
Mathematics 414, Solutions to Problem Set #2

Problem 1. Yolande has $77 more than Xavier, and Zoë has $77 more than Yolande. Between
them, they have $777. How much money does each of them have? Solve the problem (preferably in
more than one interesting way) without using formal algebra.

Solution. The names—any names—are a nuisance, they take up too much space, and one ends up
attempting to balance sexes and ethnic groups. And sadistic problem setters call their heroes Jill,
Jodie, and Julia, in an all too often successful attempt to confuse. Abbreviate our rich kids’ names
as X, Y, and Z. Why can’t everybody in “word problems” have sensible names like that, or like A, B,
and C? (Note that abbreviating names is not algebra.)

Guess how much X has. Any guess will do. Guess, for example, that X has $23. Then Y has
$100, and Z has $177, for a total of $300. But we are aiming for $777, so we are $477 short, the
guess for Xavier has to be adjusted upwards. For each additional dollar we assign to X, we must
assign one to Y and one to Z, so our sum increases by $3. The sum needs to increase by $477, so we
must assign an additional 477/3 dollars to X. It follows that X has 23 + 159 dollars, that is $182.
Hence Y has $259 and Z has $336.

Another Way. Concentrate instead on Y. Since X has $77 less, and Z has $77 more, between the
two of them they have twice as much as Y. Thus Y has 777/3 dollars, and the rest is trivial. Or else
Z gives $77 to X. Then everyone has the same amount, namely 777/3 dollars. Since Y’s fortune did
not change, we know she started with $259, and we are essentially finished.

Another Way. Y and Z have pangs of guilt over their wealth, so Y gives $77 to a semi-destitute
mathematician so he can buy more presentable clothing, and Z gives $(77+77) to the mathematician
to help support his tobacco habit, for a total of $231. That leaves $546, equally distributed between
the three friends. Since X’s fortune has not changed, he started with 546/3 dollars.

Comment. Any of the three arguments, particularly the last two, could and perhaps should be
accompanied by a picture.
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Problem 2. Some positive integers n have the property that 1/n has a terminating decimal
expansion. For example, 1/40 has the terminating decimal expansion 0.025. (a) How many such
integers are there that are less than or equal to 106? (b) What is the sum of the reciprocals of all
the positive integers n such that 1/n has a terminating decimal expansion? So we want
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Solution. (a) It is almost obvious that 1/n has a terminating decimal expansion if and only if
n = 2a5b for some non-negative integers a and b. For completeness we give a proof. If 1/n has
a terminating decimal expansion, then 1/n = k/10c, where k is a positive integer and c is a non-
negative integer. Thus nk = 10c. It follows that any prime divisor of n divides 10c, so must be 2 or
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5. Conversely, suppose that n = 2a5b. Let c be the larger of a and b. Then

n =
2c5c

2c−a5c−b
=

10c

2c−a5c−b

and hence 1/n has a terminating decimal expansion.
Now list and then count. How shall we list? Perhaps first list all our numbers that are not

divisible by 5. These are 20, 21, 22, 23, and so on. Note that 210 is roughly 1000, so 220 is a bit
bigger than 106. Our “last” number is therefore 1019, so this portion of the list has 20 numbers.

Now list the numbers that are divisible by 5 but not by 52. These are 5 × 20, 5 × 21, 5 × 22, and
so on. Our last number is 5 × 217, so this part of the list has 18 numbers.

Now list the numbers that are divisible by 52 but not by 53. These are 52 × 20, 52 × 21, 52 × 22,
and so on. Our last number is 52 × 215, so this part of the list has 16 numbers.

Now list the numbers that are divisible by 53 but not by 54. These are 53 × 20, 53 × 21, 53 × 22,
and so on. Our last number is 53 × 212, so this part of the list has 13 numbers.

Continue. For “54” we get 11 numbers, for 55 we get 9, for 56 we get 7, for 57 we get 4, and for
58 we get 2. The total is 100. Nice and round! When we get such a pretty number, we should ask
ourselves whether we are missing something interesting. In this case, probably not.

A student familiar with logarithms might calculate in general as follows. We want to count the
numbers n ≤ N such that 1/n has a terminating decimal expansion. Imagine listing these numbers
using the strategy we used for N = 106. Then the first list has about log2N members, the second
list has about log2(N/5) members, the third list has about log2(N/25), and so on. Add up. We
can further observe that log2(N/5k) = log2N − k log2 5, and continue. But already we are getting
beyond (BC) high school material.

Another Way. We could list in other ways. For example, we might first list the numbers not divisible
by 10, then the numbers divisible by 10 but not by 102, then the numbers divisible by 102 but not
by 103, and so on.

The numbers not divisible by 10 are just the powers of 2 or 5 that are ≤ 106. There are 20 such
powers of 2 and 9 such powers of 5, but they have the number 1 in common, giving a total of 28.

Now look at the numbers divisible by 10 but not by 102. These are the numbers of the form 10m,
where m is any number ≤ 105 which is a power of 2 or of 5. There are 17 + 8 − 1 of these. Now look
at the numbers divisible by 102 but not by 103. These are the numbers of the form 102m, where m
is any number ≤ 104 which is a power 2 or of 5. There are 14 + 6 − 1 of these. Continue. We get
the counts 10 + 5 − 1, 7 + 3 − 1, 4 + 2 − 1, and 1. Add up. We get 100. The counts agree, I did not
make a mistake! But maybe I made more than one. (If we feel like it, we can express everything in
terms of logarithms. That would be very good for giving a simple approximate value of the count.)

(b) First add up the fractions whose denominator is a power of 2. So we want the sum of the
geometric series 1 + 1/2 + 1/4 + · · · . This sum is 2.

Next add up the fractions whose denominator is divisible by 5 but by no higher power of 5. That
sum is (1/5)(1 + 1/2 + 1/4 + · · · ), that is, 2/5.

Then add up the fractions whose denominator is divisible by 25 but by no higher power of 5.
This sum is 2/25. Continue in this way forever.

Finally, calculate the sum of the infinite geometric series 2 + 2/5 + 2/25 + · · · . This sum is 5/2.
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We obtain precisely the sum of the fractions 1/n where n has no prime divisor other than 2 or 5.
The two infinite geometric series have sum 2 and 5/4 respectively. Multiply.

Comment. The second solution is a bit shorter, and generalizes nicely. Let p1, p2, . . . , pk be distinct
primes, and let S be the sum of all numbers 1/n where any prime factor of the positive integer n
lies among the pi. Then
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Now sum the k infinite geometric series above. We get
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The above calculations can be used to show that there are infinitely many primes. For suppose to
the contrary that there are exactly k primes, p1 to pk. Then S is “finite.” But if there were only
these k primes, then all positive integers would be divisible by at most the primes p1 to pk, which
means that our sum would be the sum of the harmonic series
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However, it is well-known that the sum of the harmonic series is not finite, the harmonic series
diverges.

The above proof that there are infinitely many primes is due to Euler, the greatest mathematician
of the eighteenth century. He used more or less the same idea to show that in fact the sum of the
reciprocals of the primes is “infinite,” which informally means that actually the primes are fairly
thick on the ground.

Elaborate variants of the idea have been used to study the distribution of primes ever since
Euler. Ultimately this line of thought leads to the Riemann zeta-function, and to the most famous
unsolved problem in mathematics, the Riemann Hypothesis.

Comment. We operated with infinite sums as if they were long finite sums, and in particular
rearranged the order of summation freely. That can be done without risk for series that only have
positive terms. But this kind of rearrangement may be illegitimate in some cases. For example, it
turns out that
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but the series can be rearranged so as to have sum 1024, or any other number we like!

Comment. We took as “known” the usual formula for the sum of the geometric progression 1 + a+
a2 + · · · . The standard approach to the formula involves finding an explicit expression for the finite
sum 1 + a+ a2 + · · · + an and studying what happens to this sum as n gets large.

But there is a clever slightly dishonest approach. Let S = 1 + a+ a2 + · · · . Then

S = 1 + a(1 + a+ a2 + · · · ) = 1 + aS.

Now solve for S. We get S = 1/(1 − a).
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This pretty argument assumes that infinite sums can be treated as “long” finite sums, and can
be subjected to analogous algebraic manipulations. To show that one has to be cautious, let’s apply
the method to 1 + 2 + 4 + 8 + · · · . Let the sum be S. Then

S = 1 + 2(1 + 2 + 4 + · · · ) = 1 + 2S.

Solve for S. We get S = −1!

Problem 3. Find all ordered pairs (x, y) of integers (where x and y need not be positive) such that
xy − 2x+ 3y = 2010.

Solution. We use an analogue of “completing the square.” Note that

xy − 2x+ 3y = (x+ 3)(y − 2) + 6,

so our equation can be rewritten as

(x+ 3)(y − 2) = 2004.

The algebra could be given geometric content by drawing a suitable picture involving rectangles.
A picture is important in the “completing the square” situation, for historical and other reasons.
But I don’t think there is a strong argument for the necessity of a picture in this problem. (And
rectangles with negative sides are not much fun to draw.)

We now look for integer solutions of the equation uv = 2004. The prime factorization of 2004 is
given by

2004 = 22 · 3 · 167.

Recall that if p1, p2, . . . , pk are distinct primes, then pe11 p
e2
2 · · · pekk has (e1 + 1)(e2 + 1) · · · (ek + 1)

positive factors. If you do not recall this, let’s count for example the number of positive factors of N ,
where N = 23 · 3 · 72. To make a positive factor m of N , let’s first decide how many 2’s to give to m.
There can be 0, or 1, or 2, or 3, 4 choices in all. For emphevery one of the decisions about how many
2’s, there are 2 ways to decide how many 3’s to give to m (0 or 1), so there are 4 · 2 ways of deciding
how many 2’s and how many 3’s the factor m will get. And for every one of the decisions about how
many 2’s and 3’s, there are 3 ways to decide how many 7’s m will get, for a total of 4 · 2 · 3.

Thus 2004 has 12 positive factors, and 12 negative factors. This means that the equation
uv = 2004 will have 24 ordered pairs (u, v) of integer solutions. It is not really worthwhile to list
them all, since we have already for all practical purposes given a method for listing them all. But
for the same of concreteness, we generate a few of the solutions.

We could have u = 1, v = 2004. That gives x+ 3 = 1, y − 2 = 2004, that is, x = −2, y = 2006.
Or else u = 2004, v = 1, giving x = 2001, y = 3. Or else u = 2, v = 1002, giving x = −1, y = 1004.
Continue. Don’t forget about u = −1, v = −2004, giving x = 4, y = −2002, and so on, and so on.

Comment. The number 2004 is pretty easy to factor. But a huge number N can be extremely
painful to factor, even with computer assistance. So finding the solutions of xy − 2x+ 3y = N + 6
could be very difficult if N is huge.
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