Long Answer Questions

Quiz 6: Find the global maximum and the global minimum for $f(x)=x^{3}-6 x^{2}+2$ on the interval [3, 5].

Quiz 5: Two particles move in the cartesian plane. Particle A travels on the x-axis starting at $(10,0)$ and moving towards the origin with a speed of 2 units per second. Particle B travels on the y-axis starting at $(12,0)$ and moving towards the origin with a speed of 3 units per second. What is the rate of change of the distance between the two particles when particle A reaches the point $(4,0)$?

Quiz 4: If $x^{2} \cos (y)+2 x e^{y}=8$, then find y^{\prime} at the points where $y=0$. You must justify your answer.

Quiz 3: Determine whether the derivative of following function exists at $x=0$

$$
f(x)= \begin{cases}2 x^{3}-x^{2} & \text { if } x \leq 0 \\ x^{2} \sin \left(\frac{1}{x}\right) & \text { if } x>0\end{cases}
$$

You must justify your answer using the definition of a derivative.
Quiz 2: Show that there exists at least one real number c such that $2 \tan (c)=c+1$.
Quiz 1: Compute the limit $\lim _{x \rightarrow 1} \frac{\sqrt{x+2}-\sqrt{4-x}}{x-1}$.

Quizzes 4-6 Short Answer Questions

Quiz 6:
Find the intervals where $f(x)=\frac{\sqrt{x}}{x+6}$ is increasing.
Let $f(x)=x^{2}-2 \pi x-\sin (x)$. Show that there exists a real number c such that $f^{\prime}(c)=0$.

Quiz 5:
Estimate $\sqrt{35}$ using a linear approximation
Consider a function $f(x)$ which has $f^{\prime \prime \prime}(x)=\frac{x^{3}}{10-x^{2}}$. Show that when we approximate $f(1)$ using its second Maclaurin polynomial, the absolute error is less than $\frac{1}{50}=0.02$.

Quiz 4:
Find $f^{\prime}(x)$ if $f(x)=\left(x^{2}+1\right)^{\sin (x)}$.
Consider a function of the form $f(x)=A e^{k x}$ where A and k are constants. If $f(0)=3$ and $f(2)=5$, find the constants A and k.

Quizzes 1-3 Short Answer Questions

Quiz 3: Find the equation of the tangent line to the graph of $y=\cos (x)$ at $x=\frac{\pi}{4}$.
For what values of x does the derivative of $\frac{\sin (x)}{x^{2}+6 x+5}$ exist?
Quiz 2: Compute

$$
\lim _{x \rightarrow-\infty} \frac{3 x+5}{\sqrt{x^{2}+5}-x}
$$

Find all values of c such that the following function is continuous:

$$
f(x)=\left\{\begin{array}{ccc}
8-c x & \text { if } & x \leq c \\
x^{2} & \text { if } & x>c
\end{array}\right.
$$

Use the definition of continuity to justify your answer.
Quiz 1: Find all solutions to $x^{3}-3 x^{2}-x+3=0$
Compute the limit $\lim _{x \rightarrow 2} \frac{x-2}{x^{2}-4}$

Solutions

Quiz 6 Long Answer

Find the global maximum and the global minimum for $f(x)=x^{3}-6 x^{2}+2$ on the interval [3,5].

We compute $f^{\prime}(x)=3 x^{2}-12 x$, which means that $f(x)$ has no singular points (i.e., it is differentiable for all values of x), but it has two critical points obtained by solving $f^{\prime}(x)=0$, i.e. $3 x(x-4)=0$ which yields the two critical points $x=0$ and $x=4$. In order to compute the global maximum and the global minimum for $f(x)$ on the interval $[3,5]$, we compute

$$
f(3)=-25, f(4)=-30 \text { and } f(5)=-23 .
$$

So, the global maximum is $f(5)=-23$ while the global minimum is $f(4)=-30$.

Quiz 5 Long Answer

Two particles move in the cartesian plane. Particle A travels on the x-axis starting at $(10,0)$ and moving towards the origin with a speed of 2 units per second. Particle B travels on the y-axis starting at $(12,0)$ and moving towards the origin with a speed of 3 units per second. What is the rate of change of the distance between the two particles when particle A reaches the point $(4,0)$?

The position of particle A along the x axis starts at 10, and decreases 2 units per second, so its position is given by $10-2 t$, where t is measured in seconds. Similarly, the position of B along the y axis is given by $y=12-3 t$. The distance z between the two particles satisfies $z^{2}=x^{2}+y^{2}$. When $x=4$, we solve $4=10-2 t$ for t and find $t=3$, so $y=12-3(3)=3$. Then $z=5$ when $t=2$.
Differentiating implicitly, $z^{2}=x^{2}+y^{2}$ tells us

$$
2 z \frac{d z}{d t}=2 x \frac{d x}{d t}+2 y \frac{d y}{d t}
$$

so, when $t=3$,

$$
2(5) \frac{d z}{d t}=2(4)(-2)+2(3)(-3)
$$

Then the distance between the two particles is changing at $-\frac{17}{5}$ units per second.

Quiz 4 Long Answer

If $x^{2} \cos (y)+2 x e^{y}=8$, then find y^{\prime} at the points where $y=0$.
You must justify your answer.

- First we find the x-ordinates where $y=0$.

$$
\begin{aligned}
x^{2} \cos (0)+2 x e^{0} & =8 \\
x^{2}+2 x-8 & =0 \\
(x+4)(x-2) & =0
\end{aligned}
$$

So $x=2,-4$.

- Now we use implicit differentiation to get y^{\prime} in terms of x, y :

$$
\begin{array}{rlr}
x^{2} \cos (y)+2 x e^{y}=8 & \text { differentiate both sides } \\
x^{2} \cdot(-\sin y) \cdot y^{\prime}+2 x \cos y+2 x e^{y} \cdot y^{\prime}+2 e^{y}=0 &
\end{array}
$$

- Now set $y=0$ to get

$$
\begin{aligned}
x^{2} \cdot(-\sin 0) \cdot y^{\prime}+2 x \cos 0+2 x e^{0} \cdot y^{\prime}+2 e^{0} & =0 \\
0+2 x+2 x y^{\prime}+2 & =0 \\
y^{\prime} & =-\frac{2+2 x}{2 x}=-\frac{1+x}{x}
\end{aligned}
$$

- So at $(x, y)=(2,0)$ we have $y^{\prime}=-\frac{3}{2}$,
- and at $(x, y)=(-4,0)$ we have $y^{\prime}=-\frac{3}{4}$.

Quiz 3 Long Answer

Determine whether the derivative of following function exists at $x=0$

$$
f(x)= \begin{cases}2 x^{3}-x^{2} & \text { if } x \leq 0 \\ x^{2} \sin \left(\frac{1}{x}\right) & \text { if } x>0\end{cases}
$$

You must justify your answer using the definition of a derivative.

The function is differentiable at $x=0$ if the following limit:

$$
\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{f(x)-0}{x}=\lim _{x \rightarrow 0} \frac{f(x)}{x}
$$

exists (note that we used the fact that $f(0)=0$ as per the definition of the first branch which includes the point $x=0$). We compute left and right limits; so

$$
\lim _{x \rightarrow 0^{-}} \frac{f(x)}{x}=\lim _{x \rightarrow 0^{-}} \frac{2 x^{3}-x^{2}}{x}=\lim _{x \rightarrow 0^{-}} 2 x^{2}-x=0
$$

and

$$
\lim _{x \rightarrow 0^{+}} \frac{x^{2} \sin \left(\frac{1}{x}\right)}{x}=\lim _{x \rightarrow 0^{+}} x \cdot \sin \left(\frac{1}{x}\right)
$$

This last limit equals 0 by Squeeze Theorem since

$$
-1 \leq \sin \left(\frac{1}{x}\right) \leq 1
$$

and so,

$$
-x \leq x \cdot \sin \left(\frac{1}{x}\right) \leq x
$$

where in these inequalities we used the fact that $x \rightarrow 0^{+}$yields positive values for x. Finally, since $\lim _{x \rightarrow 0^{+}}-x=\lim _{x \rightarrow 0^{+}} x=0$, Squeeze Theorem yields that also $\lim _{x \rightarrow 0^{+}} x \sin \left(\frac{1}{x}\right)=0$, as claimed. Since the left and right limits match (they're both equal to 0), we conclude that indeed $f(x)$ is differentiable at $x=0$ (and its derivative at $x=0$ is actually equal to 0).

Quiz 2 Long Answer

Show that there exists at least one real number c such that $2 \tan (c)=c+1$.

We let $f(x)=2 \tan (x)-x-1$. Then $f(x)$ is a continuous function on the interval $(-\pi / 2, \pi / 2)$ since $\tan (x)=\sin (x) / \cos (x)$ is continuous on this interval, while $x+1$ is a polynomial and therefore continuous for all real numbers.
We find a value $a \in(-\pi / 2, \pi / 2)$ such that $f(a)<0$. We observe immediately that $a=0$ works since

$$
f(0)=2 \tan (0)-0-1=0-1=-1<0 .
$$

We find a value $b \in(-\pi / 2, \pi / 2)$ such that $f(b)>0$. We see that $b=\pi / 4$ works since

$$
f(\pi / 4)=2 \tan (\pi / 4)-\pi / 4-1=2-\pi / 4-1=1-\pi / 4=(4-\pi) / 4>0,
$$

because $3<\pi<4$.
So, because $f(x)$ is continuous on $[0, \pi / 4]$ and $f(0)<0$ while $f(\pi / 4)>0$, then the Intermediate Value Theorem guarantees the existence of a real number $c \in(0, \pi / 4)$ such that $f(c)=0$.

Quiz 1 Long Answer

Compute the limit $\lim _{x \rightarrow 1} \frac{\sqrt{x+2}-\sqrt{4-x}}{x-1}$.

If we try to do the limit naively we get $0 / 0$. Hence we must simplify.

$$
\begin{aligned}
\frac{\sqrt{x+2}-\sqrt{4-x}}{x-1} & =\frac{\sqrt{x+2}-\sqrt{4-x}}{x-1} \cdot \frac{\sqrt{x+2}+\sqrt{4-x}}{\sqrt{x+2}+\sqrt{4-x}} \\
& =\frac{(x+2)-(4-x)}{(x-1)(\sqrt{x+2}+\sqrt{4-x})} \\
& =\frac{2 x-2}{(x-1)(\sqrt{x+2}+\sqrt{4-x})} \\
& =\frac{2}{\sqrt{x+2}+\sqrt{4-x}}
\end{aligned}
$$

Quiz 6 Short Answer

Find the intervals where $f(x)=\frac{\sqrt{x}}{x+6}$ is increasing.
$(0, \infty)$

Let $f(x)=x^{2}-2 \pi x-\sin (x)$. Show that there exists a real number c such that $f^{\prime}(c)=0$.

We note that $f(x)$ is continuous and differentiable over all real numbers. Since $f(0)=f(2 \pi)=0$, by Rolle's Theorem (also by the Mean Value Theorem) there exist ssome c between 0 and 2π such that $f^{\prime}(c)=0$.

Quiz 5 Short Answer

Estimate $\sqrt{35}$ using a linear approximation
$L(x)=f(a)+f^{\prime}(a)(x-a)$. If $f(x)=\sqrt{x}$ and $a=36$, then $f(a)=6$ and $f^{\prime}(a)=\frac{1}{12}$. So,
$L(x)=6+\frac{1}{12}(x-36)$. Then: $\sqrt{35}=f(35) \approx L(35)=6+\frac{1}{12}(35-36)=6-\frac{1}{12}=\frac{71}{12}$
Consider a function $f(x)$ which has $f^{\prime \prime \prime}(x)=\frac{x^{3}}{10-x^{2}}$. Show that when we approximate $f(1)$ using its second Maclaurin polynomial, the absolute error is less than $\frac{1}{50}=0.02$.

For some c between 0 and 1 :

$$
\left|f(1)-T_{2}(1)\right|=\left|\frac{f^{\prime \prime \prime}(c)}{3!}(1-0)^{3}\right|=\frac{1}{6}\left|\frac{c^{3}}{10-c^{2}}\right|
$$

Since c is between 0 and 1 , we note $0<c^{3}<1$ and $9<10-c^{2}<10$, so:

$$
\left|f(1)-T_{2}(1)\right|<\frac{1}{6}\left|\frac{1}{9}\right|=\frac{1}{54}<\frac{1}{50}
$$

Quiz 4 Short Answer

Find $f^{\prime}(x)$ if $f(x)=\left(x^{2}+1\right)^{\sin (x)}$.
$f^{\prime}(x)=\left(x^{2}+1\right)^{\sin x}\left[\frac{2 x \sin x}{x^{2}+1}+\cos x \cdot \log \left(x^{2}+1\right)\right]$

Consider a function of the form $f(x)=A e^{k x}$ where A and k are constants. If $f(0)=3$ and $f(2)=5$, find the constants A and k.
$A=3, k=\frac{\log (5 / 3)}{2}$

Quiz 3 Short Answer

Find the equation of the tangent line to the graph of $y=\cos (x)$ at $x=\frac{\pi}{4}$.

$$
y=\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}}\left(x-\frac{\pi}{4}\right)
$$

For what values of x does the derivative of $\frac{\sin (x)}{x^{2}+6 x+5}$ exist? Explain your answer.
$x \neq-1,-5$

Quiz 2 Short Answer

Compute

$$
\lim _{x \rightarrow-\infty} \frac{3 x+5}{\sqrt{x^{2}+5}-x}
$$

$-\frac{3}{2}$ (Remember: when x is negative, $\sqrt{x^{2}}=|x|=-x$.)
Find all values of c such that the following function is continuous:

$$
f(x)=\left\{\begin{array}{ccc}
8-c x & \text { if } & x \leq c \\
x^{2} & \text { if } & x>c
\end{array}\right.
$$

Use the definition of continuity to justify your answer.
When $x \neq c, f(x)$ is locally a polynomial, so it is continuous. The only difficult spot is when $x=c$. Note:

- $f(c)=8-c^{2}$
- $\lim _{x \rightarrow c^{-}} f(x)=\lim _{x \rightarrow c^{-}}(8-c x)=8-c^{2}$
- $\lim _{x \rightarrow c^{+}} f(x)=\lim _{x \rightarrow c^{+}}\left(x^{2}\right)=c^{2}$

Since $f(x)$ is continuous at c only if $f(c)=\lim _{x \rightarrow c} f(x)$, we see the only values of c that make f continuous are those that satisfy $c^{2}=8-c^{2}$. That is, ± 2.

Quiz 1 Short Answer

Find all solutions to $x^{3}-3 x^{2}-x+3=0$
$x^{3}-3 x^{2}-x+3=x^{2}(x-3)-(x-3)=\left(x^{2}-1\right)(x-3)=(x+1)(x-1)(x-3)$
So, the solutions are $x=1, x=3$, and $x=-1$.

Compute the limit $\lim _{x \rightarrow 2} \frac{x-2}{x^{2}-4}$

$$
\lim _{x \rightarrow 2} \frac{x-2}{x^{2}-4}=\lim _{x \rightarrow 2} \frac{x-2}{(x-2)(x+2)}=\lim _{x \rightarrow 2} \frac{1}{x+2}=\frac{1}{4}
$$

