
Mathematics 414, Solutions to Problem Set #4

Problem 1. Use the semicircle below to give a geometric argument for the two-variable Arithmetic
Mean — Geometric Mean Inequality (if x and y are positive, then (x+ y)/2 ≥ √xy, with equality
precisely if x = y).

x y
Solution. It is reasonable to complete the picture as follows. By a basic property of circles, ∠C is a
right angle. That fact is almost certainly too familiar to bother proving: we can’t prove everything.
But it might be worthwhile to recall a proof in case it is needed. Let O be the centre of the circle,
and draw the line segment OC. Triangles AOC and COB are isosceles. Let their base angles be,
respectively, α and β. Then the sum of the angles of 4ABC is 2α+ 2β. This sum is 180◦, so α+ β,
the measure of ∠C, is 90◦.
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The vertical line of the original picture, now called CH, is meant to be perpendicular to the diameter
of the semicircle. That makes all three triangles in the above picture similar. The fact that they are
similar need not be “proved,” it is essentially obvious, but if proof is wanted simple angle-chasing
does the job.

By the similarity of 4AHC and 4CHB, we have HC/x = y/HC, and hence HC =
√
xy. The

rest is easy. The radius of the semicircle is (x+ y)/2. Draw the line OC. . Then OC = (x+ y)/2,
and therefore OC ≥ HC, with equality if and only if H = O. Thus (x+ y)/2 ≥ √xy if and only if
x = y.

Comment. The fact that the radius OC ≥ HC is geometrically clear. It can be proved easily by using
the Pythagorean Theorem, but it would be overkill to do so. Or is it? Note that OC = |x− y|/2, so
the Pythagorean Theorem in this case is a geometric version of the algebraic fact that

((x+ y)/2)2 = (|x− y|/2)2 + xy,

which is essentially the same identity as the one used in the standard algebraic proof of the two
variable AM – GM Inequality.

We could also get the same result by drawing a vertical line upwards from O, meeting the circle
at say P . It is obvious from our familiar mental picture of the circle that OP ≥ HC. Proof is
unnecessary, but easy if demanded.

Note that we have been systematically sloppy: the notation UV was used to denote a line
segment, and also the length of that line segment. Once upon a time, people did not worry much
about this (deliberate) ambiguity, since whether UV refers to a line segment or to its length is
usually clear from the context. Nowadays, many of the school textbooks are much stricter, they
use for example |UV | or mUV to refer to the length of the line segment UV , and insist on calling
that length the measure of UV . Or else the line segment is UV and its “measure” is one of several
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possibilities. Similar issues come up in distinguishing between an angle and the several ways of
specifying the size of that angle. Amusingly, the now common insistence on notational purity has
been accompanied by a large decrease in the amount of geometry actually done.

Problem 2. (a) Define the sequence A0, A1, A2, and so on by A0 = A1 = 1, and An = 2An−1+An−2
for n ≥ 2. Let x = 1/3. Calculate

A0 +A1x+A2x
2 +A3x

3 + · · ·+Anx
n + · · · .

Manipulate infinite sums freely, ignoring issues of convergence.

(b) For x = 1/3, find
∑∞

n=1 nAnx
n.

Solution. (a) The calculation imitates the corresponding calculation with the Fibonacci numbers,
and the familiar method for summing an infinite geometric series. Let our sum be S(x). Multiply
S(x) by 2x, and subtract from the expression for S(x). Gathering like powers of x together, we
obtain

S(x)− 2xS(x) = A0 + (A1 − 2A0)x+ (A2 − 2A1)x2 + (A3 − 2A2)x3 + (A4 − 2A3)x4 + · · · .

If n ≥ 2, then An − 2An−1 = An−2. Using this, we find that

S(x)− 2xS(x) = 1− x+A0x
2 +A1x

3 +A2x
4 + · · · = 1− x+ x2S(x).

A little manipulation now gives S(x) = (1− x)/(1− 2x− x2). When x = 1/3, this is equal to 3.

Comment. Things are somewhat more messy looking if from the beginning we work with 1/3 rather
than x. This increases the probability of error, and more importantly makes it more likely that a
nice structural pattern will be missed. Quite often in problems, even when specific numbers are
mentioned, it can be useful to replace them by letters. Any “algebra” will look much neater, and one
may get a general result. Working with specific numbers from the beginning may be necessary, but
it should be postponed if possible.

As instructed, we operated “formally” on the series, ignoring issues of convergence. It turns out
that our series converges if |x| <

√
2 − 1, which (no accident!) is one the roots of the equation

1 − 2x − x2 = 0. That root is roughly 0.4142, and 1/3 is safely smaller. A proof that there is
convergence at x = 1/3 is not hard. It is enough to show (say by induction) that An < 0.35n if n is
large enough.

(b) We use more or less the same ideas, but the details are somewhat messy. There are general
procedures for solving this kind of problem, but we will temporarily try to stay away from them.
Define T (x) by

T (x) = A1x+ 2A2x
2 + 3A3x

3 + 4A4x
4 + · · · .

Imitating part (a), we may want to look at T (x)− 2xTx), or more boldly, look at T (x)− 2xT (x)−
x2T (x), since that turned out to be very nice with S(x). Exploit the fact that An = 2An−1 +An−2.
After a bit (or a lot) of playing around, we find that

(1− 2x− x2)T (x) + 2xS(x)− 2S(x) = −2A0 + (2A0 −A1)x = x− 2.

(On the left hand side there are infinite series, but almost everything cancels.) Since we know an
expression for S(x), we can now find one for T (x). For numerical computation with x = 1/3, we
don’t need to bother with the algebra, since we already know that S(1/3) = 3. Calculate. It turns
out that T (1/3) = 21/2.
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Comment. Using some algebra on the previous expression for T (x), we can after some work get

T (x) =
2x− x2

(1− 2x− x2)2
.

There is a much simpler way to get this result by using calculus. Since S(x) = A0 +A1x+a2x
2 + · · · ,

the derivative S′(x) of S(x) is A1 + 2A2x+ 3A3x
2 + · · · . It follows immediately that T (x) = xS′(x).

Since we know S(x) from part (a), we now know T (x). The device just mentioned here is useful
and general. Note that even if we only care about the numerical value of T (x) for the single value
x = 1/3, it can be valuable to have a general procedure that works for all x. For more information,
look for the key expression “generating functions.”

Problem 3. Solve exactly one of the following two problems:
(i) Find the slope of the tangent line to the curve xy = 4 at the point (1, 4) in two ways, neither of
which involves “calculus.” One way I can think of uses routine algebra, another uses a transformation.

(ii) Beth has a biased loonie that lands heads with probability p 6= 0, and tails with probability 1− p.
Alicia tosses the coin repeatedly, and keeps a running count of heads and tails. If the number of
heads is ever greater than the number of tails, Alicia wins the game (and the coin). What is the
probability that Alicia wins the game?

Solution. (i) Draw a picture of the curve (not done). It is a hyperbola, symmetrical about the line
with equation y = x. The full geometry will be clearer if we also draw the third quadrant part of
the curve.

The tangent line is not vertical, so it has equation of the shape y − 4 = m(x− 1), where m is
the slope. To find the x-coordinates of the points where this line meets the hyperbola, substitute
4 +m(x− 1) for y in the equation xy = 4, and simplify. We arrive at the equation

mx2 − (m− 4)x− 4 = 0.

It is geometrically clear that the slope is negative, and in particular non-zero. One of the roots of
the equation is given by x = 1, and the sum of the roots is (m− 4)/m, that is, 1− 4/m, so the other
root is −4/m. Alternately and more simply, the product of the roots is −4/m, and since one of the
roots is 1, the other is −4/m.

Since m is negative, there are two distinct positive roots, unless, of course, 1 and −4/m coincide,
in which case there is only one root. But the picture shows that in the case of tangency, there is
only one root. Thus −4/m = 1, and m = −4.

A slightly different way of doing the same thing is to refer to the Quadratic Formula. The
“b2 − 4ac” part of that formula is called the discriminant. The discriminant is (m − 4)2 + 16m,
which simplifies to (m + 4)2. This discriminant is always non-negative, and it is positive unless
m = −4. So there are two distinct real roots unless m = −4. A scan of xy = 4 shows that unequal
roots means non-tangency, so we have tangency precisely if m = −4. The discriminant approach is
somewhat more complicated than the earlier approach through the sum or product of the roots.
but the discriminant is important, so maybe it is a good idea to use it even though it complicates
things. But then again, the sum and product stuff about the roots is arguably even more important
than the discriminant. Our fixation with formulas makes us focus unnecessarily on the discriminant.

Essentially the same argument can be used to compute the slope of the tangent line to xy = k at
the point (a, k/a).
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Another Way. Let t = 4x. Then equation xy = 4 becomes ty = 16, and the point x = 1, y = 4
becomes t = 4, y = 4. Algebraically more attractive, but let’s think about the geometry. Graph,
separately the curves xy = 4 and ty = 16, letting y in each case refer to the vertical direction. The
graph of ty = 16 is just the graph of ty = 4, scaled in the horizontal direction by a stretching factor
of 4. Alternately, on the same graph, draw xy = 4 and xy = 16. The second curve is the just the
first, stretched by a factor of 4 in the x-direction.

The tangent line to xy = 4 at (1, 4) is transformed by the stretching into the tangent line to
ty = 16 (or xy = 16) at the point (4, 4). Now we take advantage of symmetry, which was the whole
point of the game. The tangent line to xy = 16 at (4, 4) obviously has slope −1. Now Transform
Back, by scaling in the x-direction by the factor 1/4. The tangent line to xy = 16 at (4, 4) is
transformed back into the tangent line to xy = 4 at (1, 4). The scaling by 1/4 in the x-direction
multiplies slopes by 4. This is easy to verify algebraically, and is geometrically obvious. So our slope
is −4.

Comment. We have used a particular example of a general technique often called “Transform, Solve,
Transform Back.” Many techniques, both elementary and not so elementary, fall under this rubric.
As a familiar example, suppose that we are interested in the curve y = x2 + 4x− 17. Rewrite as
y = (x+ 2)2 − 21. Let t = x+ 2. We are looking at y = t2 − 21, which has pleasant symmetry about
t = 0. Equivalently, move the curve to the left by the amount 2. We arrive at y = x2 − 21. It is
obvious where this curve crosses the x-axis. Transform back to solve x2 + 4x− 17 = 0. Techniques
of linear algebra such as diagonalization are important because the transformed problem is often
easy to solve.

(ii) Let x be the probability that Alicia wins the game. Winning for Alicia can happen in two ways:
(1) the first toss is a head or (2) the first toss is a tail. The first toss is a head with probability p. If
the first toss is a head, the game is over, Alicia has won.

If the first toss is a tail (probability 1− p) then in order to win, Alicia has to at some time draw
even, and then at some later time has to get ahead. The probability that Alicia draws even at some
time in the race, and then wins. The probability of some time drawing even is x, for drawing even
when she is “1 down” is the same problem as getting 1 head ahead when you are tied, and that
probability is x. And given that Alicia has drawn even, the probability Alicia ultimately wins is x.
We have obtained the equation

x = p+ (1− p)(x)(x).

If p = 1, there is no issue, Alicia wins with probability 1. If p 6= 1, Look at the quadratic equation
above. In standard form, it is (1− p)x2 − x+ p = 0. Solve. The simplest way is to observe that 1 is
a root. But the product of the roots is p/(1− p), so the other root is p/(1− p).

Our equation has two roots. Which one is the answer? If p > 1/2, the root p/(1− p) is greater
than 1, so cannot be a probability. Thus x = 1. If p = 1/2, the two roots are equal, so again x = 1.

The case p < 1/2 needs some argument. Then p/(1− p) is between 0 and 1. So is it the answer?
We must eliminate the other root x = 1 as a possibility. If p < 1/2, then it is intuitively reasonable
(and true) that after n tosses, where n is large, the number of heads obtained, divided by n, is close
to p, so for large n, with positive probability we never return to a situation where the number of
heads is equal to the number of tails. That means that there is a positive probability that after the
first toss, we never have equality of heads and tails. That eliminates the root x = 1.

One might note that p/(1− p) = 1/2 if and only if p = 1. So the game is a fair one if the loonie
lands heads with probability 1/3.
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Comment. The probability that A and B are tied after 2n coin flips is
(
2n
n

)
pn(1− p)n. We estimate(

2n
n

)
. It is not hard to verify that(

2n

n

)
=

(2n)(2n− 1)

n2

(
2n− 2

n− 1

)
< 4

(
2n− 2

n− 1

)
.

From this we can conclude that
(
2n
n

)
< 4n if n > 0.

Suppose that p 6= 1/2, and assume that p 6= 0, p 6= 1. By completing the square, we can show
that p(1− p) < 1/4. The probability that there is a tie at the 2m-th toss or beyond is less than

∞∑
k=m

2k

k
pk(1− p)k.

Let t = 4p(1− p). If p 6= 1/2, then t < 1, so the above sum is less than

∞∑
k=m

tk.

The above sum can be made < 1 (indeed arbitrarily close to 0) by taking m large enough. From
this we can show that if p 6= 1/2, the probability that the contestants will never be tied is greater
than 0. We argued earlier that this was intuitively very reasonable, but wanted to show that with
some effort a proof can be given.

There is a huge literature on questions related to our “Alicia” problem. One term to search for
is “random walks.” The subject, beside being mathematically beautiful, has applications in many
branches of science.
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