8)

which is the subject of Section 4.
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4. OPTIMIZATION OF THE UPPER BOUND FOR |ψ(x; q, a)− x/ϕ(q)|, FOR
q ≤ 105

4.1. Estimation of integrals using incomplete modified Bessel functions. We fol-
low the strategy of previous work on explicit error bounds for prime counting func-
tions, going back to Rosser and Schoenfeld [36], of bounding integrals with the form
given in equation (3.8). After some well-chosen changes of variables, we use two
Taylor approximations of algebraic functions to construct a bounding integral whose
antiderivative we can write down explicitly.

Definition 4.1. Given positive real numbers n,m,α, β, `, define an incomplete mod-
ified Bessel function of the first kind as

In,m(α, β; `) =

∫ ∞
`

(log βu)n−1

um+1
exp

(
− α

log βu

)
du.

Proposition 4.2. Let d and m be positive integers, and let x,H2, R be positive real
numbers. Then∫ ∞

H2

(
∂

∂u
Md(H2, u)

)
Yd,m,R(x, u) du

≤ 1

π
I2,m

(
log x

R
, q;H2

)
+

(
1

π
log

1

2π
+
C1

H2

)
I1,m

(
log x

R
, q;H2

)
.

Proof. For this proof, write Y (u) for Yd,m,R(x, u). If we put α = (log x)/R and
β = d, we see from Definition 3.2 that

Y (u) =
1

um+1
exp

(
− α

log βu

)
.

Using equation (2.12), and writing log du
2π = log βu+ log 1

2π ,∫ ∞
H2

(
∂

∂u
Md(H2, u)

)
Y (u) du

=

∫ ∞
H2

(
1

π
log

du

2π
+
C1

u

)
1

um+1
exp

(
− α

log βu

)
du

≤ 1

π

∫ ∞
H2

log βu

um+1
exp

(
− α

log βu

)
du

+

(
1

π
log

1

2π
+
C1

H2

)∫ ∞
H2

1

um+1
exp

(
− α

log βu

)
du,

since u ≥ H2, as required. �
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Definition 4.3. Given positive constants n, z, and y, define the incomplete modified
Bessel function of the second kind (see for example [1, page 376, equation 9.6.24])

Kn(z; y) =
1

2

∫ ∞
y

un−1 exp

(
−z

2

(
u+

1

u

))
du.

Lemma 4.4. Given positive constants n, m, α, β, and `,

In,m(α, β; `) = 2βm
(
α

m

)n/2
Kn

(
2
√
αm;

√
m

α
log(β`)

)
.

In particular, if n, m, x, R, d, and H2 are positive real numbers with x > 1, then

In,m

(
log x

R
, d;H2

)
= 2dm

(
log x

mR

)n/2
Kn

(
2

√
m log x

R
;

√
mR

log x
log(dH2)

)
.

Proof. The first identity follows easily from the change of variables u =
√

m
α log βt

in Definition 4.1 of In,m(α, β; `); the second identity is immediate upon substitution.
�

Definition 4.5. For any real number u, define the complementary error function

erfc(u) =
2√
π

∫ ∞
u

e−t
2

dt.

Definition 4.6. For positive real numbers y and z, define

J1a(z; y) =
3
√
y + 8

16zez(y+1/y)/2
,

J1b(z; y) =
√
π erfc

(√
z

2

(
√
y − 1
√
y

))
8z + 3

16
√

2 z3/2ez
,

J2a(z; y) =
(35y3/2 + 128y + 135y1/2 + 128y−1)z + 105y1/2 + 256

256z2ez(y+1/y)/2
,

J2b(z; y) =
√
π erfc

(√
z

2

(
√
y − 1
√
y

))
128z2 + 240z + 105

256
√

2 z5/2ez
.

The next proposition is essentially [36, equations (2.30) and (2.31)].

Proposition 4.7. For z, y > 0, we have K1(z; y) ≤ J1a(z; y) + J1b(z; y) and
K2(z; y) ≤ J2a(z; y) + J2b(z; y).

Proof. In Definition 4.3, make the change of variables

u = 1 + w2 + w
√
w2 + 2, du = 2

(
w +

w2 + 1√
w2 + 2

)
dw,

so that w = 1√
2
(
√
u− 1√

u
) and hence w2 = 1

2 (u+ 1
u )− 1. We obtain

Kn(z; y) = e−z
∫ ∞
v

(1 + w2 + w
√
w2 + 2)n−1

(
w +

w2 + 1√
w2 + 2

)
e−zw

2

dw,



DRAFT

EXPLICIT BOUNDS FOR PRIMES IN ARITHMETIC PROGRESSIONS 34

where v = 1√
2
(
√
y − 1√

y ). In particular,

K1(z; y) = e−z
∫ ∞
v

(
w +

w2 + 1√
w2 + 2

)
e−zw

2

dw

K2(z; y) = e−z
∫ ∞
v

(
2w3 + 2w +

2w4 + 4w2 + 1√
w2 + 2

)
e−zw

2

dw.

The inequalities

w2 + 1√
w2 + 2

≤ 3w2

4
√

2
+

1√
2

2w4 + 4w2 + 1√
w2 + 2

≤ 35w4

32
√

2
+

15w2

4
√

2
+

1√
2
,

(which are identical to [36, equations (2.27) and (2.28)]) can be verified by squaring
both sides; consequently,

K1(z; y) ≤ e−z
∫ ∞
v

(
w +

3w2

4
√

2
+

1√
2

)
e−zw

2

dw

K2(z; y) ≤ e−z
∫ ∞
v

(
2w3 + 2w +

35w4

32
√

2
+

15w2

4
√

2
+

1√
2

)
e−zw

2

dw.

Routine integration of the right-hand sides now gives

K1(z; y) ≤ e−z
(

3
√

2 v + 8

16zev2z
+
√
π erfc(v

√
z)

8z + 3

16
√

2 z3/2

)
and, similarly, ezK2(z; y) is bounded above by

70
√

2 v3z + 256v2z + 15
√

2 v(16z + 7) + 256(z + 1)

256z2ev2z

+
√
π erfc(v

√
z)

128z2 + 240z + 105

256
√

2 z5/2
.

Substituting in v = 1√
2
(
√
y − 1√

y ), so that v2 + 1 = (y + 1/y)/2, yields

K1(z; y) ≤
3y + 8

√
y − 3

16zez(y+1/y)/2√y
+
√
π erfc

(√
z

2

(
√
y − 1
√
y

))
8z + 3

16
√

2 z3/2ez
,

while K2(z; y) its bounded above by

(35y3 + 128y5/2 + 135y2 − 135y + 128
√
y − 35)z + 105y2 + 256y3/2 − 105y

256z2ez(y+1/y)/2y3/2

+
√
π erfc

(√
z

2

(
√
y − 1
√
y

))
128z2 + 240z + 105

256
√

2 z5/2ez
.

The lemma now follows upon simply omitting the negative terms from the numera-
tors in these upper bounds (and comparing with Definition 4.6). �
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4.2. Elementary estimation of the complementary error function erfc(u). Some
of the bounding functions in the previous section contain factors of the complemen-
tary error function erfc(u) evaluated at complicated arguments involving fractional
powers of log x. In this section, we establish simpler and reasonably tight upper
bounds for factors of this type. Our first task, which culminates in Lemma 4.11, is to
provide a general structure for the type of argument we will need. (We caution the
reader that the temporary parameters y and z do not fill the same role that they did in
the previous section.) Then in the rest of the section, leading up to Proposition 4.14,
we implement that argument with some specific numerical choices motivated by our
ultimate invocation of the proposition.

Lemma 4.8. Let v, w, y, z, µ, and τ be positive constants with v > τ and yz > w.
Let f(u) be a positive, differentiable function, and define

g(u) = f

(
v − u

y

)
u2µe−zu.

Suppose that

−f
′(u)

f(u)
≤ w for u ≤ τ. (4.1)

Then g(u) is a decreasing function of u for

u ≥ max

{
y(v − τ),

2µ

z − w/y

}
.

Proof. It suffices to show that log g(u) is decreasing. We have

d

du
(log g(u)) =

d

du

(
log f

(
v − u

y

)
+ 2µ log u− zu

)
= − f

′(v − u/y)

yf(v − u/y)
+

2µ

u
− z.

Since u ≥ y(v − τ), we have v − u/y ≤ τ , and so by the assumption (4.1),

d

du
(log g(u)) ≤ w

y
+

2µ

u
− z ≤ 0

since u ≥ 2µ/(z − w
y ). �

Lemma 4.9. Given τ ≥ 0, if we have u ≤ τ , then

−erfc′(u)

erfc(u)
≤ τ +

√
τ2 + 2.

Proof. Note that

−erfc′(u)

erfc(u)
=

2√
π

1

eu2 erfc(u)
. (4.2)



DRAFT

EXPLICIT BOUNDS FOR PRIMES IN ARITHMETIC PROGRESSIONS 36

When u ≤ 0, since erfc(u) ≥ 1 we have

−erfc′(u)

erfc(u)
≤ 2√

π
<
√

2 ≤ τ +
√
τ2 + 2

for all τ ≥ 0. On the other hand, when u ≥ 0, we have [28, equation 7.8.2]

1

u+
√
u2 + 2

< eu
2

√
π

2
erfc(u) ≤ 1

u+
√
u2 + 4/π

. (4.3)

In light of the identity (4.2), the first inequality is equivalent to

−erfc′(u)

erfc(u)
≤ u+

√
u2 + 2,

which establishes the lemma as this function is increasing in u. �

Definition 4.10. Given an integer m ≥ 2 and positive constants λ, µ, and R, define
for x > 1 the function

Ξm,λ,µ,R(x) =
√
π erfc

(√
mλ−

√
log x

Rλ

)
exp

(
−2

√
m log x

R

)
logµ x,

where erfc is as given in Definition 4.5.

Lemma 4.11. Let m, λ, µ and R be positive constants. Choose τ ≥ 0 and set
w = τ +

√
τ2 + 2. Suppose that mλ > w2/4 and

√
Rλ(
√
mλ− τ) ≥ 2µ

2
√
m/R− w/

√
Rλ

,

or equivalently that
µ ≤ (

√
mλ− w/2)(

√
mλ− τ).

Then the function Ξm,λ,µ,R(x) in Definition 4.10 is a decreasing function of x for
x ≥ exp

(
Rλ(
√
mλ− τ)2

)
.

Proof. In Lemma 4.8 we let f(u) =
√
π erfc(u), and we set v =

√
mλ, y =

√
Rλ,

and z = 2
√
m/R, so that − f

′(u)
f(u) ≤ w for u ≤ τ by Lemma 4.9. As mλ > τ2,

we have v > τ and yz > w. By Lemma 4.9, condition (4.1) is satisifed. Then
g(
√

log x) = Ξm,λ,µ,R(x), and Lemma 4.8 guarantees that Ξm,λ,µ,R(x) is decreas-
ing provided that√

log x ≥ max

{√
Rλ(
√
mλ− τ),

2µ

2
√
m/R− w/

√
Rλ

}
=
√
Rλ(
√
mλ− τ),

where the last equality is a hypothesis of this lemma. �

We now choose some specific values of the parameters that correspond to the
range of exponents µ, depending on m, for which we want to apply the previous
lemma.
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Definition 4.12. For integers m ≥ 2, define real numbers τm according to the fol-
lowing table:

m 2 3 4 5 6 7
τm 4.0726 5.2067 6.1454 6.9631 7.6967 8.3675
m 8 9 10 11 12 ≥ 13
τm 8.9891 9.5709 10.1197 10.6405 11.1371 11.6126

Then, for any m ≥ 2, define ωm =
2

τm +
√
τ2m + 4/π

.

Lemma 4.13. For a given m ≥ 2:

(a) m + 7
4 ≤ (

√
mλ − τm)

(√
mλ − (τm +

√
τ2m + 2)/2

)
holds for all λ ≥

log(108);
(b)
√
π erfc(u) ≤ ωme−u

2

when u ≥ τm.

Proof. For part (a), since the right-hand side of the inequality is a convex function of
λ, it suffices to check that for any given m, the right-hand side minus the left-hand
side is positive and increasing at λ = log(108). Part (b) then follows from the upper
bound in equation (4.3) in the form
√
π erfc(u) ≤ e−u

2 2

u+
√
u2 + 4/π

≤ e−u
2 2

τm +
√
τ2m + 4/π

= e−u
2

ωm.

�

Proposition 4.14. Let m ≥ 2 be given, let µ ≤ m + 7
4 and λ ≥ log(108), let R be

positive, and let Ξm,λ,µ,R(x) be as in Definition 4.10. Then:

(a) Ξm,λ,µ,R(x) is a decreasing function of x for x ≥ exp
(
Rλ(
√
mλ− τm)2

)
.

(b) For 1 ≤ x ≤ exp
(
Rλ(
√
mλ− τm)2

)
, we have

Ξm,λ,µ,R(x) ≤ ωme−mλ exp

(
− log x

Rλ

)
logµ x.

Proof. By Lemma 4.13(a), the hypotheses of Lemma 4.11 are satisfied with τ = τm,
which immediately establishes the proposition’s first claim. We apply Lemma 4.13(b)
with u =

√
mλ−

√
(log x)/Rλ, which is at least τm when

x ≤ exp
(
Rλ(
√
mλ− τm)2

)
;

the result is

Ξm,λ,µ,R(x) ≤ ωm exp

(
−
(√

mλ−
√

log x

Rλ

)2)
exp

(
−2

√
m log x

R

)
logµ x

= ωm exp

(
−mλ+ 2

√
m log x

R
− log x

Rλ

)
exp

(
−2

√
m log x

R

)
logµ x,

which establishes the second claim. �
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4.3. Identification of maximum values of bounding functions via calculus. As
we move towards our upper bound for |ψ(x; q, a) − x/ϕ(q)|, we will need to find
the maximum values of various decreasing functions (of the type addressed in the
previous two sections) multiplied by powers of log x. Each individual such product
can be bounded by elementary calculus that is straightforward—especially given our
existing bounds on functions related to erfc(x) from Section 4.2—but notationally
extremely unwieldy. We therefore encourage the reader to regard this section only
as a necessary evil.

We can, however, make one possibly insightful remark before getting underway.
The upper bound currently being derived for

∣∣ψ(x; q, a) − x/ϕ(q)
∣∣/(x/ log x) has

several pieces, some of which we have already seen decay like a power of x. The
remaining pieces of the upper bound will be bounded by the functions in Defini-
tion 4.15 below; and the sharp-eyed reader will notice that these functions too decay
like exp(− log x

Rλ ), which is to say, like a power of x. (Of course, the functions do start
off increasing for small values of x, so that there is a maximum value which we seek
to identify.) This rate of decay seems too good to be true, since it would correspond
to a zero-free strip of constant width (that is, a quasi-GRH). This apparent paradox
can be resolved by noting that the functions in Definition 4.15 are involved in the
upper bound for the function Uq,m(x; δ,H) (see Definition 2.5), which is a sum over
only the zeros of the L(s, χ) with large imaginary part. It seems that such a func-
tion actually does decay like a power of x initially, before slowing down to decay
only like exp(−c

√
log x) as is consistent with the classical zero-free region; but, as

it happens, the maxima of these functions occur for moderately sized x, for which
the functions’ envelopes are still decaying like a power of x. (One can contrast this
observation with Lemma 6.12, in which we see (for large moduli q) the expected rate
of decay in the error term.)
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Definition 4.15. Given an integer m ≥ 2 and positive constants r, x, λ, H2, and R,
define

P1a(x;m, r, λ,H2, R) =
1

Hm
2

(
3R1/4λ1/2 logr−1/4 x

16m3/4
+

(log x)r

2m

)
exp

(
− log x

Rλ

)
,

P1b(x;m, r, λ,H2, R) =
ωm
Hm

2

(
logr+1/4 x

2m3/4R1/4
+

3R1/4 logr−1/4 x

32m5/4

)
exp

(
− log x

Rλ

)
,

P1(x;m, r, λ,H2, R) = P1a(x;m, r, λ,H2, R) + P1b(x;m, r, λ,H2, R);

P2a(x;m, r, λ,H2, R) =
1

Hm
2

exp

(
− log x

Rλ

)(
logr+1 x

2λm2R
+

135λ1/2 logr+1/4 x

256m5/4R1/4

+
(mλ+ 1)(log x)r

2m2
+

35(2mλ+ 3)λ1/2R1/4 logr−1/4 x

512m7/4

)
,

P2b(x;m, r, λ,H2, R) =
ωm
Hm

2

(
logr+3/4 x

2m5/4R3/4
+

15 logr+1/4 x

32m7/4R1/4

+
105R1/4 logr−1/4 x

1024m9/4

)
exp

(
− log x

Rλ

)
,

P2(x;m, r, λ,H2, R) = P2a(x;m, r, λ,H2, R) + P2b(x;m, r, λ,H2, R).

Definition 4.16. Given an integer m ≥ 2 and positive constants r, λ, H2, and R,
define

Q1a(m, r, λ,H2, R) =
Rr

erHm
2

(
3e1/4(r − 1/4)r−1/4λr+1/4

16m3/4
+
rrλr

2m

)
,

Q1b(m, r, λ,H2, R) =
ωmR

r

erHm
2

(
(r + 1/4)r+1/4λr+1/4

2e1/4m3/4
+

3e1/4(r − 1/4)r−1/4λr−1/4

32m5/4

)
,

Q1(m, r, λ,H2, R) = Q1a(m, r, λ,H2, R) +Q1b(m, r, λ,H2, R);

Q2a(m, r, λ,H2, R) =
Rr

erHm
2

(
(r + 1)r+1λr

2em2
+

135(r + 1/4)r+1/4λr+3/4

256e1/4m5/4

+
(mλ+ 1)rrλr

2m2
+

35e1/4(2mλ+ 3)(r − 1/4)r−1/4λr+1/4

512m7/4

)
,

Q2b(m, r, λ,H2, R) =
ωmR

r

erHm
2

(
(r + 3/4)r+3/4λr+3/4

2e3/4m5/4
+

15(r + 1/4)r+1/4λr+1/4

32e1/4m7/4

+
105e1/4(r − 1/4)r−1/4λr−1/4

1024m9/4

)
,

Q2(m, r, λ,H2, R) = Q2a(m, r, λ,H2, R) +Q2b(m, r, λ,H2, R).



DRAFT

EXPLICIT BOUNDS FOR PRIMES IN ARITHMETIC PROGRESSIONS 40

Definition 4.17. Let d and m be positive integers with m ≥ 2, and let H2, R and x
be positive real numbers with x > 1. Define

zm,R(x) = 2

√
m log x

R
and yd,m,R(x;H2) =

√
mR

log x
log(dH2).

Lemma 4.18. Let m, R, x, d, and H2 be positive real numbers with x > 1. Then

exp

(
−zm,R(x)

2

(
yd,m,R(x;H2) +

1

yd,m,R(x;H2)

))
=

(
1

dH2

)m
exp

(
− log x

R log(dH2)

)
(4.4)

and √
zm,R(x)

2

(√
yd,m,R(x;H2)− 1√

yd,m,R(x;H2)

)

=
√
m log(dH2)−

√
log x

R log(dH2)
. (4.5)

Proof. Both identities follow quickly from e−m log(dH2) = (dH2)−m and the evalu-
ations

zm,R(x)

2
· yd,m,R(x;H2) = m log(dH2)

and

zm,R(x)

2
· 1

yd,m,R(x;H2)
=

log x

R log(dH2)
.

�

Lemma 4.19. Let r, m, R, x, d, and H2 be positive real numbers with x > 1. Then

(log x)r · 2dm
(

log x

mR

)1/2

J1a
(
zm,R(x); yd,m,R(x;H2)

)
= P1a

(
x;m, r, log(dH2), H2, R

)
.
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Proof. In this proof, we write y for yd,m,R(x;H2) and z for zm,R(x). Using Defini-
tion 4.6 and the identity (4.4):

(log x)r · 2dm
(

log x

mR

)1/2

J1a(z; y)

= (log x)r · 2dm
(

log x

mR

)1/2 3y + 8
√
y

16zez(y+1/y)/2√y

= (log x)r · 2dm
(

log x

mR

)1/2 3y + 8
√
y

16z
√
y

(
1

dH2

)m
exp

(
− log x

R log(dH2)

)
=

logr+1/2 x

Hm
2

1

8
√
mR

(3
√
y + 8)z−1 exp

(
− log x

R log(dH2)

)
=

logr+1/2 x

Hm
2

1

8
√
mR

(
3m1/4R1/4

√
log(dH2)

log1/4 x
+ 8

)
×

√
R

2
√
m log x

exp

(
− log x

R log(dH2)

)
=

1

Hm
2

(
3R1/4

√
log(dH2) logr−1/4 x

16m3/4
+

(log x)r

2m

)
exp

(
− log x

R log(dH2)

)
,

which establishes the lemma thanks to Definition 4.15. �

Lemma 4.20. Let r, m, R, x, λ, and H2 be positive real numbers with x > 1 and
r > 1

4 . Then

P1a(x;m, r, λ,H2, R) ≤ Q1a(m, r, λ,H2, R).

Proof. By Lemma 3.9, the two summands in Definition 4.15 for P1a are maximized
at log x = (r − 1

4 )Rλ and log x = rRλ, respectively. Inserting these respective
values of x into the two summands yields the upper bound

P1a(x;m, r, λ,H2, R) ≤ 1

Hm
2

(
3R1/4

√
λ

16m3/4

(
(r − 1/4)Rλ

e

)r−1/4
+

1

2m

(
rRλ

e

)r)
=

Rr

erHm
2

(
3e1/4(r − 1/4)r−1/4λr+1/4

16m3/4
+
rrλr

2m

)
,

which establishes the lemma thanks to Definition 4.16. �

Lemma 4.21. Let r, m, R, x, d, and H2 be positive real numbers with x > 1. Then

(log x)r·2dm log x

mR
J2a
(
zm,R(x); yd,m,R(x;H2)

)
= P2a

(
x;m, r, log(dH2), H2, R

)
.
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Proof. For this proof, write y = yd,m,R(x;H2) and z = zm,R(x). Using Defini-
tion 4.6 and the identity (4.4):

(log x)r · 2dm log x

mR
J2a(z, y)

= (log x)r · 2dm log x

mR

(35y3 + 128y5/2 + 135y2 + 128
√
y)z + 105y2 + 256y3/2

256z2ez(y+1/y)/2y3/2

=
logr+1 x

128mRHm
2

(
35y3/2 + 128y + 135y1/2 + 128y−1

z
+

105y1/2 + 256

z2

)
exp

(
− log x

R log(dH2)

)
=

logr+1 x

128mRHm
2

exp

(
− log x

R log(dH2)

)
×
{

R1/2

2m1/2 log1/2 x

(
35m3/4R3/4 log3/2(dH2)

log3/4 x

+
128m1/2R1/2 log(dH2)

log1/2 x
+

135m1/4R1/4 log1/2(dH2)

log1/4 x

+
128 log1/2 x

m1/2R1/2 log(dH2)

)
+

R

4m log x

(
105m1/4R1/4 log1/2(dH2)

log1/4 x
+ 256

)}
,

which can be written as

1

Hm
2

exp

(
− log x

R log(dH2)

)
×{(

35R1/4 log3/2(dH2) logr−1/4 x

256m3/4
+

log(dH2)(log x)r

2m
+

135 log1/2(dH2) logr+1/4 x

256m5/4R1/4

+
logr+1 x

2m2R log(dH2)

)
+

(
105R1/4 log1/2(dH2) logr−1/4 x

512m7/4
+

(log x)r

2m2

)}
=

1

Hm
2

exp

(
− log x

R log(dH2)

)(
logr+1 x

2 log(dH2)m2R
+

135 log1/2(dH2) logr+1/4 x

256m5/4R1/4

+
(m log(dH2) + 1)(log x)r

2m2
+

35(2m log(dH2) + 3) log1/2(dH2)R1/4 logr−1/4 x

512m7/4

)
.

�

Lemma 4.22. Let r, m, R, x, λ, and H2 be positive real numbers with x > 1 and
r > 1

4 . Then

P2a(x;m, r, λ,H2, R) ≤ Q2a(m, r, λ,H2, R).

Proof. By Lemma 3.9, the four summands in Definition 4.15 for P2a are maximized
at log x = (r + ε)Rλ for ε ∈ {1, 14 , 0,−

1
4}. Inserting these respective values of x
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into the two summands yields the upper bound

P2a(x;m, r, λ,H2, R) ≤ 1

Hm
2

(
((r + 1)Rλ)r+1

2er+1λm2R
+

135λ1/2((r + 1/4)Rλ)r+1/4

256er+1/4m5/4R1/4

+
(mλ+ 1)(rRλ)r

2erm2
+

35(2mλ+ 3)λ1/2R1/4((r − 1/4)Rλ)r−1/4

512er−1/4m7/4

)
=

Rr

erHm
2

(
(r + 1)r+1λr

2em2
+

135(r + 1/4)r+1/4λr+3/4

256e1/4m5/4

+
(mλ+ 1)rrλr

2m2
+

35e1/4(2mλ+ 3)(r − 1/4)r−1/4λr+1/4

512m7/4

)
,

which establishes the lemma thanks to Definition 4.16. �

Definition 4.23. Given integers m ≥ 2 and d ≥ 3 and positive constants H2 and R,
if τm is as given in Definition 4.12, define

x3(m, d,H2, R) = exp
(
R log(dH2)

(√
m log(dH2)− τm

)2)
.

Lemma 4.24. Let m ≥ 2 be an integer, and let r, R, x, d, and H2 be positive real
numbers with x > 1, r ≤ m+ 1, and dH2 ≥ 108. Then

(log x)r · 2dm
(

log x

mR

)1/2

J1b
(
zm,R(x); yd,m,R(x;H2)

)
≤ max

{
P1b

(
x;m, r, log(dH2), H2, R

)
, P1b

(
x3(m, d,H2, R);m, r, log(dH2), H2, R

)}
.

Proof. In this proof we write y = yd,m,R(x;H2) and z = zm,R(x). We start with
Definition 4.6:

(log x)r · 2dm
(

log x
mR

)1/2

J1b(z; y)

= (log x)r · 2dm
(

log x
mR

)1/2√
π erfc

(√
z
2

(
√
y − 1√

y

))
8z+3

16
√
2 z3/2ez

= (log x)r · 2dm
(

log x
mR

)1/2√
π erfc

(√
m log(dH2)−

√
log x

R log(dH2)

)
8z+3

16
√
2 z3/2ez

by the identity (4.5). Since e−z = exp
(
−2
√

(m log x)/R
)
, we can express the

right-hand side in terms of the function Ξm,λ,µ,R(x) defined in Definition 4.10, with
µ = r + 1

2 and λ = log(dH2):

(log x)r · 2dm
(

log x

mR

)1/2

J1b
(
zm,R(x); yd,m,R(x;H2)

)
=

2dm√
mR

8z + 3

16
√

2 z3/2
Ξm,λ,µ,R(x). (4.6)

Suppose first that we have

x ≤ x3 = exp
(
R log(dH2)(

√
m log(dH2)− τm)2

)
.
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Then by Proposition 4.14(b),

2dm
1√
mR

8z + 3

16
√

2 z3/2
Ξm,λ,µ,R(x)

≤ 2dm
1√
mR

8z + 3

16
√

2 z3/2
ωme

−mλ exp

(
− log x

R log(dH2)

)
logr+1/2 x

=
ωm

8
√

2

logr+1/2 x

Hm
2

√
mR

(8z−1/2 + 3z−3/2) exp

(
− log x

R log(dH2)

)
=

ωm

8
√

2

logr+1/2 x

Hm
2

√
mR

(
8R1/4

√
2(m log x)1/4

+
3R3/4

2
√

2(m log x)3/4

)
exp

(
− log x

R log(dH2)

)
=

ωm
Hm

2

(
logr+1/4 x

2m3/4R1/4
+

3R1/4 logr−1/4 x

32m5/4

)
exp

(
− log x

R log(dH2)

)
(4.7)

= P1b

(
x;m, r, log(dH2), H2, R

)
(4.8)

by Definition 4.15. Combining the last two equations establishes the lemma in this
range of x.

Now suppose that x ≥ x3. By Proposition 4.14(a), the function Ξm,λ,µ,R(x) is a
decreasing function of x in this range, while the function (8z+ 3)/16

√
2z3/2 is also

a decreasing function of x. Therefore

2dm√
mR

8z + 3

16
√

2 z3/2
Ξm,λ,µ,R(x) ≤ 2dm√

mR

8z(x3) + 3

16
√

2 z(x3)3/2
Ξm,λ,µ,R(x3);

and then the calculation leading to (4.8) shows that P1b

(
x3;m, r, log(dH2), H2, R

)
is an upper bound for the latter quantity, which establishes the lemma for this com-
plementary range of x thanks to equation (4.6). �

Lemma 4.25. Let r, m, R, x, λ, and H2 be positive real numbers with x > 1 and
r > 1

4 . Then

P1b(x;m, r, λ,H2, R) ≤ Q1b(m, r, λ,H2, R).

Proof. By Lemma 3.9, the two summands in Definition 4.15 for P1b are maximized
at log x = (r + 1

4 )Rλ and log x = (r − 1
4 )Rλ, respectively. Inserting these re-

spective values of x into the two summands yields the following upper bound for
P1b(x;m, r, d,H2, R) :

ωm
Hm

2

(
1

2m3/4R1/4

(
(r + 1/4)Rλ

e

)r+1/4

+
3R1/4

32m5/4

(
(r − 1/4)Rλ

e

)r−1/4)
=
ωmR

r

erHm
2

(
(r + 1/4)r+1/4λr+1/4

2e1/4m3/4
+

3e1/4(r − 1/4)r−1/4λr−1/4

32m5/4

)
,

which establishes the lemma, upon appealing to Definition 4.16. �
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Lemma 4.26. Let m ≥ 2 be an integer, and let r, R, x, d, and H2 be positive real
numbers with x > 1, r ≤ m+ 1, and dH2 ≥ 108. Then

(log x)r · 2dm log x

mR
J2b
(
zm,R(x), yd,m,R(x;H2)

)
≤ max

{
P2b

(
x;m, r, log(dH2), H2, R

)
, P2b

(
x3(m, d,H2, R);m, r, log(dH2), H2, R

)}
.

Proof. In this proof, for concision, we write y for yd,m,R(x;H2) and z for zm,R(x).
We start with Definition 4.6:

(log x)r · 2dm log x

mR
J2b
(
zm,R(x); yd,m,R(x;H2)

)
= (log x)r · 2dm log x

mR

√
π erfc

(√
z

2

(
√
y − 1
√
y

))
128z2 + 240z + 105

256
√

2 z5/2ez

= (log x)r · 2dm log x

mR

√
π erfc

(√
m log(dH2)−

√
log x

R log(dH2)

)
× 128z2 + 240z + 105

256
√

2 z5/2ez
,

by identity (4.5). Since e−z = exp
(
−2
√

(m log x)/R
)
, we can write the last

quantity here in terms of the function Ξm,λ,µ,R(x) defined in Definition 4.10, with
µ = r + 1 and λ = log(dH2):

(log x)r · 2dm log x

mR
J2b
(
zm,R(x); yd,m,R(x;H2)

)
=

2dm

mR

128z2 + 240z + 105

256
√

2 z5/2
Ξm,λ,µ,R(x). (4.9)
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Suppose first that x ≤ x3 = exp
(
R log(dH2)(

√
m log(dH2)− τm)2

)
. Then by

Proposition 4.14(b),

2dm
1

mR

128z2 + 240z + 105

256
√

2 z5/2
Ξm,λ,µ,R(x)

≤ 2dm

mR

128z2 + 240z + 105

256
√

2 z5/2
ωme

−mλ exp

(
− log x

R log(dH2)

)
logr+1 x

=
ωm

128
√

2

logr+1 x

Hm
2 mR

(128z−1/2 + 240z−3/2 + 105z−5/2) exp

(
− log x

R log(dH2)

)
=

ωm

128
√

2

logr+1 x

Hm
2 mR

(
128R1/4

√
2(m log x)1/4

+
240R3/4

2
√

2(m log x)3/4
+

105R5/4

4
√

2(m log x)5/4

)
exp

(
− log x

R log(dH2)

)
=

ωm
Hm

2

(
logr+3/4 x

2m5/4R3/4
+

15 logr+1/4 x

32m7/4R1/4
+

105R1/4 logr−1/4 x

1024m9/4

)
exp

(
− log x

R log(dH2)

)
= P2b

(
x;m, r, log(dH2), H2, R

)
(4.10)

by Definition 4.15. Combining the last two equations establishes the lemma in this
range of x.

Now suppose that x ≥ x3. By Proposition 4.14(a), the function Ξm,λ,µ,R(x) is
decreasing in this range, while the function (128z2 + 240z + 105)/256

√
2 z5/2 is

also a decreasing function of x. Therefore

2dm√
mR

128z2 + 240z + 105

256
√

2 z5/2
Ξm,λ,µ,R(x)

≤ 2dm√
mR

128z(x3)2 + 240z(x3) + 105

256
√

2 z(x3)5/2
Ξm,λ,µ,R(x3);

and then the calculation (4.10) shows that P2b

(
x3;m, r, log(dH2), H2, R

)
is an up-

per bound for the latter quantity, which establishes the lemma for this complementary
range of x, via equation (4.9). �

Lemma 4.27. Let r, m, R, x, λ, and H2 be positive real numbers with x > 1 and
r > 1

4 . Then

P2b(x;m, r, λ,H2, R) ≤ Q2b(m, r, λ,H2, R).

Proof. By Lemma 3.9, the three summands in Definition 4.15 for P2b are maximized
at log x = (r + ε)R log(dH2) for ε ∈ { 34 ,

1
4 ,−

1
4}. We therefore have the upper
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bound

P2b(x;m, r, λ,H2, R)

≤ ωm
Hm

2

(
1

2m5/4R3/4

(
(r + 3/4)R log(dH2)

e

)r+3/4

+
15

32m7/4R1/4

(
(r + 1/4)R log(dH2)

e

)r+1/4

+
105R1/4

1024m9/4

(
(r − 1/4)R log(dH2)

e

)r−1/4)
=
ωmR

r

erHm
2

(
(r + 3/4)r+3/4 logr+3/4(dH2)

2e3/4m5/4
+

15(r + 1/4)r+1/4 logr+1/4(dH2)

32e1/4m7/4

+
105e1/4(r − 1/4)r−1/4 logr−1/4(dH2)

1024m9/4

)
,

which establishes the lemma thanks to Definition 4.16. �

4.4. Assembly of the final upper bound for |ψ(x; q, a)− x/ϕ(q)|. Finally, af-
ter the work of the preceding four sections, we have all of the tools necessary to
assemble an explicit upper bound for Fχ,m,R(x;H2) (log x)r. This goal, in turn,
was the last step required to convert Proposition 2.20 into an explicit upper bound
for
∣∣ψ(x; q, a)−x/ϕ(q)

∣∣ (see Theorem 4.33 below). The upper bound is rather com-
plicated, but again our paradigm is that any function that can be easily programmed
and computed essentially instantly is sufficient for our purposes. At the end of this
section, we describe how we derive Theorem 1.1 from the resulting upper bound.

Definition 4.28. Let d and m be positive integers with m ≥ 2, and let r,H2, R be
positive real numbers. Define

Sd,m,R(r,H,H2) = Bd,m,R(r,H,H2) +
1

π
Q2(m, r, log(dH2), H2, R)Hm+1

+

(
1

π
log

1

2π
+
C1

H2

)
Q1(m, r, log(dH2), H2, R)Hm+1,

where Bd,m,R(r,H,H2) is as in Definition 3.7 and the Qj(m, r, λ,H2, R) are as in
Definition 4.16.

Proposition 4.29. Let d and m be positive integers with m ≥ 2, and let r,R,H,H2

be positive real numbers such that 1
4 < r ≤ m+ 1, 15 ≤ H ≤ H2, dH2 ≥ 108, and

χ a character satisfying Hypothesis Z(H2, R). Then for all x > 1, we have

Hm+1Fχ,m,R(x;H2) (log x)r ≤ Sd,m,R(r,H,H2).

Proof. We proceed first under the assumption that log x ≤ R(m + 1) log2(dH2).
Starting from Proposition 3.6, we apply Proposition 3.8 to conclude that necessarily
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Fχ,m,R(x;H2) (log x)r is bounded above by

B
(1)
d,m,R(x; r,H2) + (log x)r

∫ ∞
H2

(
∂

∂u
Md(H2, u)

)
Yd,m,R(x, u) du. (4.11)

We then apply Proposition 4.2, Lemma 4.4, and Proposition 4.7 to get

Fχ,m,R(x;H2) (log x)r ≤ B(1)
d,m,R(x; r,H2) + (log x)r · 1

π
2dm

log x

mR
×

×
(
J2a

(
2

√
m log x

R
;

√
mR

log x
log(dH2)

)
+J2b

(
2

√
m log x

R
;

√
mR

log x
log(dH2)

))

+ (log x)r
(

1

π
log

1

2π
+
C1

H2

)
2dm

(
log x

mR

)1/2

×

×
(
J1a

(
2

√
m log x

R
;

√
mR

log x
log(dH2)

)
+J1b

(
2

√
m log x

R
;

√
mR

log x
log(dH2)

))
.

(4.12)

Now Lemmas 4.19, 4.21, 4.24, and 4.26 yield

Fχ,m,R(x;H2) (log x)r ≤B(1)
d,m,R(x; r,H2) +

1

π
(P2a(x;m, r, log(dH2), H2, R) +M2)

+

(
1

π
log

1

2π
+
C1

H2

)
(P1a(x;m, r, log(dH2), H2, R) +M1) ,

(4.13)
where M1 and M2 are

max{P1b(x;m, r, log(dH2), H2, R), P1b(x3(m, d,H2, R);m, r, log(dH2), H2, R)}

and

max{P2b(x;m, r, log(dH2), H2, R), P2b(x3(m, d,H2, R);m, r, log(dH2), H2, R)},

respectively. Finally, Lemmas 3.10, 4.20, 4.22, 4.25, and 4.27 give

Hm+1Fχ,m,R(x;H2) (log x)r ≤ Bd,m,R(r,H,H2)

+
1

π

(
Q2a(m, r, log(dH2), H2, R) +Q2b(m, r, log(dH2), H2, R)

)
Hm+1

+

(
1

π
log

1

2π
+
C1

H2

)(
Q1a(m, r, log(dH2), H2, R)

+Q1b(m, r, log(dH2), H2, R)
)
Hm+1, (4.14)

which establishes the proposition under the assumption log x ≤ R(m+1) log2(dH2).
If, instead, log x > R(m+ 1) log2(dH2), then the application of Proposition 3.8

requires us to replace B(1)
d,m,R(x; r,H2) by B(2)

d,m,R(x; r) in the expressions (4.11),

(4.12), and (4.13), but then Lemma 3.10 allows us to replace B(2)
d,m,R(x; r) by the
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term Bd,m,R(r,H,H2) in the transition from equation (4.13) to equation (4.14), and
so the end result is the same. �

Definition 4.30. Let q and m be positive integers with m ≥ 2, and let x2, r,H be
positive real numbers satisfying x2 > 1 and H ≥ 1. Let H2 be a function on the
divisors of q satisfying H ≤ H2(d) for d | q. We define

Gq,m,R(x2, r;H,H2)

=
∑
d|q

ϕ∗(d)

(
g
(3)
d,m,R(x2;H,H2(d))(log x2)r +

1

2
Sd,m,R(r,H,H2(d))

)
,

where g(3)d,m,R is as in Definition 3.2 and Sd,m,R is as in Definition 4.28.

Proposition 4.31. Let q and m be positive integers with 3 ≤ m ≤ 25, and let x, x2,
r, R, and H be positive real numbers with x ≥ x2 ≥ e2m+2 and 1

4 < r ≤ m + 1
and R ≥ 0.435 and H ≥ H1(m). Let H2 be a function on the divisors of q with
H2(d) ≥ max{H, 108/d} for all d | q, such that every character χ with modulus q
satisfies Hypothesis Z(H2(q∗), R), where q∗ is the conductor of χ. Then

Ψq,m,r(x;H) < Gq,m,R(x2, r;H,H2) .

Proof. By Definition 2.16, Lemma 3.4, and Definition 3.3,

Ψq,m,r(x;H) = Hm+1Υq,m(x;H)(log x)r

< Gq,m,R(x;H,H2) (log x)r

=
∑
d|q

ϕ∗(d)g
(3)
d,m,R(x;H,H2(d))(log x)r

+
1

2

∑
d|q

Fd,m,R(x;H2(d)) (log x)r. (4.15)

The terms in the first summation are straightforward: by hypothesis,

x ≥ x2 ≥ e2m+2 ≥ e2r,
and so (log x)r/xλ is decreasing for any λ ≥ 1

2 . Consequently, by Definition 3.2,

g
(3)
d,m,R(x;H,H2(d))(log x)r

= g
(1)
d,m(H,H2(d)) · (log x)r

x1/2
+ g

(2)
d,m(H,H2(d)) · x

1/(R log dH2(d))(log x)r

x

≤ g(1)d,m(H,H2(d)) · (log x2)r

x
1/2
2

+ g
(2)
d,m(H,H2(d)) · x

1/(R log dH2(d))
2 (log x2)r

x2

= g
(3)
d,m,R(x2;H,H2(d))(log x2)r.

(The hypotheses R ≥ 0.435 and H2(d) ≥ H ≥ H1(m) ≥ 102, combined with
d ≥ 1, ensure that the fraction at the end of the second line is of the form (log x)r/xλ

with λ ≥ 1
2 .)
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The terms in the second summation of (4.15) have been addressed, in essence, in
Proposition 4.29. In particular, beginning with Definition 3.3,

Fd,m,R(x;H2(d)) (log x)r =
∑

χ (mod q)
q∗=d

Hm+1Fχ,m,R(x;H2(d)) (log x)r

≤
∑

χ (mod q)
q∗=d

Sd,m,R(r,H,H2(d))

= ϕ∗(d)Sd,m,R(r,H,H2(d)).

A comparison to Definition 4.30 confirms that the last line of (4.15) is now seen to
be bounded by Gq,m,R(x, r;H,H2). �

The function we now define is ultimately what we compute to obtain our upper
bounds for |ψ(x; q, a)−x/ϕ(q)| and hence is the main function we program into our
code, although (of course) several auxiliary functions from earlier in this paper must
also be programmed.

Definition 4.32. Let H0 be a function on the characters modulo q, and let H2 be
a function on the divisors of q. Let Wq(x) be as in Definition 2.7, ν(q,H0, H)
as in Definition 2.10, Gq,m,R(x, r;H,H2) as in Definition 4.30, and αm,k as in
Definition 2.19. Then define Dq,m,R(x2;H0, H,H2) by

Dq,m,R(x2;H0, H,H2) =
1

ϕ(q)
(T1 + T2 + T3 + T4) ,

where

T1 = ν(q,H0, H)
log x2√
x2

T2 =
m+ 1

H
Gq,m,R(x2,m+ 1;H,H2)

1
m+1

(
1 +

ν(q,H0, H)
√
x2

) m
m+1

T3 =

m∑
k=1

αm,k
2m−kHk+1

Gq,m,R

(
x2,

m+ 1

k + 1
;H,H2

) k+1
m+1

(
1 +

ν(q,H0, H)
√
x2

)m−k
m+1

T4 =
2αm,m+1

Hm+2
Gq,m,R

(
x2,

m+ 1

m+ 2
;H,H2

)m+2
m+1

+Wq(x2) log x2.

See Appendix A.5 for an indication of which terms Ti in this expression contribute
the most to its value for the ranges of parameters most important for our purposes.

Theorem 4.33. Let 3 ≤ q ≤ 105 be an integer, and let a be an integer that is
coprime to q. Let 3 ≤ m ≤ 25 be an integer, and let x2 ≥ e2m+2 and H ≥ H1(m)
and R ≥ 0.435 be real numbers. Let H0 be a function on the characters modulo q
with 0 ≤ H0(χ) ≤ H for every such character. Let H2 be a function on the divisors
of q with H2(d) ≥ max{H, 108/d} for all d | q, such that every character χ with
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modulus q satisfies Hypothesis Z(H2(q∗), R), where q∗ is the conductor of χ. Then
for all x ≥ x2,∣∣∣∣ψ(x; q, a)− x

ϕ(q)

∣∣∣∣/ x

log x
≤ Dq,m,R(x2;H0, H,H2),

where Dq,m,R(x2;H0, H,H2) is as in Definition 4.32.

Proof. Combine Proposition 2.20 (taking note of the remark following its statement)
with Proposition 4.31 and Definition 4.32. �

To apply Theorem 4.33, we must use a value of R for which it is guaranteed that
Hypothesis Z(108/q,R) is satisfied; fortunately, suitable results are present in the
literature, as we record in the following proposition. Once we do so, we will be able
to complete the proof of Theorem 1.1.

Proposition 4.34 (Platt, Kadiri, Mossinghoff-Trudgian). Let 1 ≤ q ≤ 105. Then q
satisfies Hypothesis Z(108/q, 5.6).

Proof. By Definition 3.1 we need to confirm, for every Dirichlet L-function mod-
ulo q, that every nontrivial zero β + iγ with |γ| ≤ 108/q satisfies β = 1

2 , and that
every nontrivial zero with |γ| > 108/q satisfies β ≤ 1 − 1/5.6 log(q|γ|). For the
values of q under consideration, the first assertion was shown by Platt [31, Theo-
rem 7.1], while the second assertion was shown by Kadiri [17, Theorem 1.1] for
q ≥ 3 and by Mossinghoff and Trudgian [26] for q ∈ {1, 2}. �

Proof of Theorem 1.1 for small moduli. For any 3 ≤ q ≤ 105, by Theorem 4.33 we
obtain an admissible value for cψ(q) by computing Dq,m,R(x2;H0, H,H2) for any
appropriate values of m, R, x2, H0, H and H2. We always choose m ∈ {6, 7, 8, 9}
and R = 5.6, where the latter choice is valid by Proposition 4.34. Then we choose
x2 = x2(q) as in Definition 1.18 (this satisfies x2(q) ≥ 1011 > e22 ≥ e2m+2 as
required).

We take H2(d) to be as large as possible, subject to having verified GRH up to
that height for all primitive characters with conductor d. By [30] and [31], we set

H2(d) =

{
30, 610, 046, 000, if d = 1,
108/d, if 1 < d ≤ 105.

That is, we take H2(d) = h3(d) as per Definition 2.6. We optimize over m ∈
{6, 7, 8, 9} and H ∈ [H1(m), H2(q)], and set H0 according to H: for 1 ≤ d ≤ 12,
we choose H0(d) to be the largest among 102, 103, 104 that is smaller than H , for
12 < d ≤ 1000, H0(d) is the larger of 102, 103 that is smaller than H , for 1000 <
d ≤ 2500 we takeH0(d) = 100, for 2500 < d ≤ 10000, H0(d) = 10, and, finally,
for 10000 < d < 100000 we choose H0(d) = 0.

These evaluations establish the inequality (1.9) for x ≥ x2(q) or x ≥ x2( q2 ),
respectively; we then compute by brute force the smallest positive real number xψ(q)
such that the inequality (1.9) holds for all x ≥ xψ(q) and all gcd(a, q) = 1. See
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Appendix A.6 for a discussion of these computations. With these values of cψ and
xψ(q) in hand, we verify the asserted inequalities cψ(q) < c0(q) and xψ(q) < x0(q),
where c0(q), x0(q) are defined in equations (1.10) and (1.11) respectively. �

5. DEDUCTION OF THE UPPER BOUNDS UPON |θ(x; q, a)− x/ϕ(q)| AND
|π(x; q, a)− Li(x)/ϕ(q)|, FOR q ≤ 105

In this section, we will focus upon obtaining bounds for |θ(x; q, a)−x/ϕ(q)| and
|π(x; q, a) − Li(x)/ϕ(q)|, for small values of q, given the bounds for |ψ(x; q, a) −
x/ϕ(q)| derived in the preceding sections. We also define a variant θ#(x; q, a) of
θ(x; q, a) (see equation (5.1) below) and establish similar bounds for its error term.

5.1. Conversion of bounds forψ(x; q, a)−x/ϕ(q) to bounds for θ(x; q, a)−
x/ϕ(q). The difference between ψ(x; q, a) and θ(x; q, a) is, of course, the contri-
bution from the squares of primes, cubes of primes, and so on in the residue class
a (mod q). We use standard estimates to bound these contributions, and assemble
them into the function ∆(x; q) which we now define. As always, we adopt the view-
point that any upper bound that can be easily programmed is sufficient for our pur-
poses.

Definition 5.1. Define ξk(q) to be the number of kth roots of 1 modulo q. For fixed
k, the function ξk(q) is a multiplicative function of q, with values on prime powers
given by certain greatest common divisors:

ξk(pr) =


gcd(k, pr−1(p− 1)), if p is odd,
gcd(k, 2) gcd(k, 2r−2), if p = 2 and r ≥ 2,

1, if pr = 21.

Further, define ξk(q, a) to be the number of kth roots of a modulo q, and note that
for gcd(a, q) = 1, the quantity ξk(q, a) equals either ξk(q) or 0 according to whether
a has kth roots modulo q or not.

Then, for real numbers x > 1, define the functions

∆k(x; q) =


min

{
2ξk(q)

ϕ(q)

(
1 +

log(qk)

log(x/qk)

)
, 1 +

k

2 log x

}
, if x > qk,

1 +
k

2 log x
, if 1 < x ≤ qk

and

∆(x; q) =

blog x/ log 2c∑
k=2

log x

x1−1/k
∆k(x; q).

The graph of ∆(x; 3) is shown in Figure 1. (The jump discontinuities occur each
time x passes a power of 2, which is when the number of summands in the definition
of ∆(x; q) increases.)

The following lemma makes it clear why we have defined these quantities.
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FIGURE 1. ∆(x; 3)

Lemma 5.2. Let q ≥ 3 and let gcd(a, q) = 1. For all x > 1,

0 ≤ ψ(x; q, a)− θ(x; q, a)

x/ log x
≤ ∆(x; q).

Proof. From their definitions, we have the exact formula

0 ≤ ψ(x; q, a)− θ(x; q, a) =

blog x/ log 2c∑
k=2

∑
b (mod q)

bk≡a (mod q)

θ(x1/k; q, b).

The number of terms in the inner sum is either 0 or ξk(q). Appealing to the Brun–
Titchmarsh theorem [24, Theorem 2],

θ(x1/k; q, b) ≤ log(x1/k)π(x1/k; q, b)

< log(x1/k)
2x1/k

ϕ(q) log(x1/k/q)
=

2x1/k

ϕ(q)

(
1 +

log qk

log(x/qk)

)
,

and therefore ∑
b (mod q)

bk≡a (mod q)

θ(x1/k; q, b) < x1/k · 2ξk(q)

ϕ(q)

(
1 +

log qk

log(x/qk)

)
.

Moreover, for x > 1,∑
b (mod q)

bk≡a (mod q)

θ(x1/k; q, b) ≤ θ(x1/k) < x1/k +
x1/k

2 log(x1/k)
= x1/k

(
1 +

k

2 log x

)
,

where the second inequality was given by Rosser and Schoenfeld [35, Theorem 4,
page 70]. We thus have, for x > 1,∑

b (mod q)
bk≡a (mod q)

θ(x1/k; q, b) ≤ x1/k∆k(x; q).
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It follows that

0 ≤ ψ(x; q, a)− θ(x; q, a) =
∑
pk≤x

pk≡a (mod q)
k≥2

log p =

blog x/ log 2c∑
k=2

∑
p≤x1/k

pk≡a (mod q)

log p

=

blog x/ log 2c∑
k=2

∑
b (mod q)

bk≡a (mod q)

∑
p≤x1/k

p≡b (mod q)

log p

=

blog x/ log 2c∑
k=2

∑
b (mod q)

bk≡a (mod q)

θ(x1/k; q, b)

≤
blog x/ log 2c∑

k=2

x1/k∆k(x; q) =
x

log x
∆(x; q),

which is equivalent to the statement of the lemma. �

When examining the fine-scale distribution of prime counting functions such as
θ(x; q, a), one often considers the limiting (logarithmic) distribution of the normal-
ized error term (θ(x; q, a) − x/ϕ(q))/

√
x. It is known that this distribution is sym-

metric, but not necessarily around 0; rather, it is symmetric around −ξ2(q, a)/ϕ(q),
where ξ2(q, a) is the number of square roots of a modulo q as in Definition 5.1.
There is consequently some interest in the variant error term∣∣∣∣θ(x; q, a)−

(
x

ϕ(q)
− ξ2(q, a)

√
x

ϕ(q)

)∣∣∣∣.
For this reason, we define the slightly artificial function

θ#(x; q, a) = θ(x; q, a) +
ξ2(q, a)

√
x

ϕ(q)
(5.1)

and, where the effort involved is modest, establish our error bounds for |θ#(x; q, a)−
x/ϕ(q)| alongside those for |θ(x; q, a)− x/ϕ(q)|.

Lemma 5.3. Let q ≥ 3 and let gcd(a, q) = 1. For all x ≥ 4,∣∣∣∣ψ(x; q, a)− θ#(x; q, a)

x/ log x

∣∣∣∣ ≤ ∆(x; q).

Proof. The upper bound on the quantity inside the absolute value follows immedi-
ately from Lemma 5.2. As for the lower bound, since ψ(x; q, a) ≥ θ(x; q, a) we
have

−ψ(x; q, a)− θ#(x; q, a)

x/ log x
=

(
θ(x; q, a) + ξ2(q, a)

√
x/ϕ(q)

)
− ψ(x; q, a)

x/ log x



DRAFT

EXPLICIT BOUNDS FOR PRIMES IN ARITHMETIC PROGRESSIONS 55

and hence

−ψ(x; q, a)− θ#(x; q, a)

x/ log x
≤ ξ2(q, a)

√
x/ϕ(q)

x/ log x
≤ ξ2(q) log x

ϕ(q)
√
x
.

Observe that

ξ2(q) log x/(ϕ(q)
√
x) <

(
1 +

k

2 log x

)
log x√
x

as ξ2(q) ≤ ϕ(q), and for x > qk trivially

ξ2(q) log x

ϕ(q)
√
x

<
2ξk(q)

ϕ(q)

(
1 +

log(qk)

log(x/qk)

)
· log x√

x
.

Thus,
ξ2(q) log x

ϕ(q)
√
x
≤ log x√

x
∆2(x; q),

and as x ≥ 4, we have
log x

x1−1/2
∆2(x; q) ≤ ∆2(x; q) ≤ ∆(x; q).

�

We cannot quite say that ∆(x; q) is a decreasing function of x due to its jump
discontinuities (as we can see for q = 3 in Figure 1). However, the maximum effect
of these discontinuities is quite small, and the following lemma will suffice for our
purposes. Thereafter we will establish an analogue of Theorem 4.33 for θ(x; q, a),
which enable us to complete the proof of Theorem 1.2.

Lemma 5.4. Let q ≥ 3 be an integer and x2 > e2. For x > x2,

∆(x; q) < ∆(x2; q) +
6 log x2
x2

.

Proof. From Definition 5.1, we see that for a given q and k ≥ 2, the function
∆k(x; q) is a decreasing function of x. Since (log x)/x1−1/k is decreasing for
x > ek/(k−1) and hence certainly for x > e2, the function ∆(x; q), shown with
q = 3 in Figure 1, is decreasing in x, except that it has positive jump discontinuities
every time a new summand is introduced. So although we cannot say simply that
∆(x; q) ≤ ∆(x2; q), we can say that ∆(x; q) is at most ∆(x2; q) plus the sum of all
the jump discontinuities at values greater than x2. It remains to show that this sum
of jump discontinuities is less than (6 log x2)/x2.

The summand k = j is introduced at x = 2j , and its value is

log(2j)

(2j)1−1/j
∆j(2

j , q) =
log(2j)

(2j)1−1/j

(
1 +

1

2j log(2j)

)
=
j log 2

2j−1
+

1

j2j
,

since 2j < qj . Note that for any d ≥ 1,
∞∑
j=d

j log 2

2j−1
=

(d+ 1) log 2

2d−2
and

∞∑
j=d

1

j2j
<

1

d

∞∑
j=d

1

2j
=

1

d2d−1
.
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For a given x2, the first jump discontinuity lies at an integer d such that 2d > x2,
which means that the corresponding sum of jump discontinuities can be estimated
by

(d+ 1) log 2

2d−2
+

1

d2d−1
<

( log x2

log 2 + 1) log 2

x2/4
+

1
log x2

log 2 x2/2
. (5.2)

This last quantity is just

4 log(2x2) + (2 log 2)/ log x2
x2

<
6 log x2
x2

. (5.3)

Here, the inequality in (5.2) holds because d
2d

is a decreasing function of d for 2d >

e; inequality (5.3), which is valid already when x2 = e2, holds because the ratio of
the two sides is a decreasing function of x2. �

Theorem 5.5. Let 3 ≤ q ≤ 105 be an integer, and let a be an integer that is coprime
to q. Let 3 ≤ m ≤ 25 be an integer, and let x2 ≥ e2m+2, H ≥ H1(m) and
R ≥ 0.435 be real numbers. Let H0 be a function on the characters modulo q with
0 ≤ H0(χ) ≤ H for every such character. Let H2 be a function on the divisors
of q with H2(d) ≥ max{H, 108/d} for all d | q, such that every character χ with
modulus q satisfies Hypothesis Z(H2(q∗), R), where q∗ is the conductor of χ. Then
for all x ≥ x2,∣∣∣∣θ(x; q, a)− x

ϕ(q)

∣∣∣∣/ x

log x
≤ Dq,m,R(x2;H0, H,H2) + ∆(x2; q) +

6 log x2
x2

,

where Dq,m,R(x2;H0, H,H2) is defined in Definition 4.32 and ∆(x2; q) is defined
in Definition 5.1. The same upper bound holds for∣∣∣∣θ(x; q, a)− x− ξ2(q, a)

√
x

ϕ(q)

∣∣∣∣/ x

log x
=

∣∣∣∣θ#(x; q, a)− x

ϕ(q)

∣∣∣∣/ x

log x
, (5.4)

where ξ2(q, a) is as in Definition 5.1 and θ#(x; q, a) is as in equation (5.1).

Proof. Since
∣∣θ(x; q, a) − x

ϕ(q)

∣∣ ≤ ∣∣ψ(x; q, a) − x
ϕ(q)

∣∣ +
∣∣ψ(x; q, a) − θ(x; q, a)

∣∣,
it suffices to combine Theorem 4.33 with Lemmas 5.2 and 5.4. To establish the
inequality (5.4), we simply replace Lemma 5.2 with Lemma 5.3. �

Proof of Theorem 1.2 for small moduli. The remaining argument is essentially the
same as the proof of Theorem 1.1 (which appears at the end of Section 4.4), but
using Theorem 5.5 instead of Theorem 4.33. �

5.2. Conversion of estimates for θ(x; q, a) to estimates for π(x; q, a) and for
pn(q, a). There is a natural partial summation argument that derives information
for π(x; q, a) from information for θ(x; q, a). Two terms arise while integrating by
parts in such an argument: a main term, which is a small multiple of the hypothesized
error bound for θ(x; q, a); and several boundary terms, one of which is guaranteed to
be negative. To obtain a simple upper bound of the type that appears in Theorem 1.3,
we define a function that collects most of these boundary terms together, and work
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under an otherwise artificial assumption (see equation (5.6) below) that this function
is smaller than the remaining negative boundary term.

Definition 5.6. Given a positive integer q, an integer a that is relatively prime to q
and a real number u, define

E(u; q, a) = π(u; q, a)− Li(u)

ϕ(q)
− 1

log u

(
θ(u; q, a)− u

ϕ(q)

)
.

Proposition 5.7. Let q be a positive integer, and let a be an integer that is relatively
prime to q. Let κ and x3 be positive real numbers (which may depend on q and a).
Suppose we have an estimate of the form

∣∣∣∣θ(x; q, a)− x

ϕ(q)

∣∣∣∣ ≤ κx

log x
for x ≥ x3, (5.5)

and also that the inequality

|E(x3; q, a)| ≤ κx3

(log x3 − 2) log2 x3
(5.6)

is satisfied. Then

∣∣∣∣π(x; q, a)− Li(x)

ϕ(q)

∣∣∣∣ ≤ κ(log x3 − 1)

log x3 − 2

x

log2 x
for x ≥ x3.

Proof. By partial summation,

π(x; q, a)− Li(x)

ϕ(q)
= π(x3; q, a)− Li(x3)

ϕ(q)
+

∫ x

x3

1

log t
d

(
θ(x; q, a)− x

ϕ(q)

)
= π(x3; q, a)− Li(x3)

ϕ(q)
+
θ(x; q, a)− x/ϕ(q)

log x
− θ(x3; q, a)− x3/ϕ(q)

log x3

+

∫ x

x3

(
θ(x; q, a)− x

ϕ(q)

)
dt

t log2 t

= E(x3; q, a) +
θ(x; q, a)− x/ϕ(q)

log x
+

∫ x

x3

(
θ(x; q, a)− x

ϕ(q)

)
dt

t log2 t
.

(5.7)
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Using the hypothesized bound (5.5) and the triangle inequality, we see that∣∣∣∣π(x; q, a)− Li(x)

ϕ(q)

∣∣∣∣ ≤ |E(x3; q, a)|+ κx

log2 x
+

∫ x

x3

κ

log3 t
dt

≤ |E(x3; q, a)|+ κx

log2 x
+

κ

log x3 − 2

∫ x

x3

log t− 2

log3 t
dt

= |E(x3; q, a)|+ κx

log2 x
+

κ

log x3 − 2

t

log2 t

∣∣∣∣x
x3

= |E(x3; q, a)|+ κ(log x3 − 1)

log x3 − 2

x

log2 x
− κx3

(log x3 − 2) log2 x3

≤ κ(log x3 − 1)

log x3 − 2

x

log2 x
,

where the last step used the inequality (5.6). �

Proof of Theorem 1.3 for small moduli. For any 3 ≤ q ≤ 105, Theorem 1.2 gives the
hypothesis (5.5) with κ = cθ(q) and any x3 ≥ xθ(q). The results of our calculations
of the quantities xθ(q) satisfy

xθ(q) ≤ xθ(3) = 7,932,309,757 < 1011 for all 3 ≤ q ≤ 105

(links to the the full table of xθ(q) can be found in Appendix A.6), and therefore
we may choose x3 = 1011. We then computationally verify the inequality (5.6) for
κ = cθ(q) and x3 = 1011. By Proposition 5.7, we set

cπ(q) = cθ(q)(log(1011)− 1)/(log(1011)− 2)

and verify the inequality cπ(q) < c0(q). See Appendix A.4 for the details of the
computations involved.

This argument establishes the inequality (1.13) for all x ≥ 1011. By exhaus-
tive computation of π(x; q, a) for small x, we find the smallest positive real number
xπ(q) such that the inequality (1.9) holds for all x ≥ xπ(q), and verify the inequality
xπ(q) < x0(q). See Appendix A.6 for details of the computations involved. �

If we prefer to compare π(x; q, a) to x/ log x (as in Theorem 1.4) rather than to
Li(x) (as in Theorem 1.3), we may do so after establishing the following two routine
bounds upon Li(x).

Lemma 5.8. We have Li(x) >
x

log x
+

x

log2 x
+

2x

log3 x
+

6x

log4 x
for all x ≥ 190.

Proof. Repeated integration by parts gives from

Li(x) =

∫ x

0

dt

log t
−
∫ 2

0

dt

log t
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the identity

Li(x) =
x

log x
+

x

log2 x
+

2x

log3 x
+

6x

log4 x
+

(∫ x

0

24 dt

log5 t
−
∫ 2

0

dt

log t

)
.

The last term (the difference of integrals) is an increasing function of x for x > 1,
and direct calculation shows that it is positive for x = 190. �

Lemma 5.9. We have Li(x) <
x

log x
+

3x

2 log2 x
for all x ≥ 1865.

Proof. Define f(x) =
(

Li(x)− x
log x

)/
x

log2 x
. Since x ≥ 190, Lemma 5.8 implies

x2f ′(x) =x(log x− 1)− Li(x)(log x− 2) log x

< x(log x− 1)−
(

x

log x
+

x

log2 x
+

2x

log3 x
+

6x

log4 x

)
(log x− 2) log x

=
2x(6− log x)

log3 x
,

which is clearly negative for x ≥ 404 > e6. In particular, f ′(x) < 0 for x ≥ 404,
whereby f(x) is decreasing for such x. The desired result follows from directly
calculating that f(1865) < 3

2 . �

Proof of Theorem 1.4. From Theorem 1.3, we know that for x > xπ(q),

π(x; q, a) >
Li(x)

ϕ(q)
− cπ(q)

x

log2 x
.

The results of our calculations of the quantities xπ(q) (see Appendix A.6 for details)
satisfy

xπ(q) ≥ xπ(99,989) = 14,735 for all 3 ≤ q ≤ 105. (5.8)
In particular, xπ(q) > 190, and thus Lemma 5.8 implies that Li(x) > x

log x + x
log2 x

.
Hence

π(x; q, a) >
x

ϕ(q) log x

(
1 + (1− cπ(q)ϕ(q))

1

log x

)
,

and the right-hand side exceeds x
ϕ(q) log x under the hypothesis cπ(q)ϕ(q) < 1. The

fact that this hypothesis holds for q ≤ 1200 follows from direct calculation (see
Appendix A.4 for details).

Similarly, combining Theorem 1.3 and Lemma 5.9 gives us

π(x; q, a) <
x

ϕ(q) log x

(
1 + (3 + 2cπ(q)ϕ(q))

1

2 log x

)
.

The assumption that cπ(q)ϕ(q) < 1 yields the desired result. �

Upper bounds for π(x; q, a) are equivalent to lower bounds for pn(q, a), the nth
smallest prime that is congruent to a (mod q), and vice versa; the following two
proofs provide the details.
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Proof of the upper bound in Theorem 1.5. To simplify notation, we abbreviate the
term pn(q, a) by pn during this proof. If pn ≤ xπ(q) then there is nothing to prove,
so we may assume that pn > xπ(q). From Theorem 1.4 with x = pn,

n = π(pn; q, a) >
pn

ϕ(q) log pn
,

and therefore
nϕ(q) >

pn
log pn

. (5.9)

Taking logarithms of inequality (5.9),

log
(
nϕ(q)

)
> log

(
pn

log pn

)
= log pn ·

(
1− log log pn

log pn

)
,

which implies

log
(
nϕ(q)

)(
1 +

4 log log pn
3 log pn

)
> log pn ·

(
1− log log pn

log pn

)(
1 +

4 log log pn
3 log pn

)
.

The function (1− t)(1 + 4
3 t) is greater than 1 for 0 < t < 1

4 , and 0 < log log p
log p < 1

4

for all p ≥ 6000. Since (5.8) implies that xπ(q) > 6000, the previous inequality thus
gives

log
(
nϕ(q)

)(
1 +

4 log log pn
3 log pn

)
> log pn.

Furthermore, the function log log t
log t is decreasing for t ≥ 16 > ee. If pn ≤ nϕ(q)

then the desired upper bound is satisfied (other than the trivial case nϕ(q) = 2, for
which pn ≤ 7 < xπ(q) is easily checked by hand), so we may also assume that
pn > nϕ(q). It follows that

log
(
nϕ(q)

)(
1 +

4 log log(nϕ(q))

3 log(nϕ(q))

)
> log

(
nϕ(q)

)(
1 +

4 log log pn
3 log pn

)
> log pn.

Using this upper bound in inequality (5.9) yields

nϕ(q) log
(
nϕ(q)

)(
1 +

4 log log(nϕ(q))

3 log(nϕ(q))

)
> nϕ(q) log pn > pn, (5.10)

which is the desired inequality. �

Proof of the lower bound in Theorem 1.5. We again abbreviate pn(q, a) as pn during
this proof. If pn ≤ xπ(q) then there is nothing to prove, so we may assume that
pn > xπ(q); in particular, pn > 14,735 by equation (5.8). In this case, we know
from equation (5.10) that

f
(

log(nϕ)
)

= nϕ(q)
(

log(nϕ(q)) + 4
3 log log(nϕ(q))

)
> pn > 14,735, (5.11)

where f(t) = et(t+ 4
3 log t) is increasing for all t > 0. Since f(7.2) < 14,735, we

see that the inequality (5.11) implies that log(nϕ(q)) > 7.2.
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Now, suppose for the sake of contradiction that pn(q, a) ≤ nϕ(q) log(nϕ(q)). In
particular,

n = π(pn; q, a) ≤ π
(
nϕ(q) log(nϕ(q)); q, a

)
≤

Li
(
nϕ(q) log(nϕ(q)); q, a

)
ϕ(q)

+ cπ(q)
nϕ(q) log(nϕ(q))

log2
(
nϕ(q) log(nϕ(q))

)
<

n log(nϕ(q))

log
(
nϕ(q) log(nϕ(q))

) +
5n log(nϕ(q))

2 log2
(
nϕ(q) log(nϕ(q))

) , (5.12)

where the middle inequality used Theorem 1.3 and the assumptions

nϕ(q) log(nϕ(q)) ≥ pn > xπ(q),

and the last inequality used Lemma 5.9 and the assumptions

nϕ(q) log(nϕ(q)) ≥ pn > xπ(q) > 430.

Define the function

g(t) =
t

t+ log t
+

5t

2(t+ log t)2
,

so that the inequality (5.12) is equivalent to the statement that g
(
log(nϕ(q))

)
> 1.

On the other hand, g(t) is decreasing for t < t0 ≈ 21.8 and then strictly increasing
for all t > t0. Since limt→∞ g(t) = 1 and g(7.2) < 1, it follows that g(t) < 1 for
all t > 7.2, a contradiction. �

For moduli q that are not too large, our calculations of the constants cπ(q) allow
us to establish clean and explicit versions of Theorems 1.4 and 1.5 with a bit of
additional computation.

Proof of Corollary 1.6. For q = 1 and q = 2, we may quote results of Rosser and
Schoenfeld: the bounds on π(x; q, a) follow from [35, Theorem 1 and Corollary 1],
while the bounds on pn(q, a) follow from [35, Theorem 3 and its corollary]. For
3 ≤ q ≤ 1200, we verify from the results of our calculation of the constants cπ(q)
that cπ(q)ϕ(q) < 1 (see Appendix A.4 for details), which establishes the corollary
in the weaker ranges x > xπ(q) and pn(q, a) > xπ(q). For each of these moduli, an
explicit computation for x up to xπ(q) confirms that the asserted inequalities in fact
hold once x ≥ 50q2 and pn(q, a) ≥ 22q2, as required. See Appendix A.7 for details
of these last computations. �

We remark that our methods for large moduli (consider for example Proposi-
tion 6.19 below with Z = 3) would allow us to obtain the inequalities in Corol-
lary 1.6 for q > 105; by altering the constants in our arguments in Section 6, we
could in fact deduce those inequalities for all moduli q > 1200. The established
range of validity of those inequalities, however, would be substantially worse than
the lower bounds 50q2 and 22q2 given in Corollary 1.6: they would instead take the
form exp

(
κ
√
q(log q)3

)
for some absolute constant κ.
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6. ESTIMATION OF |ψ(x; q, a)− x/ϕ(q)|, |θ(x; q, a)− x/ϕ(q)|, AND
|π(x; q, a)− Li(x)/ϕ(q)|, FOR q ≥ 105

In this section, we will derive bounds upon our various prime counting functions
for large values of the modulus q, specifically for q ≥ 105. In this situation, our
methods allow us to prove inequalities of comparable strength to those for small q
(and indeed even stronger inequalities), but only when the parameter x is extremely
large: one requires a lower bound for x of the shape log x � √

q log3 q, which
is well beyond computational limits. Because of this limitation, we have opted for
clean statements over minimized constants.

The reason that the parameter x must be extremely large in such results, as is
well known, is that we must take into account the possibility of “exceptional zeros”
extremely close to s = 1. We use the following explicit definition of exceptional
zero in this paper.

Definition 6.1. DefineR1 = 9.645908801. We define an exceptional zero ofL(s, χ)
to be a real zero β of L(s, χ) with β ≥ 1− 1

R1 log q . By work of McCurley [21, The-
orem 1], we know that Hypothesis Z1(9.645908801) holds for the relevant moduli
q ≥ 105 (as per Definition 3.1), and therefore there can be at most one exceptional
zero among all of the Dirichlet L-functions to a given modulus q.

The first goal of this section is a variant of Proposition 2.1, which is essen-
tially Theorem 3.6 of McCurley [21] but where we relax the assumption that the
L-functions involved satisfy GRH(1):

Proposition 6.2. Let x > 2 and H ≥ 1 be real numbers, let q ≥ 105 and m ≥ 1
be integers, and let 0 < δ < x−2

mx be a real number. Then for every integer a with
gcd(a, q) = 1,

ϕ(q)

x

∣∣∣∣ψ(x; q, a)− x

ϕ(q)

∣∣∣∣ < Uq,m(x; δ,H) +
mδ

2
+ Vq,m(x; δ,H) + ε1, (6.1)

where Uq,m(x; δ,H) and Vq,m(x; δ,H) are as defined in equations (2.5) and (2.6)
and

ε1 <
ϕ(q)

x

(
log q · log x

log 2
+ 0.2516q log q

)
.

This statement is extremely close to that of Proposition 2.1, with the term Wq(x) of
that result replaced by a (potentially) larger quantity ε1. (Indeed, an easy calculation
shows that the statement actually follows from Proposition 2.1 for 29 ≤ q ≤ 4 · 105,
upon noting that the computations of Platt [31] confirm that all Dirichlet L-functions
to these moduli satisfy GRH(1).) We prove Proposition 6.2 at the end of Section 6.2;
we remark that our argument is similar to one of Ford, Luca, and Moree [9, Lemma
9]. Once this proposition is established, we will use it to deduce our upper bounds
on the error terms for our prime counting functions for these large moduli, thus
completing the proof of Theorems 1.1–1.3.
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6.1. Explicit upper bound for exceptional zeros of quadratic DirichletL-functions.
To proceed without the assumption of GRH(1), we need to derive estimates for ze-
ros of L-functions that would potentially violate this hypothesis. Motivated by the
computations of Platt [31], we will prove our results for q ≥ 4 ·105 though, by direct
computation, we can extend these to smaller values of q.

Lemma 6.3. If χ∗ is a primitive quadratic character with modulus q ≥ 4 · 105, then

L(1, χ∗) ≥ min
{

46π,max
{

log
(√q+4+

√
q

2

)
, 12
}}

q−1/2

=


12q−1/2, if 4 · 105 ≤ q < e24 − 2,
1
2q
−1/2 log q, if e24 − 2 < q < e92π − 2,

46πq−1/2, if q > e92π − 2.

Proposition 1.10 is an easy consequence of this lemma; see Section A.10 for the
details of that deduction.

Proof. As the asserted equality is elementary, we focus upon the asserted inequality.
We use the fact [25, Theorem 9.13] that every primitive quadratic character can be
expressed, using the Kronecker symbol, in the form χ∗(n) = χd(n) = ( dn ) for some
fundamental discriminant d, and such a character is a primitive character (mod q) for
q = |d|.

First, we consider negative values of d, so that d ≤ −400000. For these charac-
ters, Dirichlet’s class number formula [25, equation (4.36)] gives

L(1, χd) =
2πh(

√
d)

wd
√
|d|

,

where h(
√
d) is the class number of Q(

√
d), while wd is the number of roots of unity

in Q(
√
d); as is well-known, we have wd = 2 for d < −3. Appealing to Watkins

[46, Table 4], since |d| = q > 319867, we may conclude that h(
√
−q) ≥ 46, and

hence that

L(1, χ∗) =
2πh(

√
d)

wd
√
|d|
≥ 46πq−1/2.

Now, we consider d > 0. For these characters, Dirichlet’s class number for-
mula [25, equation (4.35)] gives

L(1, χd) =
h(
√
d) log ηd√
d

,

where h(
√
d) is the class number as above; here ηd = (v0 +u0

√
d)/2, where v0 and

u0 are the minimal positive integers satisfying v20 − du20 = 4. Since h(
√
d) ≥ 1 and

ηd =
v0 + u0

√
d

2
≥
√
d+ 4 +

√
d

2
,
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we thus have that
L(1, χ∗) ≥ log

(√
q+4+

√
q

2

)
q−1/2.

It only remains to show that L(1, χ∗) ≥ 12q−1/2, assuming q = d ≥ 4 · 105. As
log
(√q+4+

√
q

2

)
≥ 12 for q ≥ 2.65 · 1010 > e24 − 2, we may further assume that

4 · 105 ≤ q < 2.65 · 1010. In this range, we can verify the inequality

h(
√
d) log ηd > 12

computationally (see Section A.10 for the details), which completes the proof of the
lemma. �

It is worth noting that work of Oesterlé [27], making explicit an argument of
Goldfeld [11], provides a lower bound upon class numbers of imaginary quadratic
fields, which can be used to improve the order of magnitude of our lower bound
for L(1, χ∗) in Lemma 6.3. Tracing the argument through explicitly, for d < 0 a
fundamental discriminant, we could show that

h(
√
d) > log |d| exp

(
−10.4

√
log log |d|

log log log |d|

)
, (6.2)

leading to an improvement in the lower bound of Lemma 6.3 of order (log q)1−o(1)

for large q. Unfortunately, such an improvement would not ultimately lead to a more
accessible range of x in Theorems 1.1–1.3 for large moduli.

Lemma 6.4. Let q ≥ 3 be an integer, and let χ∗ be a primitive character with
modulus q. Then for any real number σ satisfying 1− 1

4
√
q ≤ σ ≤ 1 and any y > 4,

|L′(σ, χ∗)| ≤ y1−σ
(

log2 y

2
+

1

10

)
+

2
√
q

π
log

4q

π
· log y

yσ
. (6.3)

Proof. We proceed as in the proof of [9, Lemma 3]. We start by considering the
incomplete character sum fχ∗(u, v) =

∑
u<n≤v χ

∗(n), which can be bounded [25,
Section 9.4, p. 307] by

fχ∗(u, v) ≤ 2
√
q

(q−1)/2∑
a=1

1

sinπa/q
.

Since the function 1/sin(πz/q) is convex for 0 ≤ z ≤ q
2 ,

1

sinπa/q
<

∫ a+1/2

a−1/2

dz

sinπz/q

for each 1 ≤ a ≤ (q − 1)/2, and therefore

fχ∗(u, v) ≤ 2
√
q

∫ q/2

1/2

dz

sinπz/q
=

2
√
q

π
log cot

π

4q
<

2
√
q

π
log

4q

π
,
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since tan z > z for 0 < z < π
2 . We note that while this simple bound (an ex-

plicit version of the Pólya–Vinogradov inequality) is sufficient for our purposes, it is
possible to sharpen it further (see [32, 10]).

Now for any y > 4,

|L′(σ, χ∗)| =
∣∣∣∣−∑

n≤y

χ(n) log n

nσ
−
∑
n>y

χ(n) log n

nσ

∣∣∣∣
≤
∑
n≤y

log n

nσ
+

∣∣∣∣∑
n>y

χ(n) log n

nσ

∣∣∣∣
≤ y1−σ

∑
n≤y

log n

n
+

∣∣∣∣ ∫ ∞
y

log z

zσ
dfχ∗(y, z)

∣∣∣∣. (6.4)

Since log z
z is decreasing for z ≥ 4, the first term in expression (6.4) can be bounded

by

y1−σ
∑
n≤y

log n

n
≤ y1−σ

(
log 2

2
+

log 3

3
+

log 4

4
+

∫ y

4

log z

z
dz

)

= y1−σ
(

log 2 +
log 3

3
+

log2 y

2
− log2 4

2

)
< y1−σ

(
log2 y

2
+

1

10

)
. (6.5)

The second term in expression (6.4), after integrating by parts (and noting that both
boundary terms vanish), becomes∣∣∣∣ ∫ ∞

y

log z

zσ
dfχ∗(y, z)

∣∣∣∣ =

∣∣∣∣− ∫ ∞
y

fχ∗(y, z)

(
d

dz

log z

zσ

)
dz

∣∣∣∣
≤

2
√
q

π
log

4q

π

∫ ∞
y

∣∣∣∣ ddz log z

zσ

∣∣∣∣ dz =
2
√
q

π
log

4q

π
· log y

yσ
,

since log z
zσ is a decreasing function of z for z > e1/σ and since

e1/(1−1/4
√
q) < e

4
√

3

4
√

3−1 < 4 < y.

Combining this with inequalities (6.4) and (6.5) establishes the lemma. �

Lemma 6.5. Let q ≥ 4 · 105 be an integer and let χ∗ be a primitive character with
modulus q. Then, for any real number σ satisfying 1− 1

4
√
q ≤ σ ≤ 1,

|L′(σ, χ∗)| < 0.27356 log2 q.

Proof. The upper bound on |L′(σ, χ∗)| in Lemma 6.4 has a factor of 1
yσ and other-

wise does not depend on σ, so it suffices to establish the lemma for σ = 1 − 1
4
√
q
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itself. Setting y = qα with α to be determined numerically later, the bound (6.3)
becomes

|L′(σ, χ∗)|
log2 q

≤ q

(
α

4
√
q

)
·
(
α2

2
+

2α log(4q/π)

πqα−
1
2 log q

+
1

10 log2 q

)
, (6.6)

which for every fixed α > 1/2 is a decreasing function for sufficiently large q. After
some numerical experimentation we choose α = 0.655, for which the right-hand
side of equation (6.6) is decreasing for q ≥ 3 (as is straightforward to check using
calculus) and evaluates to less than 0.27356 at q = 4 · 105. �

Proof of Proposition 1.11. If q ≤ 4 · 105, Platt’s computations confirm that no qua-
dratic character modulo q has a nontrivial real zero, and so the lemma is vacuously
true for these moduli q. Assume now that q > 4 · 105 and that 0 < β < 1 is a
nontrivial real zero.

We first establish the result under the additional assumption that χ is a primitive
character. Since

min

{
46π,max

{
log

(
1

2

(√
q + 4 +

√
q
))

, 12

}}
≥ 12,

and q > 4 · 105, Lemma 6.3 implies that

12q−1/2 < L(1, χ) = L(1, χ)− L(β, χ) = (1− β)L′(σ, χ) (6.7)

for some β ≤ σ ≤ 1 by the Mean Value Theorem. If β < 1 − 1
4
√
q , then the bound

q ≥ 4 ·105 implies that β ≤ 1− 40√
q log2 q

as well. On the other hand, if β ≥ 1− 1
4
√
q ,

then Lemma 6.5 and equation (6.7) imply

1− β ≥ 12q−1/2

L′(σ, χ)
≥ 12q−1/2

0.27356 log2 q
>

40
√
q log2 q

.

This argument establishes the proposition when χ is primitive. However, if χ (mod q)
is induced by some quadratic character χ∗ (mod q∗), then the primitive case already
established yields

β ≤ 1− 40
√
q∗ log2 q∗

< 1− 40
√
q log2 q

,

as required. �

Note that an appeal to Oesterlé’s work [27], as discussed before equation (6.2),
would enable us to improve the denominator on the right-hand side of our upper
bound for β in Proposition 1.11 from

√
q log2 q to a complicated (yet still explicit)

function of the form
√
q(log q)1+o(1). The strongest such theoretical bound known,

due to Haneke [14], would have
√
q log q in the denominator.
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6.2. An upper bound for |ψ(x; q, a) − x/ϕ(q)|, including the contribution
from a possible exceptional zero. Now that we have an explicit upper bound for
possible exceptional zeros, we can modify McCurley’s arguments from [21] to ob-
tain the upper bound for |ψ(x; q, a) − x/ϕ(q)| asserted in Proposition 6.2. In what
follows, we will assume that q ≥ 105; our methods would allow us to relax this
assumption, if desired, with a change in the constants we obtain but no significant
difficulties.

Definition 6.6. Let us define, as in [21, page 271, lines 9–11], b(χ) to be the constant
term in the Laurent expansion of L

′

L (s, χ) at s = 0 and m(χ) (a nonnegative integer)
to be the order of the zero ofL(s, χ) at s = 0, so that L

′

L (s, χ) = m(χ)
s +b(χ)+O(|s|)

near s = 0.
If χ is principal, then L(s, χ) = ζ(s)

∏
p|q(1 − p−s), where the first factor ζ(s)

is nonzero at s = 0 while each factor in the product has a simple zero there; the
multiplicity of the zero at s = 0 is therefore ω(q), the number of distinct primes
dividing q. On the other hand, if χ is nonprincipal, then it is induced by some
primitive character χ∗ (mod q∗) with q∗ > 1, and

L(s, χ) = L(s, χ∗)
∏
p|q
p-q∗

(1− χ∗(p)p−s),

where the first factor L(s, χ∗) has at most a simple zero at s = 0 while each factor in
the product has a simple zero there; the multiplicity of the zero at s = 0 is therefore
at most 1 +ω(q)−ω(q∗) ≤ ω(q). In either case, we see that the order of the zero of
L(s, χ) at s = 0 is at most ω(q), and therefore

m(χ) ≤ ω(q) (6.8)

by the properties of logarithmic derivatives.

Our immediate goal is to establish the upper bound for |b(χ)| asserted in Propo-
sition 1.12; we do so by adapting a method of McCurley to address the possible
existence of exceptional zeros. Afterwards, we will be able to establish Proposi-
tion 6.2.

Lemma 6.7. For any positive integer q and any Dirichlet character χ (mod q),∑
ρ∈Z(χ)
|γ|≤1

2

|ρ(2− ρ)|
<

√
q log2 q

40
+ 3.4596 log2 q + 12.938 log q + 7.3912. (6.9)

Proof. Since |ρ| ≥ β and |2− ρ| ≥ 2− β, it suffices to show that∑
ρ∈Z(χ)
|γ|≤1

2

β(2− β)
<

√
q log2 q

40
+ 3.4596 log2 q + 12.938 log q + 7.3912.
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We recall that Hypothesis Z1(9.645908801) is true [21, Theorem 1], and therefore
every zero ρ being counted by the sum on the right-hand side, except possibly for a
single exceptional zero β0 and its companion 1− β0, satisfies

1

R1 log q
< β < 1− 1

R1 log q

by Definition 3.1 (where the lower bound holds by symmetry—see the remarks fol-
lowing equation (2.2)). We will argue separately according to whether or not there
are any exceptional zeros of L(s, χ), as per Definition 6.1.

We first assume that there is no such exceptional zero. If β = 1/2, then we have
that 2/β(2− β) = 8/3. If β 6= 1/2, then we pair the two zeros ρ1 = β + iγ and
ρ2 = 1 − β + iγ. Clearly one of β and 1 − β is less than 1/2 and the other greater,
say 1− β < 1/2 < β, whence

2

β(2− β)
+

2

(1− β)(2− (1− β))
=

1

1− β
+

1

1 + β
+

2

β(2− β)

<
1

1− β
+

2

3
+

8

3
(6.10)

< R1 log q +
10

3
.

In particular, the average contribution per zero is at most 1
2R1 log q+ 5

3 , whether the
zero has real part 1/2 or not (recall that R1 ≈ 9.6 and q ≥ 105); thus∑

ρ∈Z(χ)
|γ|≤1

2

β(2− β)
≤
(
R1

2
log q +

5

3

)
N(1, χ) (6.11)

when there is no exceptional zero.
If, on the other hand, L(s, χ) has an exceptional zero β0, then by definition

0 < 1− β0 ≤
1

R1 log q
<

1

2
< 1− 1

R1 log q
≤ β0 < 1;

furthermore, by Proposition 1.11,
40

√
q log2 q

≤ 1− β0.

By the same initial computation as in equation (6.10),

2

β0(2− β0)
+

2

(1− β0)(1 + β0)
<

1

1− β0
+

10

3
≤
√
q log2 q

40
+

10

3
,

so that∑
ρ∈Z(χ)
|γ|≤1

2

|ρ(2− ρ)|
<

√
q log2 q

40
+

10

3
+

(
R1

2
log q +

5

3

)
(N(1, χ)− 2) (6.12)
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when there is an exceptional zero. Proposition 2.5 tells us that

N(1, χ) = N(1, χ∗) <
1

π
log

q∗

2πe
+ C1 log q∗ + C2 < 0.71731 log q + 4.4347

(6.13)
(since q∗ ≤ q), and therefore the right-hand side of the inequality (6.12) is larger
than that of the inequality (6.11). The lemma now follows upon combining the in-
equalities (6.12) and (6.13) and rounding the constants upward. �

We remark that this proof shows that the first term on the right-hand side of the
inequality (6.9) can be replaced by the much smaller 2(0.71731 log q + 4.4347) if
L(s, χ) has no exceptional zero.

Proof of Proposition 1.12. Our starting point is an inequality of McCurley [21, equa-
tion (3.16)]:

|b(χ)| ≤
∣∣∣∣ζ ′(2)

ζ(2)

∣∣∣∣+ 1 +
∑

ρ∈Z(χ)

2

|ρ(2− ρ)|
+
q log q

4
, (6.14)

where the sum runs over zeros of L(s, χ) in the critical strip. (We remark that an
examination of McCurley’s proof shows that the term (q log q)/4 can be omitted if
χ is primitive, as noted by Ramaré and Rumely [33, page 415].)

For the zeros satisfying |γ| > 1, McCurley [21, page 275] finds that∑
ρ∈Z(χ)
|γ|>1

2

|ρ(2− ρ)|
< 4

∫ ∞
1

N(t, χ)

t3
dt. (6.15)

Since Proposition 2.5 implies the inequality

N(t, χ) <
t

π
log

q∗t

2πe
+ C1 log q∗t+ C2 ≤

t

π
log

qt

2πe
+ C1 log qt+ C2,

the bound (6.15) becomes∑
ρ∈Z(χ)
|γ|>1

2

|ρ(2− ρ)|
< 4

∫ ∞
1

(
t

π
log

qt

2πe
+ C1 log qt+ C2

)
t−3 dt

= 4

(
log q − log 2π

π
+ C1 ·

2 log q + 1

4
+ C2 ·

1

2

)
< 2.0713 log q + 8.735.

Combining this bound with Lemma 6.7 yields∑
ρ∈Z(χ)

2

|ρ(2− ρ)|
≤
√
q log2 q

40
+ 3.4596 log2 q + 15.01 log q + 16.126. (6.16)

From equation (6.14), it follows that

|b(χ)| ≤
∣∣∣∣ζ ′(2)

ζ(2)

∣∣∣∣+

√
q log2 q

40
+ 3.4596 log2 q + 15.01 log q + 17.126 +

q log q

4
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and hence
|b(χ)| < 0.2515q log q,

where the last inequality is a consequence of the assumption that q ≥ 105. �

Proof of Proposition 6.2. Arguing as in the proof of Theorem 3.6 of McCurley [21],
but without the assumption of GRH(1), one obtains the inequality (6.1) with

ε1 <
ϕ(q)

x

(
log 2

2
+ |d2| log(2x) + |d1 + d2|

)
, (6.17)

where (as in McCurley [21, equations (3.4) and (3.5)])

d1 =
1

ϕ(q)

∑
χ (mod q)

χ(a)
(
m(χ)− b(χ)

)
and d2 = − 1

ϕ(q)

∑
χ (mod q)

χ(a)m(χ),

with m(χ) and b(χ) as in Definition 6.6. It follows that

|d2| ≤
1

ϕ(q)

∑
χ (mod q)

m(χ) ≤ 1

ϕ(q)

∑
χ (mod q)

ω(q) = ω(q) ≤ log q

log 2
(6.18)

by equation (6.8) and

|d1 + d2| =
∣∣∣∣ 1

ϕ(q)

∑
χ (mod q)

χ(a)b(χ)

∣∣∣∣ ≤ 1

ϕ(q)

∑
χ (mod q)

|b(χ)| < 0.2515q log q

(6.19)
by Proposition 1.12. Inserting the inequalities (6.18) and (6.19) into the upper
bound (6.17) results in

ε1 <
ϕ(q)

x

(
log 2

2
+

log q

log 2
log(2x) + 0.2515q log q

)
.

It is easy to check that the assumption q ≥ 105 implies

log 2

2
+

log q

log 2
log(2x) + 0.2515q log q <

log q

log 2
log x+ 0.2516q log q,

which completes the proof of the proposition. �

6.3. Explicit upper bounds for |ψ(x; q, a)−x/ϕ(q)| and |θ(x; q, a)−x/ϕ(q)|.
To apply Proposition 6.2 for q ≥ 105, we could argue carefully as in Sections 2 and
4 to bound the various quantities on the right-hand side of equation (6.1). Our in-
ability to rule out the existence of possible exceptional zeros for L-functions of large
modulus q forces us to assume that the parameter x is exceptionally large, how-
ever, making such a refined analysis somewhat unnecessary. Instead, we will simply
set m = 2 in Proposition 6.2, to take advantage of existing inequalities, and pro-
ceed from there over the next three lemmas to obtain an explicit upper bound for
|ψ(x; q, a) − x/ϕ(q)|. Afterwards, we will convert that upper bound to a simpler
error estimate (for both ψ(x; q, a) and θ(x; q, a)) that is a multiple of x/(log x)Z for
an arbitrary Z > 0.
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Define the quantities

X =

√
log x

R1
, α =

X

log q
− 1, and H = qα =

eX

q
, (6.20)

and recall that R1 = 9.645908801 as in Definition 6.1.

Lemma 6.8. Let q ≥ 105 be an integer, and let χ be a character (mod q). For
x ≥ e4R1 log2 q , ∑

ρ∈Z(χ)
ρ 6=β0

|γ|≤H

xβ−1

|ρ|
< 0.5001Xe−X ,

where the index of summation means that an exceptional zero β0 for L(s, χ), if it
exists, is excluded.

Proof. We first compute the given sum with the symmetric zero 1−β0 also excluded.
Combining the proof of [21, Lemma 3.7] with Proposition 2.5, for each character χ
modulo q we have ∑

ρ∈Z(χ)
ρ/∈{β0,1−β0}
|γ|≤H

xβ−1

|ρ|
< ε2 + ε3 + ε4,

where

ε2 <
q log q + α log2 q

x
+

1

2
√
x

(
1 + 4α+ α2

2π
log2 q +

2 + α

π
log q

+
C1(α+ 1) log(q) + C2

qα
+ 0.798 log(q) + 11.075

)

and

ε3 =
C1X + C2

qα
e−X

ε4 =
1

2

∫ qα

1

t−1e
− log x
R1 log(qt) log(qt/2π) dt =

1

2

∫ qα

1

t−1e−X
2/ log(qt) log(qt/2π) dt.

Since x = e(1+α)
2R1 log2 q , q ≥ 105 and α ≥ 1, straightforward calculus exercises

yield
ε2 < 10−1000Xe−X and ε3 < 10−5Xe−X ,

while the change of variables u = −X2/ log(qt) (as in [9, page 1473]) gives an
upper bound upon ε4 of the shape

1

2

∫ qα

1

e−X
2/ log(qt) log qt

dt

t
=
X4

2

∫ X2/ log q

X

e−u

u3
du <

X4

2

∫ ∞
X

e−u

X3
du =

Xe−X

2
.
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We thus have
ε2 + ε3 + ε4 < 0.50005Xe−X .

As for the special zero 1− β0 (when it exists), the bounds

β0 ≥ 1− 1/R1 log q ≥ 0.99

from Definition 6.1 and q ≥ 105 and β0 ≤ 1− 40/
√
q log3 q from Proposition 1.11,

together with the hypothesis x ≥ e4R1 log2 q which is equivalent to log q ≤ X/2,
imply

x(1−β0)−1

1− β0
≤
√
q log3 q

40
x−0.99 ≤ X3eX/4

320x0.99
< 10−1000Xe−X

via another straightforward calculus exercise. Therefore the entire sum is at most
0.50005Xe−X + 10−1000Xe−X < 0.5001Xe−X as required. �

Lemma 6.9. Let q ≥ 105 be an integer, and let χ be a character (mod q). For
x ≥ e4R1 log2 q , ∑

ρ∈Z(χ)
|γ|>H

xβ−1

|ρ(ρ+ 1)(ρ+ 2)|
< 0.511Xe−Xq−2α

where H , X , and α are defined in equation (6.20).

Proof. As in the proof of Lemma 6.8, we combine Proposition 2.5 with the proof of
[21, Lemma 3.8]; for each character χ modulo q we have∑

ρ∈Z(χ)
|γ|>H

xβ−1

|ρ(ρ+ 1)(ρ+ 2)|
< ε5 + ε6 + ε7,

where

ε5 <
1

2q3α
√
x

(
qα

2π
(1 + α) log q + 0.798(α+ 1) log(q) + 10.809

)
+

4 log q

xq2α

ε6 =
C1

2

∫ ∞
qα

t−4e
− log x
R1 log(qt) dt+

1

2

∫ ∞
qα

t−3e
− log x
R1 log(qt) log(qt/2π) dt

ε7 =
C1X + C2

q3α
e−X .

Again via calculus, it is routine to show that

ε5 < 10−1000Xe−Xq−2α and ε7 < 0.00001Xe−Xq−2α.

To estimate ε6, note that

ε6 <
1

2

∫ ∞
qα

t−3e
− log x
R1 log(qt) log(qt)dt =

1

2
I2,2

(
(1 + α)2 log2 q, q; qα

)
,
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in the notation of Definition 4.1. Applying Lemma 4.4, we have

I2,2
(
(1 + α)2 log2 q, q; qα

)
= (1 + α)2q2(log q)2K2

(
2
√

2(1 + α) log q;
√

2
)

and so

ε6 <
1

2
(1 + α)2q2(log q)2K2

(
2
√

2(1 + α) log q;
√

2
)
.

Work of Rosser–Schoenfeld [36, Lemmas 4 and 5] yields

ε6 <
1

2
q2
(
X +

1

2

)
e−3X =

1

2

(
1 +

1

2X

)(
Xe−Xq−2α

)
< 0.5109Xe−Xq−2α.

It follows that ε5 + ε6 + ε7 < 0.511Xe−Xq−2α as required. �

Lemma 6.10. For q ≥ 105 and x ≥ e4R1 log2 q ,∣∣∣∣ψ(x; q, a)− x

ϕ(q)

∣∣∣∣ ≤ 1.012

ϕ(q)
xβ0 + 1.4579x

√
log x

R1
exp

(
−
√

log x

R1

)
,

where the first term on the right-hand side is present only if some DirichletL-function
(mod q) has an exceptional zero β0 (in the sense of Definition 6.1).

Proof. Recall the definitions of α, H , and X in equation (6.20), and note that α ≥ 1
due to our hypothesis on x. Applying Proposition 6.2 with m = 2 and δ = 2

H ≤
2 · 10−5, we have an upper bound for

∣∣ψ(x; q, a)− x
ϕ(q)

∣∣ of the shape

x

ϕ(q)

(
Uq,2

(
x;

2

qα
, qα
)

+ Vq,2

(
x;

2

qα
, qα
)

+
2

qα

)
+

log q log x

log 2
+0.2516q log q.

(6.21)
Here,

Uq,2

(
x;

2

qα
, qα
)

= A2(δ)
∑

χ (mod q)

∑
ρ∈Z(χ)
|γ|>H

xβ−1

|ρ(ρ+ 1)(ρ+ 2)|

=

(
H2 + 6H + 18 +

20

H

) ∑
χ (mod q)

∑
ρ∈Z(χ)
|γ|>H

xβ−1

|ρ(ρ+ 1)(ρ+ 2)|

< 1.001q2αϕ(q) · 0.511Xe−Xq−2α < 0.512ϕ(q)Xe−X

by Lemma 6.9 and a simple calculation, while

Vq,2

(
x;

2

qα
, qα
)

=

(
1 +

2

H

) ∑
χ (mod q)

∑
ρ∈Z(χ)
|γ|≤H

xβ−1

|ρ|
.

It follows that

Vq,2

(
x;

2

qα
, qα
)
≤ (1 + 2q−α)xβ0−1

β0
+ (1 + 2q−α)ϕ(q) · 0.5001Xe−X
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by Lemma 6.8, where the first term is present only if some Dirichlet L-function
(mod q) has an exceptional zero.

We may thus conclude from expression (6.21) that
∣∣ψ(x; q, a)− x

ϕ(q)

∣∣ is bounded
above by

(1 + 2q−α)xβ0

ϕ(q)β0
+ 0.5001x(1 + 2q−α)Xe−X

+ 0.512xXe−X +
2x

ϕ(q)qα
+

log q log x

log 2
+ 0.2516q log q,

where we may omit the first term if no exceptional zero β0 exists. From x =

e(1+α)
2R1 log2 q and α ≥ 1, we may verify by explicit computation for 105 ≤ q <

3 · 105 that

0.5001(1+2q−α)+0.512+
2eX

ϕ(q)qαX
+
eX log q log x

x
Xlog 2+

0.2516eXq log q

xX
,

(6.22)
is at most 1.4579 (and in fact maximal for α = 1 and q = 120120). For q ≥ 3 · 105,
we appeal to ([35, Theorem 15]) which provides the inequality

n

ϕ(n)
< eγ log log n+

2.50637

log log n
,

and again conclude that inequality (6.22) obtains. Since β0 ≥ 1− 1/R1 log q, it thus
follows that ∣∣∣∣ψ(x; q, a)− x

ϕ(q)

∣∣∣∣ < 1.012
xβ0

ϕ(q)
+ 1.4579xXe−X ,

as desired. �

The next two easy lemmas will help us prepare the upper bound just established
for simplication to the form we eventually want.

Lemma 6.11. Let a and q be integers with q ≥ 3 and gcd(a, q) = 1. Then, if
x ≥ 10500,

|ψ(x; q, a)− θ(x; q, a)| < 1.001
√
x and |ψ(x; q, a)− θ#(x; q, a)| < 1.001

√
x,

where θ#(x; q, a) is defined in equation (5.1).

Proof. We will use Rosser-Schoenfeld [35, Theorem 4, page 70]: for all y > 1,

θ(y) < y +
y

2 log y
.
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Define f(x) = x1/2+ x1/2

log x + x1/3 log x
log 2 + 3x1/3

2 log 2 . Even if we pretend that every proper
prime power is congruent to a (mod q), we have

0 ≤ ψ(x; q, a)− θ(x; q, a) ≤
blog x/ log 2c∑

k=2

θ(x1/k)

≤ θ(x1/2) + θ(x1/3)
log x

log 2

≤ x1/2 +
x1/2

log x
+

(
x1/3 +

3x1/3

2 log x

)
log x

log 2
= f(x).

Recall that ξ2(q, a) is defined in Definition 5.1; trivially from this definition, we have
the inequality ξ2(q, a) ≤ ϕ(q), and therefore ξ2(q, a)

√
x/ϕ(q) ≤

√
x. Therefore

−f(x) < −
√
x ≤ ψ(x; q, a)−

(
θ(x; q, a) +

ξ2(q, a)
√
x

ϕ(q)

)
≤ f(x).

It follows that both |ψ(x; q, a)−θ(x; q, a)| and |ψ(x; q, a)−ψ(x; q, a)−θ#(x; q, a)|
are bounded by f(x). It is easily checked that the decreasing function f(x)/

√
x is

less than 1.001 when x ≥ 10500. �

Lemma 6.12. For q ≥ 105 and x ≥ e4R1 log2 q ,∣∣∣∣ψ(x; q, a)− x

ϕ(q)

∣∣∣∣ ≤ 1.012

ϕ(q)
x1−40/(

√
q log2 q) + 1.4579x

√
log x

R1
exp

(
−
√

log x

R1

)
and ∣∣∣∣θ(x; q, a)− x

ϕ(q)

∣∣∣∣ ≤ 1.012

ϕ(q)
x1−40/(

√
q log2 q)

+ 1.4579x

√
log x

R1
exp

(
−
√

log x

R1

)
+ 1.001

√
x,

where the first term on each right-hand side is present only if an exceptional zero
exists for a quadratic L-function with conductor q.

Proof. We simply combine Proposition 1.11 with Lemmas 6.10 and 6.11 (and note
that e4R1(log 105)2 > 10500). �

The bounds of Lemma 6.12 are both O
(
x/(log x)Z

)
for every fixed real num-

ber Z. The purpose of this subsection is to provide several explicit versions of this
observation. The first summand in the bounds, with its unfortunate dependence on
q, is the one that really drives the growth. For that term, we need to take x ex-
tremely large before the asymptotic behavior is seen, rendering the resulting bounds
on ψ(x; q, a), θ(x; q, a), and π(x; q, a) impractical, although explicit. Consequently,
we bound all three summands rather carelessly.
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Lemma 6.13. Let q ≥ 105 be an integer and Z a real number, and let κ1 ≥ 0.0132
be a real number satisfying

460.516κ1
log κ1 + 13.087

≥ Z.

Then for all x ≥ exp
(
κ1
√
q log3 q

)
,

1.012

ϕ(q)
x1−40/(

√
q log2 q) ≤ 10−4

x

(log x)Z
.

Proof. By taking logarithmic derivatives, it is easy to show that the quotient

κ1 log q

log(κ1
√
q log3 q)

is an increasing function of q for q ≥ exp(e/κ
1/3
1 ); in particular, since κ1 ≥ 0.0132,

it is an increasing function for q > 105. Therefore

κ1 log q

log(κ1
√
q log3 q)

≥ κ1 log 105

log
(
κ1
√

105 log3(105)
)

and thus

κ1
√
q log3 q

log(κ1
√
q log3 q)

≥ 5κ1 log 10

log κ1 + log(105/2(log 105)3)

√
q log2 q

>
11.5129κ1

log κ1 + 13.087

√
q log2 q,

for all q ≥ 105. The function (log x)/ log log x is increasing for log x ≥ e; since the
hypotheses of the lemma imply

log x ≥ κ1
√
q log3 q ≥ 0.0132

√
105 log3(105) > e,

we conclude that
log x

log log x
≥ 11.5129κ1

log κ1 + 13.087

√
q log2 q,

and in particular
40 log x
√
q log2 q

≥ Z log log x

given the assumption on Z (noting that 40 · 11.5129 = 460.516). By [35, Theorem
15], for q ≥ 1.2 · 105, we have ϕ(q) ≥ 20736, and by direct computation of ϕ we
extend this bound down to q ≥ 105. This implies that

40 log x
√
q log2 q

+ logϕ(q) ≥ log 20736 + Z log log x,

ϕ(q)x40/(
√
q log2 q) ≥ 20736(log x)Z
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and
x

(log x)Z
≥ 20736

ϕ(q)
x1−40/(

√
q log2 q) ≥ 104

1.012

ϕ(q)
x1−40/(

√
q log2 q),

as desired. �

Lemma 6.14. Suppose thatR, κ2 and Z are real numbers with 1 ≤ R ≤ 10, κ2 > 1
and

Z ≤
√
κ2/R+ log

(√
R1/7.2895

)
log κ2

− 1

2
.

Then for all x ≥ eκ2 ,

1.4579x

√
log x

R
exp

(
−
√

log x

R

)
≤ 1

5

x

(log x)Z
.

Proof. Consider for u > 1/
√
R the function

f(u) =
log (eu/7.2895u)

log(Ru2)
,

whose derivative satisfies
df

du
=

(u− 1) log(Ru2)− 2 log (eu/7.2895u)

u log2(Ru2)
.

The denominator of the derivative is clearly positive, and its numerator is continuous,
goes to∞ with u, has derivative logRu2 > 0, and is positive for u = 1/

√
R (using

that 1 ≤ R ≤ 10). Therefore, f(u) is increasing.
By our hypothesis on Z, we have that Z ≤ f(

√
κ2/R). As f is increasing, it

follows that Z ≤ f(
√

log(x)/R) provided log x ≥ κ2 and
√

log(x)/R > 1/
√
R,

whence our hypotheses that κ2 > 1 and x ≥ eκ2 . But Z ≤ f(u) is equivalent to
1

5
· 1

(Ru2)Z
≥ 1.4579

u

eu
.

The lemma follows upon setting u =
√

log(x)/R and multiplying both sides by
x. �

Lemma 6.15. Let κ3 and Z be real numbers with κ3 > 1 and

Z ≤ κ3 − 6.44

2 log κ3
.

Then for all x ≥ eκ3 ,

1.001
√
x ≤ 1

25

x

(log x)Z
.

Proof. Consider f(u) = u−6.44
2 log u for u > 1. Clearly f is increasing and our hypoth-

esis on Z is that Z ≤ f(κ3). Thus Z ≤ f(u) for all u ≥ κ3, and in particular
Z ≤ f(log x). But this is equivalent to

1.001
√
x ≤ 1.001

e3.22
x

(log x)Z
,
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and 1.001/e3.22 < 1/25. �

With these three lemmas in place, we may now convert Lemma 6.12 into an ex-
plicit upper bound for the error terms related to ψ(x; q, a) and θ(x; q, a).

Proposition 6.16. Let q ≥ 105 be an integer and Z, κ1 ≥ 0.0132, κ2 > 1, κ3 > 1
be real numbers satisfying

Z ≤ min

{
460.516κ1

log κ1 + 13.087
,

√
κ2/R1 − 0.85317

log κ2
− 1

2
,
κ3 − 6.44

2 log κ3

}
, (6.23)

forR1 as defined in Definition 6.1. Then for all x ≥ exp
(

max{κ1
√
q log3 q, κ2, κ3}

)
,∣∣∣∣ψ(x; q, a)− x

ϕ(q)

∣∣∣∣ ≤ 1

4

x

(log x)Z
and

∣∣∣∣θ(x; q, a)− x

ϕ(q)

∣∣∣∣ ≤ 1

4

x

(log x)Z
.

Proof. To apply Lemma 6.12, we need x ≥ 4R1 log2 q, and here we have the
stronger assumptions that q ≥ 105 and x ≥ κ1

√
q log3 q. Now, using Lemmas 6.13–

6.15 (choosingR = R1 in Lemma 6.14, and using the fact that log
(√
R1/7.2895

)
>

−0.85317) shows that

max

{∣∣∣∣ψ(x; q, a)− x

ϕ(q)

∣∣∣∣, ∣∣∣∣θ(x; q, a)− x

ϕ(q)

∣∣∣∣} ≤ (1

5
+

1

25
+ 10−4

)
x

(log x)Z
,

(6.24)
which suffices to establish the proposition. �

The following corollary completes the proof of Theorems 1.1 and 1.2 for large
moduli q > 105, with cψ(q) = cθ(q) = 1

160 and

xψ(q) = xθ(q) = exp
(
0.03
√
q log3 q

)
(upon taking A = 1).

Corollary 6.17. Let q ≥ 105 be an integer and let A be any real number with
1 ≤ A ≤ 8. If x is a real number satisfying x ≥ exp

(
0.03A

√
q log3 q

)
, then∣∣∣∣ψ(x; q, a)− x

ϕ(q)

∣∣∣∣ ≤ 1

160

x

(log x)A
and

∣∣∣∣θ(x; q, a)− x

ϕ(q)

∣∣∣∣ ≤ 1

160

x

(log x)A
.

It is worth observing that, appealing to the previously mentioned work of Oesterlé
[27], we could improve the lower bound on x here to x ≥ exp(κ′

√
q(log q)2+o(1))

for some κ′ > 0, where the o(1) can be made explicit as in equation (6.2).

Proof. Set κ1 = 0.03A, κ2 = κ3 = 14400A and Z = A + 0.4. By calculus, the
hypotheses of Proposition 6.16 are satisfied, for 1 ≤ A ≤ 8. Moreover, as q ≥ 105,

κ1
√
q log3 q ≥ 0.03A

√
105(log 105)3 > 14400A = max{κ2, κ3},
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and therefore the conclusion of Proposition 6.16 holds for x ≥ exp(κ1
√
q log3 q).

Since log x > 14400A in this range, we conclude that

1

4

x

(log x)Z
=

1

4

x

(log x)A
1

(log x)Z−A
<

1

4

1

144000.4
x

(log x)A
<

1

160

x

(log x)A
.

�

Observe here that we were able to obtain a “small” constant factor of 1/160 in
Corollary 6.17, by starting with a higher power of log x in the denominator of our
error term than we ultimately desired. Arguing similarly, we can replace the constant
1/160 with a function of the parameter q that decreases to 0 as q increases, by starting
again with extraneous powers of log x in the denominator of our error term, and using
our assumption that log x ≥ κ1

√
q log3 q.

In a recent preprint of Yamada [47, Theorem 1.2], one finds similar results of the
shape ∣∣∣∣ψ(x; q, a)− x

ϕ(q)

∣∣∣∣ = O

(
x

(log x)A

)
,

for integers 1 ≤ A ≤ 10, valid also for log x � √q log3 q. Corollary 6.17 is not
directly comparable to Yamada’s results, as the latter contain estimates that have
been normalized to contain factors of the shape ϕ(q) in their denominators. One
may, however, readily appeal to Proposition 6.16 to sharpen [47, Theorem 1.2] for
q > 105, as described in the previous paragraph.

If q is a modulus for which the corresponding quadratic L-functions have no ex-
ceptional zero, all these results hold with a much weaker condition on the size of x.
In particular, this is the case, via Platt [31], for 105 < q ≤ 4 · 105.

Proposition 6.18. Let q ≥ 105 be an integer and suppose that no quadratic Dirichlet
L-function with conductor q has a real zero exceeding 1 − R1/ log q. Let κ2 and Z
be real numbers with κ2 > 1 and

Z ≤
√
κ2/R1 − 0.85317

log κ2
− 1

2
.

Then for all x ≥ exp
(

max{κ2, 4R1 log2 q}
)
,∣∣∣∣ψ(x; q, a)− x

ϕ(q)

∣∣∣∣ ≤ 1

4

x

(log x)Z
and

∣∣∣∣θ(x; q, a)− x

ϕ(q)

∣∣∣∣ ≤ 1

4

x

(log x)Z
.

Proof. The first assertion, for ψ(x; q, a), follows immediately from Lemma 6.10
(in the case where no exceptional zero is present) and Lemma 6.14. The second
assertion, for θ(x; q, a), follows from Lemma 6.12, together with Lemmas 6.14
and 6.15. �
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6.4. Conversion of estimates for θ(x; q, a) to estimates forπ(x; q, a). Our final
task is to convert our upper bounds for |θ(x; q, a) − x/ϕ(q)| for large q to upper
bounds for |π(x; q, a) − Li(x)/ϕ(q)|. We do so using the same standard partial
summation relationship that we exploited in Proposition 5.7 for smaller q; the proof
is complicated slightly by our desire to achieve a savings of an arbitrary power of
log x in the error term.

Proposition 6.19. Let q ≥ 105 be an integer and let Z > 0, κ1 ≥ 0.0132, κ2 > 1,
and κ3 > 1 be real numbers satisfying the inequality (6.23). Then if x is a real
number for which

x/(log x)Z+1 ≥ 2000 exp
(

max{κ1
√
q log3 q, κ2, κ3, Z + 28}

)
,

it follows that ∣∣∣∣π(x; q, a)− Li(x)

ϕ(q)

∣∣∣∣ ≤ 1

4

x

(log x)Z+1
. (6.25)

Proof. Define x4 = exp
(

max{κ1
√
q log3 q, κ2, κ3, Z+28}

)
. The function f(x) =

x/(log x)Z+1 is increasing for x > eZ+1 and hence increasing for x ≥ x4; its value
f(x4) is certainly less than 2000x4. Therefore the equation f(x) = 2000x4 has a
unique solution greater than x4, which we call x5, so that the proposition asserts
the upper bound (6.25) for x ≥ x5. Start at equation (5.7) (note Definition 5.6 for
E(x; q, a)):

π(x; q, a)− Li(x)

ϕ(q)
= E(x4; q, a) +

θ(x; q, a)− x/ϕ(q)

log x

+

∫ x

x4

(
θ(x; q, a)− x

ϕ(q)

)
dt

t log2 t
.

So by the upper bound (6.24) and the fact that log x4 ≥ Z + 28 > Z + 1,

∣∣∣∣π(x; q, a)− Li(x)

ϕ(q)

∣∣∣∣ ≤ ∣∣E(x4; q, a)
∣∣+ 0.2401

x

(log x)Z+1
+ 0.2401

∫ x

x4

dt

(log t)Z+2

≤
∣∣E(x4; q, a)

∣∣+ 0.2401
x

(log x)Z+1
+

0.2401

(log x4 − (Z + 1))

∫ x

x4

log t− (Z + 1)

(log t)Z+2
dt

=
∣∣E(x4; q, a)

∣∣+ 0.2401
x

(log x)Z+1
+

0.2401

(log x4 − (Z + 1))

t

(log t)Z+1

∣∣∣∣x
x4

≤
∣∣E(x4; q, a)

∣∣+
0.2401(log x4 − Z)

log x4 − (Z + 1)

x

(log x)Z+1
− 0.2401

(log x4 − (Z + 1))

x4
(log x4)Z+1

≤
∣∣E(x4; q, a)

∣∣+
0.2401(log x4 − Z)

log x4 − (Z + 1)

x

(log x)Z+1
.
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A trivial upper bound for |E(u; q, a)| is, for u > 3, simply 2u. To see this, note that,
from Definition 5.6,

|E(u; q, a)| ≤ max

{
π(u; q, a) +

u

ϕ(q) log u
,

Li(u)

ϕ(q)
+
θ(u; q, a)

log u

}
whereby, replacing π(u; q, a) by π(u) and θ(u; q, a) by θ(u), and appealing to bounds
of Rosser-Schoenfeld [35] leads to the desired conclusion. It follows that, for x ≥
x4,∣∣∣∣π(x; q, a)− Li(x)

ϕ(q)

∣∣∣∣ ≤ 2x4 +
0.2401(log x4 − Z)

log x4 − (Z + 1)

x

(log x)Z+1

=
x

(log x)Z+1

(
0.2401(log x4 − Z)

log x4 − (Z + 1)
+

2x4(log x)Z+1

x

)
.

Note that (log x)Z+1

x is decreasing for x > eZ+1; since

log x5 > log x4 ≥ Z + 28 > Z + 1,

we see that for x ≥ x5,∣∣∣∣π(x; q, a)− Li(x)

ϕ(q)

∣∣∣∣ =
x

(log x)Z+1

(
0.2401(log x4 − Z)

log x4 − (Z + 1)
+

2x4(log x5)Z+1

x5

)
=

x

(log x)Z+1

(
0.2401(log x4 − Z)

log x4 − (Z + 1)
+

1

1000

)
by the definition of x5. The first summand in parentheses is a decreasing function of
log x4 (when log x4 > Z+ 1), and its value when we replace log x4 with the smaller
quantity Z + 28 is less than 0.249, which completes the proof. �

Corollary 6.20. For all q > 105 and x ≥ exp
(
0.03
√
q log3 q

)
,∣∣∣∣π(x; q, a)− Li(x)

ϕ(q)

∣∣∣∣ ≤ 1

160

x

log2 x
.

Proof. Set Z = 1.4, κ1 = 0.0295 and κ2 = κ3 = 14200. By direct calculation, the
hypotheses of Proposition 6.19 are satisfied. Moreover, as q ≥ 105,

κ1
√
q log3 q ≥ κ1

√
105(log 105)3 > 14200 ≥ max{κ2, κ3, Z + 28},

and therefore the conclusion of Proposition 6.19 holds as long as we have

x/(log x)Z+1 ≥ 2000 exp(κ1
√
q log3 q).

Since we assume that x ≥ exp
(
0.03
√
q log3 q

)
,

x

(log x)2.4
≥

exp
(
0.03
√
q log3 q

)
(0.03

√
q log3 q)2.4

and hence it remains to show that

exp(0.0005
√
q log3 q) > 2000(0.03

√
q log3 q)2.4.



DRAFT

EXPLICIT BOUNDS FOR PRIMES IN ARITHMETIC PROGRESSIONS 82

Since q ≥ 105, we may verify that this inequality is satisfied for q = 105 and then
check that the quotient of the left-hand side and the right-hand side is increasing by
taking its logarithmic derivative. We may thus apply Proposition 6.19 to conclude
that ∣∣∣∣π(x; q, a)− Li(x)

ϕ(q)

∣∣∣∣ ≤ 1

4

x

(log x)Z+1
=

1

4

x

log2 x

1

(log x)Z−1

and hence that∣∣∣∣π(x; q, a)− Li(x)

ϕ(q)

∣∣∣∣ < 1

4

1

144000.4
x

log2 x
<

1

160

x

log2 x
.

�

A. APPENDIX: COMPUTATIONAL DETAILS

Many of the proofs in this paper required considerable computations, which we
carried out using a variety of C++, Perl, Python, and Sage code. The result-
ing data files were manipulated using standard Unix tools such as awk, grep, and
sort. The smallest of the required computations were easily performed on a laptop
in a few seconds, while the largest required thousands of hours of CPU time on a
computing cluster. In the appendices below we give explanations of the computa-
tions and also links to the computer code and resulting data. The interested reader
can find a summary of the available files at the following webpage:

http://www.nt.math.ubc.ca/BeMaObRe/

A.1. Verification of bound on N(T, χ0) for principal characters χ0 and the
computation of ν2(x). In order to complete the proof of Proposition 2.5, we need
to verify the asserted bound for χ principal and 1 ≤ T ≤ 1014. This can be done
quite directly by comparing the bound against a table of zeta function zeros. Such
data is available from websites such as the L-functions and Modular Forms Data-
base [20] or other computer algebra software (such as Sage). At the kth zero of the
zeta function, which is of the form 1

2 + iγk, we compute the upper and lower bounds
implicit in the statement of the bound at t = γk, remembering that when we take lim-
its from left and right the quantity N(T, χ0) is set to 2(k − 1) and 2k respectively.
We give Sage code to perform this verification and its output in the

BeMaObRe/c-psi-theta-pi/prop2.6/

subdirectory.

A.2. Using lcalc to compute ν2. We make use of Rubinstein’s lcalc program
to compute zeros of L-functions. For the sake of interfacing with lcalc, we com-
pute ν2 in the following way. While Definition 2.10 allows for more general H0(χ),
we only use functions H0 that are constant on characters with the same conductor.
Letting H0(d) be that constant, we have

ν2(q,H0) =
∑

χ (mod q)

ν1(χ,H0(χ)) =
∑
d|q

∑
χ (mod q)
q∗=d

ν1(χ,H0(d)).

http://www.nt.math.ubc.ca/BeMaObRe/
 http://www.nt.math.ubc.ca/BeMaObRe/
http://www.nt.math.ubc.ca/BeMaObRe/prop2.6/
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Further, the functions we use for H0 take on the value 0 (no lcalc data) or are at
least 10.

If H0(d) = 0, i.e., if we have made no calculations with lcalc for characters
with conductor d, we have

∑
χ (mod q)
q∗=d

ν1(χ,H0(d)) =
∑

χ (mod q)
q∗=d

(
−Θ(d, 1) +

⌊
1

π
log

d

2πe
+ C1 log d+ C2

⌋)

= −ϕ∗(d)Θ(d, 1) + ϕ∗(d)

⌊
1

π
log

d

2πe
+ C1 log d+ C2

⌋
= ν0(d, 0)− ν0(d, 0),

where we set

ν0(d, 0) = 0

ν0(d, 0) = ϕ∗(d)Θ(d, 1)− ϕ∗(d)

⌊
1

π
log

d

2πe
+ C1 log d+ C2

⌋
If H0(d) ≥ 1, we must address some peculiarities of lcalc. For real characters,

lcalc only gives the zeros with positive imaginary part, and for each complex-
conjugate pair of nonreal characters, lcalc returns the zeros of only one of the
pair. Let N ′(h, χ) be the number of zeros of L(s, χ) with imaginary part in [0, h] if
χ is real, and N ′(h, χ) = N(h, χ) if χ is nonreal. We define, for real h ≥ 1,

ν0(d, h) = ϕ∗(d)Θ(d, h) +
2

h

∑′

χ (mod q)
q∗=d

N ′(h, χ),

where
∑′ indicates that the sum includes only one of each pair of complex conjugate

characters. We have (saving the definition of ν0(d, h) for h = H0(d) ≥ 1 until after
its use):

∑
χ (mod q)
q∗=d

ν1(χ,H0(d)) =
∑

χ (mod q)
q∗=d

−Θ(d, h)− N(h, χ)

h
+

∑
ρ∈Z(χ∗)
|γ|≤h

1√
γ2 + 1/4


= −ϕ∗(d)Θ(d, h)−

∑
χ

q∗=d

N(h, χ)

h
+
∑
χ

q∗=d

∑
ρ∈Z(χ∗)
|γ|≤h

1√
γ2 + 1/4

= ν0(d, h)− ν0(d, h).
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The definition of ν0(d, h) for h ≥ 1 is then forced to be

ν0(d, h) =
∑

χ (mod q)
q∗=d

∑
ρ∈Z(χ)
|γ|≤h

1√
γ2 + 1/4

= 2

( ∑
χ real
q∗=d

∑
ρ∈Z(χ)
0<γ<≤h

1√
γ2 + 1/4

+
∑′

χ not real
q∗=d

∑
ρ∈Z(χ)
0<γ<≤h

1√
γ2 + 1/4

)
.

With these definitions, we have

ν2(q,H0) =
∑
d|q

(ν0(d,H0(d))− ν0(d,H0(d))) .

We used H0(d) = 104 for d ≤ 12, H0(d) = 103 for d ≤ 1000, H0(d) = 102 for
d ≤ 2500, and H0(d) = 10 for d ≤ 104. Then, for a given choice of H , we use the
largest value of H0(d) that is less than H . For example, with H = 120, we use:

H0(d) =


100, if d ≤ 2500,
10, if 2500 < d ≤ 104,
0, if d > 104.

A.3. Computations of worst-case error bounds for q ≤ 105 and for x ≤
x2(q). All our computations were split according to the modulus q. For each q,
we generated the sequence of primes using the primesieve library for C++ [45].
This implements a very highly optimized sieve of Eratosthenes with wheel factori-
sation. We experimented with storing the primes in a file on disc, but found that
it was faster to generate them each time using primesieve. As each prime was
generated, its residue was computed and the three functions

π(x; q, a) =
∑
p≤x

p≡a (mod q)

1, θ(x; q, a) =
∑
p≤x

p≡a (mod q)

log p, ψ(x; q, a) =
∑
pn≤x

pn≡a (mod q)

log p

were updated.
The function π(x; q, a) is straightforward, simply requiring integer arithmetic.

However the functions θ(x; q, a) and ψ(x; q, a) involve summing anywhere up to
1012 floating point numbers. In such computations considerable rounding error can
occur. To deal with these errors, we used interval arithmetic to keep track of upper
and lower bounds on θ and ψ.

As we computed ψ, θ and π for increasing x, we also stored data about the func-
tions

1√
x

(
ψ(x; q, a)− x

ϕ(q)

)
,

1√
x

(
θ(x; q, a)− x

ϕ(q)

)
,

log x√
x

(
π(x; q, a)− Li(x)

ϕ(q)

)
,



DRAFT

EXPLICIT BOUNDS FOR PRIMES IN ARITHMETIC PROGRESSIONS 85

as well as the variant
1√
x

(
θ#(x; q, a)− x

ϕ(q)

)
=

1√
x

(
θ(x; q, a)− x− ξ2(q, a)

√
x

ϕ(q)

)
as defined in equation (5.1). Each of these expressions is monotone decreasing be-
tween jumps at primes and prime powers. Hence to keep track of the maximum value
of each on a given interval, it suffices to check their left and right limits at each prime
power (including the primes themselves) and at the ends of each interval. A running
maximum was kept for each function and was dumped to a file at each change. For
2 ≤ x ≤ 1011, for example, each modulus took approximately 1 hour on a single
core on the WestGrid computing cluster. Spread over the cluster, which is shared
with other users, the whole computation took about a month of real time.

As part of these computations, we needed to be able to evaluate the logarithmic
integral Li(z) quickly. We exploited the exponential integral Ei(u) = −

∫∞
−u

e−t

t dt

via the formula Li(z) = Ei(log z) − Ei(log 2). Initially, we computed Ei(u) using
the series [1, equation 5.1.10]

Ei(u) = C0 + log |u|+
∞∑
k=1

uk

k · k!
;

in practice, however, this turned out to be too slow for our purposes. Instead we
pre-computed Ei(u) using the above series at 33 · 1000 equally spaced points u over
the range 0 ≤ u ≤ 33 (corresponding to 1 ≤ z ≤ e33 ≈ 2 · 1014). Then, in order
to compute Ei(u) away from those points, we precomputed the Taylor expansion of
Ei(u) at each of those 33 · 1000 points, namely

Ei(u) = Ei(v) + ev
(

1

v
(u− v) +

v − 1

2v2
(u− v)2 +

v2 − 2v + 2

6v3
(u− v)3 + · · ·

)
.

(A.1)

We found that the error in this approach was sufficiently small when we truncated
the Taylor expansion (A.1) at the cubic term. We could then build the error in Taylor
approximation into our interval arithmetic via the Lagrange remainder theorem.

For 1 ≤ x ≤ x2(q), where x2(q) is defined in (1.18), for example, we computed
that for all q with 3 ≤ q ≤ 105 and q 6≡ 2 (mod 4),

1√
x

∣∣∣∣ψ(x; q, a)− x

ϕ(q)

∣∣∣∣ ≤ 1.118034 (supremum achieved at q = 4, x = 5−)

1√
x

∣∣∣∣θ(x; q, a)− x

ϕ(q)

∣∣∣∣ ≤ 1.817557 (supremum achieved at q = 8, x = 11257−)

1√
x

∣∣∣∣θ#(x; q, a)− x

ϕ(q)

∣∣∣∣ ≤ 1.053542 (supremum achieved at q = 3, x = 227−)

log x√
x

∣∣∣∣π(x; q, a)− Li(x)

ϕ(q)

∣∣∣∣ ≤ 2.253192 (supremum achieved at q = 4, x = 229−).

(A.2)
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Indeed, our computations gave corresponding constants bψ(q), bθ(q), bθ#(q), and
bπ(q) for each modulus q under discussion, which are the smallest constants such
that the inequalities ∣∣∣∣ψ(x; q, a)− x

ϕ(q)

∣∣∣∣ ≤ bψ(q)
√
x∣∣∣∣θ(x; q, a)− x

ϕ(q)

∣∣∣∣ ≤ bθ(q)√x∣∣∣∣θ#(x; q, a)− x

ϕ(q)

∣∣∣∣ ≤ bθ#(q)
√
x∣∣∣∣π(x; q, a)− Li(x)

ϕ(q)

∣∣∣∣ ≤ bπ(q)

√
x

log x

(A.3)

are satisfied for 1 ≤ x ≤ x2(q). A number of these are given in the following table,
rounded up in the last decimal place; notice the four constants in equation (A.2)
appearing in the rows corresponding to q = 3, 4, and 8.

q x2(q) bψ(q) bθ(q) bθ#(q) bπ(q)

3 4 · 1013 1.070833 1.798158 1.053542 2.186908
4 4 · 1013 1.118034 1.780719 1.034832 2.253192
5 4 · 1013 0.886346 1.412480 0.912480 1.862036
7 1013 0.782579 1.116838 0.829249 1.260651
8 1013 0.926535 1.817557 0.887952 2.213119
9 1013 0.788900 1.108042 0.899812 1.229315
11 1013 0.878823 0.976421 0.885771 1.103821
12 1013 0.906786 1.735501 0.906786 2.001350
...

...
...

...
...

...
101 1012 0.709028 0.709028 0.717402 0.777577

...
...

...
...

...
...

10001 1011 0.735215 0.735215 0.735215 0.735207
...

...
...

...
...

...
105 1011 0.735419 0.735419 0.735419 0.735417

(Similar data for x in the (smaller) range 1 ≤ x ≤ 1010 can be found in [33,
Table 2]. Historically, computations of this type have been viewed as evidence sup-
porting the Generalized Riemann Hypothesis, since these error terms would grow
like a larger power of x should GRH be false.) Note that we have skipped the mod-
uli q ≡ 2 (mod 4), since the distribution of prime powers in arithmetic progessions
modulo such q is essentially equivalent to the distribution of prime powers modulo
q
2 ; see Lemma A.1 below.

In the course of running these computations, we chose a computational-time
trade-off between large values of x2(q) for fewer smaller moduli and lesser values of
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x2(q) for the entire range of moduli. The total time for the x2(q) = 1012 run (for q
with 100 < q ≤ 104) was similar to the initial 1011 run (to q = 105), while the 1013

and 4 · 1013 runs (to q = 5 and q = 100, respectively) took approximately 2 weeks
of real time. The data for all of these computations can be found in the

BeMaObRe/b-psi-theta-pi/

subdirectory and are described in the associated readme file.
As has been observed before with similar computations, most of the entries in

this table (particularly for large q) are extremely close to (log 7)/
√

7 ≈ 0.735485.
For the relatively small values of x under consideration, the maximum value of
(for example) |θ(x; q, a) − x/ϕ(q)|/

√
x occurs at the first prime p congruent to

a (mod q), leading to the value | log p− p/ϕ(q)/
√
p which, for q large, is very close

to (log p)/
√
p; and the function (log x)/

√
x is maximized at x = e2, to which p = 7

is the closest prime. If one were to continue these calculations for larger and larger x,
we would see these values bψ(q), bθ(q), and bθ#(q) increase irregularly to infinity.

We also observe, for the small moduli q where the single prime 7 is not dictating
the values of the constants bθ(q) and bθ#(q), that the latter constants are signifi-
cantly smaller than the former; this observation reflects the fact that the distribution
of
(
θ#(x; q, a) − x/ϕ(q)

)
/
√
x is centered around 0 (which is the precise reason

for the definition (5.1) of θ#(x; q, a) in the first place), unlike the distribution of(
θ(x; q, a)− x/ϕ(q)

)
/
√
x.

If q is twice an odd number, then the distribution of prime powers in arithmetic
progressions modulo q is almost completely equivalent to the distribution of prime
powers modulo q/2 (the powers of 2 are the only ones that are counted differently).

Lemma A.1. Let k ≥ 3 be an odd integer, and let a be an odd integer that is coprime
to k. Then for all x ≥ 2,∣∣ψ(x; 2k, a)− ψ(x; k, a)

∣∣ ≤ (1 +
log(x/2)

log(k + 1)

)
log 2 ≤ log x,∣∣θ(x; 2k, a)− ψ(x; k, a)

∣∣ ≤ log 2 < 1,∣∣π(x; 2k, a)− π(x; k, a)
∣∣ ≤ 1.

Proof. We note that ψ(x; k, a) = ψ(x; 2k, a)+ψ(x; 2k, a+k) exactly. On the other
hand, every integer that is congruent to a + k (mod 2k) is even, so the only prime
powers that could be counted by ψ(x; 2k, a + k) are powers of 2; and note that a
power of 2 is congruent to a+k (mod 2k) if and only if it is congruent to a (mod k).
If such a power exists, let 2m be the smallest prime power congruent to a (mod k),
and let n be the order of 2 modulo k, so that the powers of 2 that are congruent to
a (mod k) are precisely 2m, 2m+n, 2m+2n, . . . . The number of such powers of 2 not
exceeding x is exactly

1 +

⌊
log(x/2m)

log(2n)

⌋
≤ 1 +

log(x/2m)

log(2n)
≤ 1 +

log(x/2)

log(k + 1)
,

http://www.nt.math.ubc.ca/BeMaObRe/b-psi-theta-pi/
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where the last inequality is due to m ≥ 1 and the fact that 2n > 1 is congruent to
1 (mod k) and therefore must be at least k + 1. The first inequality asserted in the
statement of the lemma follows from the fact that each such power of 2 contributes
log 2 to ψ(x; 2k, a + k) = ψ(x; k, a) − ψ(x; 2k, a). The second and third asserted
inequalities have similar proofs (easier, in fact, since those two functions count only
primes and not prime powers). �

A.4. Computations of the leading constants cψ , cθ, and cπ for q ≤ 105. The
constants cψ(q) and cθ(q) were computed using Theorem 4.33 and Theorem 5.5,
after which the constants cπ(q) were computed using Proposition 5.7. While the
expressions in Theorem 4.33 and Theorem 5.5 are cumbersome, evaluating them is
actually a straightforward (if ugly) computation using C++. To simplify our code
we precomputed data for some of the auxillary functions (the totient function ϕ(q)
and the factorisations involved in the function ∆(x; q) from Definition 5.1) using the
Sage computer algebra system. We also verified our cψ(q), cθ(q), and cπ(q) values
using the Mathematica computer algebra system.

The resulting code is quite fast, and all of these constants can be computed for
q ≤ 105 and a given m,H and x2 in only a few seconds. For a given choice of q and
x2, we computed the constants for 4 ≤ m ≤ 12 and computed the minimum value
over H1(m) ≤ H ≤ 109; it turned out that m ∈ {6, 7, 8, 9} gave the best bound in
every case. Our results are given in the

BeMaObRe/c-psi-theta-pi/

http://www.nt.math.ubc.ca/BeMaObRe/c-psi-theta-pi/
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subdirectory and described in the corresponding readme file. By way of example,
we have

q cψ(q) cθ(q) cπ(q)

3 0.0003964 0.0004015 0.0004187
4 0.0004770 0.0004822 0.0005028
5 0.0003665 0.0003716 0.0003876
6 0.0003964 0.0004015 0.0004187
7 0.0004584 0.0004657 0.0004857
8 0.0005742 0.0005840 0.0006091
9 0.0005048 0.0005122 0.0005342
10 0.0003665 0.0003716 0.0003876
11 0.0004508 0.0004553 0.0004748
12 0.0006730 0.0006829 0.0007121
...

...
...

...
101 0.0008443 0.0008460 0.0008822

...
...

...
...

10001 0.0034386 0.0034403 0.0035878
...

...
...

...
105 0.0051178 0.0051196 0.0053391

Note that in order to compute cπ(q) from cθ(q) using Proposition 5.7, we must
verify the hypothesis (5.6) of that proposition. To avoid having to explicitly check
inequality (5.6) for x > 1011, we examined x1(q) (see Appendix A.6) and confirmed
that x1(q) < 1011. Hence it sufficed to evaluateE(x3; q, a) at x3 = 1011. To do this,
we computed maxgcd(a,q)=1 |E(1011, q, a)| (using code similar to that used to com-
pute the constants bθ(q) and bπ(q)) for each modulus q and verified inequality (5.6).
This computation took about 1 hour for each modulus and so approximately 1 month
of real time. The data from this computation can be found in the

BeMaObRe/c-psi-theta-pi/E-bound/

subdirectory.

A.5. Dominant contributions to cψ(q), cθ(q), and cπ(q) for q ≤ 105. Let us
recall the function Dq,m,R(x2;H0, H,H2) from Definition 4.32, certain values of
which are exactly equal to cψ(q). While Dq,m,R(x2;H0, H,H2) is programmable
and hence suffices for our numerical results, it would be helpful to have some intu-
ition about which terms in the expression contribute the most to its value. Here we
report on numerical investigations into the relative sizes of the constituent expres-
sions, for the relevant ranges of parameters (3 ≤ q ≤ 105, 1011 ≤ x2 ≤ 4 · 1013,
R = 5.6, 3 ≤ m ≤ 12, and various choices for H,H0 and H2).

After running our various computations and analyzing the resulting data, our con-
clusions are as follows; recall that the quantities T1, T2, T3 and T4 are defined in

http://www.nt.math.ubc.ca/BeMaObRe/c-psi-theta-pi/E-bound/
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Definition 4.32 and satisfy

Dq,m,R(x2;H0, H,H2) =
1

ϕ(q)
(T1 + T2 + T3 + T4) .

• As noted previously, the optimal value for m is always in {6, 7, 8, 9}, a fact
for which we have no explanation.
• The optimal value for H quickly becomes small, hitting our floor of H1(q)

around q = 5000. The parameter H controls the zeros which get smoothed,
and larger q, which have more low-height zeros, benefit more from this.
• The term T4 is negligible, always several orders of magnitude smaller than

the other terms. The term T3 is nearly always negligble, accounting for less
than 2% of the total.
• The term T1, where low-height zeros hold sway, accounts for 20%-50% of

the total for q ≤ 100, and growing to around 60% for q near 105. Note
that for large q, we don’t compute these zeros, instead relying on Trudgian’s
bound.
• The term T2, where zeros potentially close to σ = 1 have their influence,

accounts for 50%-80% of the total for smaller q, and about 40% for larger q.
• The balance between T1 and T2 depends heavily on the zeros of extremely

low height, and so bounces around considerably for small q. For q near 105,
for which we do not calculate any zeros, the balance is consistently about
59.5% for T1, about 39.5% for T2, and about 1% for T3.

q factorization of q m x2(q) H cψ(q)
3 3 8 4 · 1013 492130 0.0003964
4 22 7 4 · 1013 337539 0.0004770
5 5 8 4 · 1013 276297 0.0003665

101 101 6 1012 7484 0.0008443
5040 24 · 32 · 5 · 7 6 1012 262 0.0011204
55440 24 · 32 · 5 · 7 · 11 7 1011 137 0.0034065
55441 55441 8 1011 120 0.0048288
99991 99991 8 1011 120 0.0058889
100000 25 · 55 8 1011 120 0.0051178
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q T1 T2 T3
3 27.73% 72.27% 0%
4 22.18% 77.82% 0%
5 30.39% 69.61% 0%

101 69.27% 30.71% 0.02%
5040 37.58% 61.54% 0.88%
55440 62.09% 37.30% 0.61%
55441 69.93% 29.40% 0.67%
99991 59.14% 39.87% 0.99%
100000 58.63% 40.44% 0.94%

FIGURE 2. A sampling of q values, with x2(q), the optimal
choices for m and H , and corresponding cψ(q). The second ta-
ble lists the percentage of the bound on cψ(q) that comes from
each of T1, T2 and T3; in each case T4 contributes essentially 0%.

A.6. Computations of xψ(q), xθ(q), xθ#(q), xπ(q), and x0(q) for q ≤ 105.
The computation of x0(q) was a three-step process. For the purposes of describing
this process, we focus on θ(x; q, a) since the approach for the other functions is very
similar.

In brief, we start by calculating a crude upper bound on xθ(q) which we call
x1(θ; q), which is easily computed from our bθ(q) and cθ(q) data (see Appendices A.3
and A.4); typically x1(θ; q) is significantly smaller than x2(q). Now to compute
xθ(q) we need only examine x ≤ x1(θ; q), a much smaller range than x ≤ x2(q),
which saves us considerable computer time. Finally, from the accumulated data we
found a simple upper bound x0(q) on our more precise constants xθ(q).

We now discuss each of these steps in more detail (still concentrating on θ(x; q, a)).
We wish to find the smallest value of xθ(q) so that for all x ≥ xθ(q) and all integers
a coprime to q, ∣∣∣∣θ(x; q, a)− x

ϕ(q)

∣∣∣∣ < cθ(q)
x

log x
. (A.4)

We have already verified, for x ≤ x2(q), that∣∣∣∣θ(x; q, a)− x

ϕ(q)

∣∣∣∣ < bθ(q)
√
x

using the exhaustive computations described in Appendix A.3 above. Accordingly
we compute x1 = x1(θ; q) so that

cθ(q)
x1

log x1
= bθ(q)

√
x1,

using a simple Python script and a bisection solver from the scipy library for
Python, and then rounded up that value. From this argument we know that we will
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be able to take xθ(q) ≤ x1(θ; q). Since we did not compute bθ(q) for q ≡ 2 (mod 4),
we instead make use of Lemma A.1 to infer that∣∣∣∣θ(x; q, a)− x

ϕ(q)

∣∣∣∣ < bθ(
q
2 )
√
x+ 1;

thus to compute x1(θ; q) for q ≡ 2 (mod 4) we instead solve the slightly different
equation

cθ(q)
x1

log x1
= bθ(q)

√
x1 + 1.

The process for calculating x1(ψ; q), x1(θ#; q), and x1(π; q) is very similar:
when q 6≡ 2 (mod 4) they are the positive solutions x1 to the equations

cψ(q)
x1

log x1
= bψ( q2 )

√
x1, cθ#(q)

x1
log x1

= bθ#( q2 )
√
x1

and

cπ(q)
x1

log2 x1
= bπ( q2 )

√
x1

log x1
,

respectively, while when q ≡ 2 (mod 4) they are the solutions to

cψ(q)
x1

log x1
= bψ( q2 )

√
x1 + log x1, cθ#(q)

x1
log x1

= bθ#( q2 )
√
x1 + 1

and

cπ(q)
x1

log2 x1
= bπ( q2 )

√
x1

log x1
+ 1,

respectively (using the results in Lemma A.1). The first few values for x1 for the
indicated functions are given below.

q x1(ψ; q) x1(θ; q) x1(θ#; q) x1(π; q)

3 3.5290 · 109 1.0701 · 1010 3.3100 · 109 1.4980 · 1010

4 2.5810 · 109 7.0120 · 109 2.1260 · 109 1.0712 · 1010

5 2.7660 · 109 7.4690 · 109 2.8590 · 109 1.2479 · 1010

6 3.5320 · 109 1.0701 · 1010 3.3100 · 109 1.4983 · 1010

7 1.2830 · 109 2.7140 · 109 1.4080 · 109 3.2310 · 109

8 1.1320 · 109 4.8160 · 109 9.9300 · 108 6.7670 · 109

9 1.0550 · 109 2.1630 · 109 1.3660 · 109 2.4790 · 109

10 2.7680 · 109 7.4690 · 109 2.8600 · 109 1.2482 · 1010

11 1.7200 · 109 2.1220 · 109 1.7120 · 109 2.5350 · 109

12 7.6000 · 108 3.0840 · 109 7.3600 · 108 3.8480 · 109

...
...

...
...

...
105 5.0 · 106 5.0 · 106 5.0 · 106 5.0 · 106

We give the full table of x1 data in the
BeMaObRe/x-psi-theta-pi/compute-x1/

http://www.nt.math.ubc.ca/BeMaObRe/x-psi-theta-pi/compute-x1/
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subdirectory.
We are now faced with the problem of determining the supremum xθ(q) of those

real numbers x such that the inequality (A.4) fails (again using θ(x; q, a) as the ex-
ample for our discussion); from the previous calculation we know that this supremum
is at most x1(θ; q). In practice x1(θ; q) is significantly smaller than x2(q), and so de-
termining xθ(q) from an exhaustive search over x ≤ x1(θ; q) is substantially faster.
We again compute the left-hand side of the inequality (A.4) for x equal to all primes
and prime powers in the given range, using code similar to that used to compute
bθ(q). For each residue class a (mod q) we record the largest prime or prime power
p∗(q; a) so that

∣∣∣∣θ(p∗(q, a); q, a)− p∗(q, a)

ϕ(q)

∣∣∣∣ > cθ(q) ·
p∗(q, a)

log p∗(q, a)
.

The procedure then breaks into two cases depending on the sign of
(
θ(p∗(q, a); q, a)−

p∗(q,a)
ϕ(q)

)
. Consider the figure below that gives a schematic comparison between

θ(x; q, a) − x
ϕ(q) (the jagged paths denoting functions with jump discontinuities)

and ±cθ(q) x
log x (the curved lines).

• If θ
(
p∗(q, a); q, a

)
− x

ϕ(q)
> 0, then we use Newton’s method or a bisection

method to solve

θ(p∗(q, a); q, a)− x

ϕ(q)
= cθ ·

x

log x

for x = xθ(q, a) to the desired level of precision.
• On the other hand, if θ

(
p∗(q, a); q, a

)
− x

ϕ(q)
< 0 then simply xθ(q, a) =

p∗(q, a).

We then set xθ(q) = maxgcd(a,q)=1 xθ(q, a). We did analogous exhaustive compu-
tations to find xψ(q), xθ#(q), and xπ(q); we give the first few values below (rounded
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up to the nearest integer).

q xψ(q) xθ(q) xθ#(q) xπ(q)

3 576,470,759 7,932,309,757 576,587,783 7,940,618,683
4 952,930,663 4,800,162,889 952,941,971 5,438,260,589
5 1,333,804,249 3,374,890,111 1,333,798,729 3,375,517,771
6 576,470,831 7,932,309,757 576,587,783 7,940,618,683
7 686,060,664 1,765,650,541 500,935,442 1,765,715,753
8 603,874,695 2,261,078,657 603,453,377 2,265,738,169
9 415,839,496 929,636,413 415,620,108 929,852,953
10 1,333,804,249 3,374,890,111 1,333,798,729 3,375,517,771
11 770,887,529 1,118,586,379 770,871,139 838,079,951
12 501,271,535 1,305,214,597 501,062,258 1,970,827,897
...

...
...

...
...

105 17,876 17,870 17,931 16,871

All of this data can be found in the
BeMaObRe/x-psi-theta-pi/compute-x0/

subdirectory.

A.7. Computations of inequalities for π(x; q, a) and pn(q, a), for q ≤ 1200
and very small x. To deduce Corollary 1.6 from Theorems 1.4 and 1.5 for a partic-
ular modulus 3 ≤ q ≤ 1200, we need to determine the largest x at which each of the
four inequalities

π(x; q, a) >
x

ϕ(q) log x
, π(x; q, a) <

x

ϕ(q) log x

(
1 +

5

2 log x

)
,

x > π(x; q, a)ϕ(q) log(π(x; q, a)ϕ(q)),

and

x < π(x; q, a)ϕ(q)

(
log(π(x; q, a)ϕ(q)) +

4

3
log(log(π(x; q, a)ϕ(q)))

)
fails. (When q = 1 and q = 2, Corollary 1.6 follows from results of Rosser and
Schoenfeld [35, equations (3.2), (3.5), (3.12), and (3.13)].) More precisely, when
q ≥ 3 we know that the inequalities hold for x ≥ x0(q), so it suffices to check
the inequalities for x < x0(q). Again, as was the case for calculating bπ(q) in
Appendix A.3, we compute π(p; q, a) at each prime p and then check the inequalities
as x approaches p from the left and from the right. Since π(x; q, a) is an integer
quantity, this can be done very efficiently with simple C++ code.

The data giving the last x violating the inequalities is in the
BeMaObRe/pi-pn-bounds/

subdirectory. Given this data, one can verify that the x values are bounded by the
simple quadratic functions of q stated in Corollary 1.6.

http://www.nt.math.ubc.ca/BeMaObRe/x-psi-theta-pi/compute-x0/
http://www.nt.math.ubc.ca/BeMaObRe/pi-pn-bounds/
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A.8. Computations of error terms for ψ(x; q, a), θ(x; q, a), and π(x; q, a),
for very small x. To prove Corollary 1.7 from Theorems 1.1, 1.2, and 1.3 we found,
for each 3 ≤ q ≤ 105, the largest values of

log x

x

∣∣∣∣ψ(x; q, a)− x

ϕ(q)

∣∣∣∣ , log x

x

∣∣∣∣θ(x; q, a)− x

ϕ(q)

∣∣∣∣ (A.5)

and
log2 x

x

∣∣∣∣π(x; q, a)− Li(x)

ϕ(q)

∣∣∣∣
for all 103 ≤ x ≤ max{xψ(q), xθ(q), xπ(q)}. Those largest values tend to oc-
cur quite close to 103, as all three error terms are decaying roughly like log x/

√
x.

We confirmed that none of these maximal values exceeded 0.19, 0.40, and 0.59, re-
spectively. Since our main results ensure bounds for x ≥ xψ(q), xθ(q), xπ(q) (as
required), it suffices to check that our computed values for cψ(q), cθ(q), and cπ(q)
(see Appendix A.4) were also bounded by those three constants. The worst case
bounds for ψ(x; q, a), θ(x; q, a) and π(x; q, a) are achieved at q = 4, x = 1423−,
q = 4, x = 1597−, and q = 3, x = 1009− (respectively), giving constants of
0.1659, 0.3126 and 0.4236 (respectively).

We then repeated this process for the range 106 ≤ x ≤ max{xψ(q), xθ(q), xπ(q)},
comparing the results against the constants 0.011, 0.024, and 0.027, respectively. In
this case, the worst case bounds for ψ(x; q, a), θ(x; q, a) and π(x; q, a) are achieved
at q = 46, x = 1015853−, q = 4, x = 100117−, and q = 4, x = 1000117−

(respectively), giving constants of 0.0106, 0.0233 and 0.0267 (respectively).
While the methods in this paper work in theory for q = 1 and q = 2, we do use the

assumption q ≥ 3 in many small ways to improve the constants in our intermediate
arguments. We can, however, recover results for q = 1 and q = 2 from our existing
results, by noting that (for example) every prime other than 3 itself is counted by
π(x; 3, 1) + π(x; 3, 2). In the case q = 2, we observe that, for x ≥ 3,

ψ(x; 2, 1) = ψ(x; 3, 1) + ψ(x; 3, 2) +

⌊
log x

log 3

⌋
log 3−

⌊
log x

log 2

⌋
log 2,

θ(x; 2, 1) = θ(x; 3, 1) + θ(x; 3, 2) + log(3/2),

π(x; 2, 1) = π(x; 3, 1) + π(x; 3, 2).

Appealing to Theorems 1.1, 1.2, and 1.3, and applying the triangle inequality, we
thus have

|ψ(x; 2, 1)− x| < 2cψ(3)
x

log x
+ 1 for all x ≥ xψ(3),

|θ(x; 2, 1)− x| < 2cθ(3)
x

log x
+ log(3/2) for all x ≥ xθ(3),

|π(x; 2, 1)− Li(x)| < 2cπ(3)
x

log2 x
for all x ≥ xπ(3).
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Similarly, in the case q = 1, we find that

|ψ(x)− x| < 2cψ(3)
x

log x
+ log x for all x ≥ xψ(3),

|θ(x)− x| < 2cθ(3)
x

log x
+ log 3 for all x ≥ xθ(3),

|π(x)− Li(x)| < 2cπ(3)
x

log2 x
+ 1 for all x ≥ xπ(3). (A.6)

Now

cψ(3) = 0.0003964, cθ(3) = 0.0004015 and cπ(3) = 0.0004187,

and

xψ(3) = 576,470,759, xθ(3) = 7,932,309,757 and xπ(3) = 7,940,618,683.

It follows, after a short computation, that we have the desired proof of Corollary 1.7
for q ∈ {1, 2} and, crudely, x ≥ max{xψ(3), xθ(3), xπ(3)} = 7,940,618,683. A
final calculation, as in the cases 3 ≤ q ≤ 105, completes the proof.

We now find that for 1 ≤ q ≤ 105 and x ≥ 103, the worst case bounds for
ψ(x; q, a), θ(x; q, a) and π(x; q, a) are achieved at q = 2, x = 1423−, q = 2, x =
1423−, and q = 2, x = 1423− (respectively), giving constants of 0.18997, 0.3987
and 0.5261 (respectively). Similarly, when we consider all 1 ≤ q ≤ 105 and
x ≥ 106, the worst case bounds for ψ(x; q, a), θ(x; q, a) and π(x; q, a) are achieved
at q = 46, x = 1015853−, q = 4, x = 100117−, and q = 2, x = 1090697−

(respectively), giving constants of 0.0106, 0.0233 and 0.0269 (respectively).
The upper bound upon |π(x)− Li(x)| given by (A.6) implies that we have

|π(x)− Li(x)| < 0.0008375
x

log2 x
for all x ≥ 7,940,618,683.

Explicitly checking this inequality for all x < 7,940,618,683 leads to the reported
inequality (1.15).

The maximal values of the three quantities in equation (A.5) for 1 ≤ q ≤ 105 can
be found in the

BeMaObRe/cor1.7/

subdirectory. This computation strongly resembles the one undertaken to obtain the
constants bψ(q), bθ(q), and bπ(q) (see Appendix A.3), and similar C++ code was
used.

A.9. Computations of uniform range of validity for error terms for ψ(x; q, a),
θ(x; q, a), and π(x; q, a). To establish Corollary 1.8 from Theorems 1.1, 1.2,
and 1.3, it suffices to compute a constant A ≥ 0.03 so that the inequalities

xψ(q), xθ(q), xθ#(q), xπ(q) ≤ exp(A
√
q log3 q)

hold for all 3 ≤ q ≤ 105. Using the quantity

xm(q) = max{xψ(q), xθ(q), xθ#(q), xπ(q)},

http://www.nt.math.ubc.ca/BeMaObRe/cor1.7/
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max
3≤q≤105

{
log xm(q)
√
q log3 q

}
.

This maximum was a number close to 9.92545, obtained at q = 3, but the quan-
tity under consideration decreases rapidly with q (and is always at most 4.21 for
q ≥ 4). For q ≥ 74 the maximum is in fact less than the constant 0.03 from the
definition (1.11) of x0(q).

Fixing now q = 3, we verify by direct computation (assuming x ≤ xm(3)), that
the conclusion of Corollary 1.8 holds for

x ≥ 16548949 ≈ exp(7.237439
√

3 log3 3).

Arguing similarly for 3 ≤ q ≤ 73, we again obtain the conclusions of Corollary 1.8,
under the weaker assumption that x ≥ exp(0.03

√
q log3 q), for all q ≥ 58.

The code and data associated with this computation can be found in the
BeMaObRe/cor1.8/

subdirectory.

A.10. Computations of lower bounds for L(1, χ) for medium-sized moduli q
for Lemma 6.3 and Proposition 1.10. We describe one final computation that was
used at the end of the proof of Lemma 6.3 and the deduction therefrom of Propo-
sition 1.10. Explicit computation using Sage [38], over fundamental discriminants
d with 4 · 105 ≤ d ≤ 107, shows that the quantity h(

√
d) log ηd is minimal when

d = 405,173, where we find that h(
√
d) = 1 and ηd = (v0 + u0

√
d)/2 with

v0 = 25,340,456,503,765,682,334,430,473,139,835,173

and
u0 = 39,810,184,088,138,779,581,856,559,421,585.

It follows that h(
√
d) log ηd > 79.2177 for all fundamental discriminants d with

4 · 105 ≤ d ≤ 107.
For each pair of positive integers (d, u0) for which d > 107 is a fundamental

discriminant, du20 < 2.65 · 1010 and du20 + 4 is square, we check via Sage [38] that,
in all cases,

h(
√
d) log ηd = h(

√
d) log

(√
du20 + 4 + u0

√
d

2

)
> 417;

indeed, h(
√
d) log ηd is minimal in this range when d = 11,109,293, for which we

find that h(
√
d) = 36 and η = 1

2 (10991 + 33
√
d). We may therefore suppose that

du20 ≥ 2.65 · 1010, which then implies that

log ηd = log

(
v0 + u0

√
d

2

)
> log(u0

√
d) ≥ 1

2
log(2.65 · 1010) > 12,

and so h(
√
d) log ηd > 12, as desired. The Sage [38] code used for this computation

and its output can be found in the BeMaObRe/lemma5.3/ subdirectory.

http://www.nt.math.ubc.ca/BeMaObRe/cor1.8/
http://www.nt.math.ubc.ca/BeMaObRe/lemma5.3/
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A.11. Concluding remarks from a computational perspective. From our code,
it is relatively easy to examine the effect of sharpening various quantities upon our
final constant cψ(q) (and its relatives). A decrease of 10% in the valueR defining our
zero-free region (from its current values of 5.6) has a very small effect upon cψ(q),
leading to a decrease of much less than 1% in all cases (assuming we leave all other
parameters unchanged). Doubling the value of c2(q), on the other hand, reduces
cψ(q) by, typically, 25% or more, for q with 104 < q ≤ 105; a somewhat less
substantial benefit would accrue from confirming GRH for all Dirichlet L-functions
of conductor q, up to height, say, 2 · 108/q.
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B. NOTATION REFERENCE

TABLE 1. Notation reference : A to Q

Am(δ) equation (2.4)
b(χ) Definition 6.6
bψ(q), bθ(q), bθ#(q), bπ(q) equation (A.3)
Bd,m,R(r,H,H2), B(1)

d,m,R(x; r,H2), B(2)
d,m,R(x; r) Definition 3.7

c0(q) equation (1.10)
cθ(q), cπ(q), cψ(q) Theorems 1.1, 1.2, 1.3
C1, C2 Definition 2.4
Dq,m,R(x2;H0, H,H2) Definition 4.32
E(u; q, a) Definition 5.6
erfc(u) Definition 4.5
Fχ,m,R(x;H2) Definition 3.2
Fd,m,R(x;H2) Definition 3.3
g
(1)
d,m(H,H2), g(2)d,m(H,H2), g(3)d,m,R(x;H,H2) Definition 3.2
Gq,m,R(x;H,H2) Definition 3.3
Gq,m,R(x2, r;H,H2) Definition 4.30
h3(d) Definition 2.6
H1(m) Definition 2.17
H

(1)
d,m,R(x), H(2)

d,m,R(x;H2) Definition 3.5
Hypotheses Z(H,R), Z1(R) Definition 3.1
In,m(α, β; `) Definition 4.1
J1a(z; y), J1b(x; y), J2a(z; y), J2b(z; y) Definition 4.6
Kn(z; y) Definition 4.3
Li(x) equation (1.4)
Md(`, u) Definition 2.13
m(χ) Definition 6.6
N(T ) proof of Proposition 2.3
N(T, χ) Definition 2.2
P∗(x;m, r, λ,H,R) (various values of ∗) Definition 4.15
Q∗(m, r, λ,H,R) (various values of ∗) Definition 4.16
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TABLE 2. Notation reference : R to ω

R1 Definition 6.1
Sd,m,R(r,H) Definition 4.28
S(T ) proof of Proposition 2.3
T1, T2, T3, T4 Definition 4.32
Uq,m(x; δ,H) equation (2.5)
Vq,m(x; δ,H) equation (2.6)
Wq(x) equation (2.7)
x0(q) equation (1.11)
xθ(q), xπ(q), xψ(q) Theorems 1.1, 1.2, 1.3
x2(q) equation (1.18)
x3(m, q,H,R) Definition 4.23
Yd,m,R(x, u) Definition 3.2
yd,m,R(x;H2) Definition 4.17
zm,R(x) Definition 4.17
Z(χ) Definition 2.2
αm,k Definition 2.19
∆k(x; q), ∆(x; q) Definition 5.1
θ(x; q, a) equation (1.5)
θ#(x; q, a) equation (5.1)
Θ(d, t) equation (2.8)
ν(q,H0, H) Definition 2.10
ν1(χ,H0) Definition 2.10
ν2(q,H0) Definition 2.10
ν3(q,H) Definition 2.10
ξk(q), ξk(q, a) Definition 5.1
Ξm,λ,µ,R(x) Definition 4.10
τm Definition 4.12
π(x; q, a) equation (1.6)
Υq,m(x;H) Definition 2.16
ϕ∗(d) Definition 2.9
ψ(x; q, a) equation (1.5)
Ψq,m,r(x;H) Definition 2.16
ωm Definition 4.12
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[33] O. Ramaré and R. Rumely. Primes in arithmetic progressions. Math. Comp. 65 (1996), 397–425.
[34] J. B. Rosser. Explicit bounds for some functions of prime numbers. Amer. J. Math. 63 (1941), 211–

232.
[35] J. B. Rosser and L. Schoenfeld. Approximate formulas for some functions of prime numbers. Ill. J.

Math. 6 (1962), 64–94.
[36] J. B. Rosser and L. Schoenfeld. Sharper bounds for the Chebyshev functions θ(x) and ψ(x). Collec-

tion of articles dedicated to Derrick Henry Lehmer on the occasion of his seventieth birthday. Math.
Comp. 29 (1975), 243–269.

[37] M. O. Rubinstein. lcalc: The L-function calculator, a C++ class library and command line program
Available both through Sage and as Ubuntu linux package. 2008.

[38] The Sage Developers, SageMath, the Sage Mathematics Software System (Version 8.1), http:
//www.sagemath.org, 2018.

[39] L. Schoenfeld. Sharper bounds for the Chebyshev functions θ(x) and ψ(x). II. Math. Comp. 30
(1976), no. 134, 337–360.

[40] T. Trudgian. An improved upper bound for the argument of the Riemann zeta-function on the critical
line. Math. Comp. 81 (2012), 1053–1061.

[41] T. Trudgian. An improved upper bound for the argument of the Riemann zeta-function on the critical
line II. J. Number Theory 134 (2014), 280–292.

[42] T. Trudgian. An improved upper bound for the error term in the zero-counting formulae for Dirichlet
L-functions and Dedekind zeta-functions. Math. Comp. 84 (2015), 1439–1450.

[43] T. Trudgian. Updating the error term in the prime number theorem. Ramanujan J. 39 (2016), 225–
234.

[44] C. J. de la Vallée Poussin. Sur la fonction ζ(s) de Riemann et le nombre des nombres premieres
inférieur a une limite donnée. Mém. Courronnés et autres Mém. Publ. Acad. Roy. Sci., des Letters
Beaux-Arts Belgique 59 (1899/00).

[45] K. Walisch. Fast C/C++ library for generating primes. Available from http://primesieve.
org

[46] M. Watkins. Class numbers of imaginary quadratic fields. Math. Comp. 73 (2003), 907–938.
[47] T. Yamada. Explicit formulae for primes in arithmetic progressions, I. arXiv:1306.5322v4.

http://dlmf.nist.gov/
http://dlmf.nist.gov/
http://www.sagemath.org
http://www.sagemath.org
http://primesieve.org
http://primesieve.org


DRAFT

EXPLICIT BOUNDS FOR PRIMES IN ARITHMETIC PROGRESSIONS 103

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF BRITISH COLUMBIA, ROOM 121, 1984 MATH-
EMATICS ROAD, VANCOUVER, BC, CANADA V6T 1Z2

E-mail address: bennett@math.ubc.ca

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF BRITISH COLUMBIA, ROOM 121, 1984 MATH-
EMATICS ROAD, VANCOUVER, BC, CANADA V6T 1Z2

E-mail address: gerg@math.ubc.ca

DEPARTMENT OF MATHEMATICS, CITY UNIVERSITY OF NEW YORK, COLLEGE OF STATEN IS-
LAND AND THE GRADUATE CENTER, 2800 VICTORY BOULEVARD, STATEN ISLAND, NY, USA
10314

E-mail address: truculentmath@icloud.com

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF BRITISH COLUMBIA, ROOM 121, 1984 MATH-
EMATICS ROAD, VANCOUVER, BC, CANADA V6T 1Z2

E-mail address: andrewr@math.ubc.ca


	1. Introduction and statement of results
	2. Preparation of the upper bound for |(x;q,a) - x/(q)|, for q105
	2.1. Previous work based on the explicit formula
	2.2. Some useful facts about the zeros of L-functions
	2.3. Upper bounds for x, exploiting verification of GRH up to bounded height
	2.4. Further estimates related to vertical distribution of zeros of Dirichlet L-functions
	2.5. Preliminary statement of the upper bound for |(x;q,a) - x/(q)|

	3. Elimination of explicit dependence on zeros of Dirichlet L-functions
	3.1. Estimates using a zero-free region for L(s,)
	3.2. Conversion to integrals involving bounds for N(T,)

	4. Optimization of the upper bound for |(x;q,a) - x/(q)|, for q105
	4.1. Estimation of integrals using incomplete modified Bessel functions
	4.2. Elementary estimation of the complementary error function erfc(u)
	4.3. Identification of maximum values of bounding functions via calculus
	4.4. Assembly of the final upper bound for |(x;q,a) - x/(q)|

	5. Deduction of the upper bounds upon |(x;q,a) - x/(q)| and |(x;q,a) - `39`42`"613A``45`47`"603ALi(x)/(q)|, for q105
	5.1. Conversion of bounds for (x;q,a)-x/(q) to bounds for (x;q,a) - x/(q)
	5.2. Conversion of estimates for (x;q,a) to estimates for (x;q,a) and for  pn(q,a)

	6. Estimation of |(x;q,a) - x/(q)|, |(x;q,a) - x/(q)|, and |(x;q,a) - `39`42`"613A``45`47`"603ALi(x)/(q)|, for q105
	6.1. Explicit upper bound for exceptional zeros of quadratic Dirichlet L-functions
	6.2. An upper bound for |(x;q,a) - x/(q)|, including the contribution from a possible exceptional zero
	6.3. Explicit upper bounds for |(x;q,a) - x/(q)| and |(x;q,a) - x/(q)|
	6.4. Conversion of estimates for (x;q,a) to estimates for (x;q,a)

	A. Appendix: Computational details
	A.1. Verification of bound on N(T,0) for principal characters 0 and the computation of 2(x)
	A.2. Using lcalc to compute 2
	A.3. Computations of worst-case error bounds for q105 and for xx2(q)
	A.4. Computations of the leading constants c, c, and c for q105
	A.5. Dominant contributions to c(q), c(q), and c(q) for q105
	A.6. Computations of x(q), x(q), x#(q), x(q), and x0(q) for q105
	A.7. Computations of inequalities for (x;q,a) and pn(q,a), for q1200 and very small x
	A.8. Computations of error terms for (x; q, a), (x; q, a), and (x; q, a), for very small x
	A.9. Computations of uniform range of validity for error terms for (x; q, a), (x; q, a), and (x; q, a)
	A.10. Computations of lower bounds for L(1,) for medium-sized moduli q for Lemma 6.3 and Proposition 1.10
	A.11. Concluding remarks from a computational perspective

	B. Notation reference
	Acknowledgments
	References



