
Mathematics 414, Solutions to Problem Set #7

Problem 1. Find an exact expression for the smallest positive real number x such that cos 3x+
sin 2x = 0. Of course you may use any device to decide what the answer might be, but there should
be a proof that your answer is correct. Formally, the question asks for the answer in radians, but
you may prefer to work in degrees.

Solution. In mathematical work, sinu is the sine of the number u. The sine function is formally
defined in any one of several ways, none of which involve “angles.” This sine function can be
connected with the sine of elementary trigonometry by saying that sinu is the traditional sine of an
angle of size u, where u is measured in radians. It will turn out that the answer to our problem (in
degrees) is 54. But to be technically correct, we must convert to radians, and a 54 degree “angle”
has radian measure 54π/180, or more simply 3π/10. Even though 3π/10 is the (only) right answer,
we do the analysis in “high-school” style, in degrees.

We can let microprocessors do much of the work, either by reading the answer off a graph or by
using the Solve button on a calculator. Or else we can use even a simple scientific calculator, and a
crude informal numerical procedure, or a more sophisticated numerical procedure such as Newton’s
Method, to approximate the root.

If we work in degree notation, we fairly quickly find that the answer is either 54◦ or very close to
that. Unfortunately, the graphing calculator, the Solve button, or numerical procedures can never
tell us that we have found the solution exactly. So a numerical calculation of the type described
above, followed by the statement that the answer is 54◦, is not adequate.

But in this case, once we have conjectured that the answer is exactly 54◦, verification of the
conjecture is quick. For if x = 54◦, then 3x = 162◦, and 2x = 108◦.

By basic symmetry properties of the sine and cosine function, the cosine of 162 degrees is the
negative of the cosine of 18 degrees. Also, the sine of 108 degrees is equal to the sine of 72 degrees,
which in turn is equal to the cosine of 18 degrees. Add up: the sum is 0. So we are finished: the
answer is 54◦, or more properly 3π/10.

Another Way. Or else we can bring out the machinery of trigonometric identities. The identity
cos 3x = cos 2x cosx − sin 2x sinx, together with the usual double angle identities, yields after a
while cos 3x = 4 cos3 x− 3 cosx.

Thus we can rewrite the original equation as 4 cos3 x− 3 cosx+ 2 cosx sinx = 0. The common
factor cosx produces the obvious solution x = π/2 (90 degrees). It will turn out that this is not the
smallest positive solution.

Now look for solutions of 4 cos2 x−3+2 sinx = 0. This can be rewritten as 4 sin2 x−2 sinx−1 = 0.
By the Quadratic Formula, the solutions are sinx = (1 ±

√
5)/4. So we want the least positive

solution of sinx = (1 +
√

5)/4.
Perhaps it is time to go to the calculator. We find that x is approximately 0.942477796 radians.

Out of curiosity, we might go to degrees. To the limit of calculator accuracy, the result seems to be
54◦, or close to that.

Interesting but not conclusive. We have found a numerical solution, and if we believe that
answers to all problems must be ‘nice,’ we may even believe that the answer really is 54◦. But we
need to prove this. The verification that 54◦ is correct can be done exactly as in the first solution.

Comment. This solution was much more complicated than the first one. But as a bonus we found
an exact expression for the sine of the 54◦ angle. And the golden number (1 +

√
5)/2 showed up

once again..
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The identity cos 3x = 4 cos3 x − 3 cosx (and the analogous sin 3x = 3 sinx − 4 sin3 x) have a
number of uses in mathematics. The identity plays a crucial role in the standard proof that not
all angles can be trisected with compass and straightedge. It also comes up in one of the classical
approaches to the cubic equation.

Another Way. We need to find where the two curves y = cos 3x and y = − sin 2x meet. As was
remarked earlier, technically the meaning of sinu is the sine of u, where u is given in radians. But
since radian measure is less familiar, we will work with degrees. A casual sketch shows that the two
curves first meet at a point a little short of 60◦.

Recall that cos(90◦ +u) = − sinu. So we want the first positive solution of cos 3x = cos(90◦ +2x).
If we bear in mind that the answer is a little short of 60◦, we can see that the angles 3x and 90◦ + 2x
should be symmetrical about 180◦, and therefore

90◦ + 2x− 180◦ = 180◦ − 3x, so x = 54◦.

The geometrical approach just used works for cos ax+sin bx = 0, where a and b are any real numbers,
and for other closely related equations.

Problem 2. In the diagram, a square is divided into four triangles. The three outer
triangles have equal area. What is the ratio of the area of the fourth (shaded) triangle
to the combined area of the outer triangles?

Solution. We are only interested in ratios of areas (and we obviously cannot do better, since only
scaling-independent information has been provided). So we can let the area of an outer triangle be
anything we please. Of course something generic like “a” would be fine. But we might as well let the
area be a simple specific number. So let the area of any of the outer triangles be 1/2.

Since the two outer triangles that have a vertex at the lower left-hand corner have the same
area, and one of their legs is the side of the square, the other legs are equal in length. It follows that
the legs of the outer triangle at the upper right-hand corner are equal, that triangle is right-angled
isosceles. The area is 1/2, so each leg of that triangle has length 1.

Let s be the side of the square. Then the outer triangle whose right angle is at the lower
right-hand corner has legs s− 1 and s. The area is 1/2, so

s(s− 1) = 1, and hence s =
1 +
√

5

2
.

Thus s2, the area of the square, is (3 +
√

5)/2. Subtracting the combined area of the outer triangles,
we find that the shaded triangle has area

√
5/2. The desired ratio is therefore

√
5/3.

Comment. The golden ratio ((1 +
√

5)/2 to 1) continues to show up in problems.

Another Way. Draw horizontal and vertical lines as in the picture (left) below. In the picture on
the right, we have simplified things by throwing away the triangles.

x

1
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Let the areas of the outer triangles be 1/2. Then the square on the upper right has area 1. Let the
area of the square on the lower left be x. The square with area x together with the rectangle on its
right has area 1, so each of the remaining unlabelled rectangles has area 1− x.

The ratio of the areas of two rectangles of the same height is equal to the ratio of their widths.
It follows that

x

1− x
=

1− x
1

.

This equation can be rewritten as x2 − 3x+ 1 = 0. Thus x = (3−
√

5)/2 (the other root is too big).
Thus the unlabelled rectangles each have area (

√
5− 1)/2. Adding up, we find that the area of the

full square is (3 +
√

5)/2, and therefore the inner triangle has area
√

5/2.

Comment. Let’s generalize. Suppose that the areas of the two outer triangles that have a corner at
the bottom left are a and b, and that the triangle at the upper right has area c. A calculation much
like the one above shows that the area of the inner triangle is then√

(a+ b+ c)2 − 4ab.

Problem 3. (a) A square is divided into 64 squares, of which at least 63 are 1× 1. What can one
say about the 64-th square? (b) What can one say about the 64-th square if a rectangle is split into
64 squares, of which at least 63 are 1× 1?

Solution. (a) Let the remaining square be x× x. It is geometrically obvious that x is an integer.
The original square has area x2 + 63. This is a perfect square, say y2. We have reached the equation
y2 − x2 = 63, or equivalently (y − x)(y + x) = 63. So y − x must be a divisor of 63, and it is clear
that since y − x ≤ y + x, the number y − x must be a “small” divisor of 63. The possibilities are
y − x = 1, 3, or 7, giving y + x = 63, 21, or 9.

In each case, solve for x and y. We get x = 31, y = 32, x = 9, y = 12, or x = 1, y = 8, a total of
3 possibilities. It is probably not absolutely clear that all these arithmetical possibilities are in fact
geometrically possible. So we really need to give pictures that realize these geometrically. That is
not hard. The case x = 1, y = 8 is geometrically obvious, the 64-th square is 1× 1, the remaining
square in an 8× 8 chessboard.

The remaining cases are dealt with by the pictures below (on the left, x = 31, y = 32, and on
the right, x = 9, y = 12).

In each picture, the large shaded square is the 64-th, and it is bordered by a constellation of 63
nearly invisible 1× 1 squares.

(b) Take a rectangle made up of our 64 squares. Wherever the 64-th square is, we can push it up
and to the right, and rearrange the 1× 1 squares so that the 64-th square is at the upper right-hand
corner. (It is the shaded square in the diagram below.) Suppose that the 64-th square has side a. It
is clear that a is an integer. Let the rectangle be obtained by adding to this square our 63 1× 1
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squares. Label the sides of the added stuff as in the picture. The area of the added stuff is 63. But
it is also xy + ax+ ay, so we obtain the equation

xy + ax+ ay = 63, or equivalently (x+ a)(y + a) = 63 + a2.

ax

y

It is clear that a ≤ 63. We examine possible values of a, one by one. This is not particularly efficient,
but with a little luck we will not miss any.

Try a = 1. We want (x+1)(y+1) = 64, obviously possible. Try a = 2. We want (x+2)(y+2) = 67,
not possible since 67 cannot be expressed as a product of numbers ≥ 2. Try a = 3. So we are looking
at (x+ 3)(y + 3) = 72, and 72 clearly can be expressed as a product of numbers ≥ 3. Try a = 4. We
are looking for a factorization of 79 as a product of two numbers ≥ 4. This is not possible.

Try a = 5. We want to express 88 as a product of numbers ≥ 5, which is possible. Similarly,
a = 6 leads to a “big” factorization of 99, possible. Try a = 7. We want a big factorization of 112,
which is possible, since 112 = 8 · 14. Try a = 8. So we look at factors of 127, no good. Try a = 9.
This works nicely, we are factoring 144. Try a = 10. We want big factors of 163, no good. Try
a = 11. No good, we want to factor 184, and the nearest we can get to a big factorization is 8× 23.
Try a = 12. We want a big factorization of 207, no good.

We have examined 12 cases, only 41 to go. Let’s change tactics. We want xy + a(x+ y) = 63,
and we can assume a ≥ 13. That forces x+ y ≤ 4. Without loss of generality we may assume y ≤ x.
Try y = 0. We want ax = 63, which gives the new possibilities a = 21 and a = 63. Try y = 1. If
x = 1, we get 1 + 2a = 63, giving a = 31. If x = 2, we get 2 + 3a = 63, impossible. If x = 3, we get
3 + 4a = 63, so a = 15. We cannot have x > 3, for that would make x+ y too big. Finally, try y = 2.
Then y can only be 2, but that’s not possible, indeed we cannot ever have both x and y even.

Comment. There is I think not much prospect of a successful generalization of part (b). Suppose we
have n+1 squares, of which n are 1×1. The possible sizes of the remaining squares depend on subtle
arithmetical properties of n. Even part (a) is not completely easy in the general case. It is easy
to connect the possible sizes to solutions of the Diophantine equation y2 − x2 = n. The solutions
are easy to connect to solutions of uv = n. But if n is huge, factoring n is a computationally very
difficult problem.
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