
Mathematics 414, Solutions to Problem Set #1

Problem 1. A rectangle has area 110 cm2 and perimeter 44 cm. If each side of the rectangle is
expanded by 2 cm, what is the area of the expanded rectangle?

Solution. We first sketch an inelegant solution. Let the sides of the rectangle be x and y. Then
xy = 110 and x + y = 22. Since y = 22 − x, we can rewrite xy = 110 as x(22 − x) = 110. After
minor manipulation, we obtain x2 − 22x+ 110 = 0. This has the solutions

x = 11±
√

11.

If x is one of these roots, then 22− x is the other, so we have found the sides of our rectangle. The
expanded rectangle has sides 13±

√
11, and therefore has area 158.

Comment. All too many high school students (but of course, not you) would do the following awful
thing. They would somehow use a calculator to find a good numerical approximation to the sides,
perhaps by evaluating 11±

√
11, or, with a more sophisticated calculator, by using the “Solve” button.

Then they would add 2 to each of these, and multiply. The answer obtained is then numerically
right, or almost right, but the underlying structure is totally missed.

Another Way. There is a much simpler way to solve the problem. Let x and y be the sides of the
original rectangle. Then the sides of the expanded rectangle are x + 2 and y + 2. So the area is
(x+ 2)(y + 2). But note that

(x+ 2)(y + 2) = xy + 2(x+ y) + 4.

Since xy = 110 and 2(x+ y) = 44, the expanded rectangle has area 158.

Another Way. The previous solution is certainly simple enough. But there is an at least aesthetic
flaw. The problem is about areas and perimeters of rectangles, but all that I see in the solution is a
bunch of x and y. Where’s the rectangle? To see what’s happening, look at the left-hand picture
below.

The white rectangle in the middle represents our original rectangle. The outer rectangle represents
the expanded rectangle, that is, the rectangle with each dimension increased by 2. The increasing
has been done by adding a border of width 1, like a frame around a picture. This frame is made up
of the shaded rectangles, plus four 1× 1 squares at the corners.

The shaded rectangles, if cut out and lined up, would make a rectangle of height 1 and base the
perimeter of the original rectangle. So the shaded stuff has total area 1× 44. The corner squares
have combined area 4, and the inner white rectangle has area 110, for a total of 158.

We can draw the diagram a little differently. Expand the original rectangle as in the right-hand
picture, by adding the two shaded “decks” of width 2, together with the 2× 2 square at the upper
right corner. Again, a quick calculation shows that the area of the expanded rectangle is 158.

The pictures have nothing much to do with the actual values 110, 44, and 2 in the problem: the
idea is obviously general.
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Comment. We solve an equation like x2 + 36x = 700 by “completing the square.” Can one draw
the geometric figure that is “incomplete,” and how are we completing it to a real actual geometric
square?

Problem 2. What is the smallest value taken on by 2x+ 3/x as x ranges over the positive reals?
No calculus, please. Hint: think maybe about minimizing u+ v, subject to the condition uv = 6.

Solution. The hint is relevant. Once we have found positive u and v that satisfy uv = 6 and
minimize u+ v, we can find the value(s) of x that minimize 2x+ 3/x by setting x = u/2.

One good thing about the altered version of the problem is the nice symmetry between u and v.
Symmetry is very useful, useful enough to make it worthwhile to have two variables instead of one.

We will use the very important (and easily verified) identity

(u+ v)2 = (u− v)2 + 4uv.

Given that uv = 6, we conclude that (u + v)2 = (u− v)2 + 24. Since (u− v)2 is always ≥ 0, we
conclude that

(u+ v)2 ≥ 24,

with equality if and only if u = v. Since u and v are are positive, it follows that u+ v ≥
√

24 = 2
√

6,
with equality if and only if u = v.

If u = v and u+ v =
√

24, we obtain u = v =
√

6. Thus 2x+ 3/x is minimized over positive x if
x =
√

6/2. The minimum value of 2x+ 3/x over positive x is 2
√

6.

Comment. We return to the inequality (u+ v)2 ≥ 4uv. This can be rewritten as

(u+ v)2

4
≥ uv.

If u and v are non-negative, we can take the square root of both sides and conclude that if u and v
are non-negative, then

u+ v

2
≥
√
uv

with equality if and only if u = v. This is the famous (two variable) Arithmetic Mean – Geometric
Mean (AM – GM) Inequality. (Note that (u+ v)/2 is the arithmetic mean of u and v, and

√
uv is

the geometric mean of u and v.)
This two variable inequality generalizes nicely. Let u1, u2, . . . , un be non-negative. It turns out

that
u1 + u2 + · · ·+ un

n
≥ n
√
u1u2 · · ·un,

with equality if and only if all the ui are equal. There are many proofs, none really simple. The
above result is called the AM – GM Inequality. It is more or less the simplest inequality that one
needs to know and use in Olympiad level contests. It is also highly useful outside contests!

Another Way. We next give a very geometric approach. There really should be a picture, but
inserting the output of drawing software into a document is a tedious business, so let us imagine
the picture. We are working in the u–v plane. First imagine drawing the part of the curve uv = 6,
where u (and hence v) are positive. We get the first quadrant half of a hyperbola, one which is
beautifully symmetric about the line u = v.

Now look at the lines u+ v = k, for various positive values of the parameter k. We get a family
of lines, all of them with slope −1. As k decreases, the associated line moves southwestwards. We
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want to make u+ v as small as possible consistent with uv = 6. So we want to choose m so that
the line u+ v = m meets the positive part of the hyperbola uv = 6, but so that if k < m, the line
u+ v = k does not meet our half-hyperbola. It is clear from the geometry that for this “last” (and
least) m, the line meets the hyperbola at a point (u, v) with u = v. Since uv = 6, it follows that
u = v =

√
6, and therefore m = 2

√
6.

Another Way. There is no compulsion to use the hint. Let f(x) = 2x + 3/x. We can graph the
curve y = f(x) using a graphing calculator. Or else we can use graphing software, which is often far
more powerful than the graphing calculator, and doesn’t make you squint at a pathetically little
screen. (There are a number of good free graphing programs.)

By zooming appropriately on the graph of y = f(x), we can find a good estimate of the minimum
value of f(x) over positive x. This does not fully answer the question. Ideally, we would like if
possible to find an explicit expression for the minimum value.

Here is one way to do it. Let m be the minimum value taken on by f(x). Then (if we believe
the picture), the number m is the only positive number for which the horizontal line y = m meets
the curve y = f(x) in exactly one point. So we want to determine the positive number m such that
the equation

m = 2x+
3

x

has exactly one solution.
The above equation can be rewritten as

2x2 −mx+ 3 = 0.

Now we can proceed slowly, completing the square, or quote the usual formula for the roots of a
quadratic equation, or quote some half-remembered result about something called the discriminant.
I will proceed slowly. Multiplying through by 8 (“4a”), we obtain the equivalent equation

16x2 − 8mx+ 24 = 0,

which can be rewritten as
(4x−m)2 = 24−m2.

For any given m, there is a unique solution x if and only if 24−m2 = 0, so the required smallest
positive value is given by m =

√
24.

Another Way. We sketch a strange solution that introduces a couple of new ideas. Our function
is not quite symmetric enough, x + 1/x would look nicer. Let x = ku. Then we are looking at
2ku + 3/(ku). Choose k so that 2k = 3/k, so let k =

√
3/2. We end up wanting to miniimize√

6(u+ 1/u). Now deal with u+ 1/u.
Let u = tan(θ). A bit of manipulation gets us to 1/(sin(θ)(cos θ)). The denominator is

(1/2) sin(2θ). Make that as big as possible. Clearly this biggest possible value is 1.

Problem 3. Let x = 2000−
√

999999−
√

1000001. Evaluate x (in “scientific” notation), correct to
(a) 3 significant figures and (b) 15 significant figures. Do the evaluation without a calculator, or
with at most a simple scientific calculator.

Solution. (a) We might as well cheat a little. There is a high precision calculator bundled with
Microsoft Windows. Or else we could use the very interesting (and free) Wolfram Alpha. There are
many other free programs that do high precision calculations. And if one insists on paying for what
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is available for free, there is Mathematica, or (O Canada) Maple. The Microsoft Windows calculator
gives something like

2.500000000000781249999999734× 10−10.

Not entirely reliable of course, but interesting looking. Maybe our analysis will end up with something
similar.

Now let us attack the calculation with a simple scientific calculator, whatever that means. Mine,
which are all simple, or at least cheap, all claim that x = 0. The number x is indeed close to 0. But
x is not equal to 0, so none of my calculators gives the result correct to even 1 significant figure! The
problem is that 2000 and

√
999999 +

√
10000001 are large and nearly equal, and a simple calculator

does not carry enough digits to correctly find the difference. The difficulty we are in may seem
artificial. But there are many real scientific computations in which the quantity we are interested in
is the difference between nearly equal large numbers, so analogous issues come up surprisingly often
in the real world.

Comment. Should we give up on the calculator? It may be a good idea to work with smaller numbers
that the calculator really can handle. For example, one of my calculators gives

20−
√

99−
√

101 ≈ 2.500079× 10−4, and

200−
√

9999−
√

10001 ≈ 2.51× 10−7

(here the third significant digit is wrong). We could calculate related things, like 50−
√

24−
√

26.
After some calculator experimentation, we could form a plausible conjecture about what happens in
general. We will not pursue this idea any further, but this kind of investigation can be very valuable.

Enough preliminary comments! Let’s tackle the problem directly, by finding excellent ap-
proximations to

√
999999 and

√
1000001. Any simple scientific calculator, however primitive it

may be, will show that
√

999999 is approximately 999.9995, and that
√

1000001 is approximately
1000.0005. Unfortunately, when we use these estimates to calculate x, we get 0. So we will find
better approximations.

Look first at
√

1000001. We want to solve the equation u2 = 1000001. It is clear that u is close
to 1000. So let u = 1000 + v. Substitute 1000 + v for u in the equation u2 = 1000001. Expand and
simplify. We get v2 + 2000v = 1. Since v is close to 0, the term v2 is negligible compared to the
other two terms. So 2000v ≈ 1. Thus v ≈ 1/2000. Let v = 1/2000 + w. Substitute in the equation
v2 + 2000v = 1 and simplify a bit. We get

w2 + (2000 + 1/1000)w + 1/20002 = 0.

The term w2 is negligibly small in comparison with the other terms. And the coefficient of w is
nearly 2000. So w is approximately equal to −1/20003. We conclude that

√
1000001 ≈ 1000 +

1

2000
− 1

20003
.

Use the same technique to approximate
√

999999. We get

√
999999 ≈ 1000− 1

2000
− 1

20003
.

Add the two estimates, subtract the result from 2000. We get

x ≈ 220003 = 2.50× 10−10.
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Our approximation is in fact excellent, x agrees with 2/20003 to many decimal places. That will be
shown later. Note that we did not bother to write down explicitly the decimal expansions for our
square roots, but instead expressed each square root as a sum.

Comment. The approximation technique that we used turns out to be the same (for polynomials) as
Newton’s Method. In fact, the above kind of calculation is exactly what Newton did. The familiar
formulation in terms of derivatives came quite a bit later, and is not due to Newton.

Another Way. It is convenient, but not necessary, to notice that
√

1000001 = 1000
√

1.000001. To
save typing, let t = 0.000001 = 10−6. We want to find an excellent estimate for

√
1 + t.

Note that (1 + t/2)2 = 1 + t+ t2/4. So the square of (1 + t/2) is a tiny bit bigger than 1 + t,
meaning that the square root of 1 + t is a tiny bit smaller than 1 + t/2. How can we adjust 1 + t/2
so that on squaring the t2/4 term disappears? Look at 1 + t/2− t2/8. When we square this, we
get 1 + t− t3/8 + t4/64. That’s awfully close (technical term) to 1 + t, a very tiny bit less. So our
square root is a very tiny bit bigger than 1 + t/2− t2/8.

More or less the same reasoning works for
√

999999, which is equal to 1000
√

1− t. The square of
1− t/2− t2/8 is 1− t+ t3/8 + t4/64, a very tiny bit too big. So

√
1− t is a very tiny bit smaller than

1− t/2− t2/8. Note that the errors in these new estimates for
√

1 + t and
√

1− t are in opposite
directions, and will at least partially cancel. So we have good reason to think that

x ≈ 1000(2− (1− t/2− t2/8)− (1 + t/2− t2/8)) = 1000t2/4.

But t = 10−6, and our estimate for x is 10−9/4, or, in scientific notation, to 3 significant figures,
2.50× 10−10.

We have almost solved part (a) (in two ways). Our estimates for the square roots are fantastically
good, but a formal proof has not been given that they are indeed fantastically good. Maybe one
should relax, this is an applied numerical problem, maybe being morally sure is good enough. But
we can easily check that, for example with t = 10−6, the number 1 + t/2 − t2/8 is close enough
to
√

1 + t. We had already noted it is a tiny bit too small. Look at the slightly bigger number
1 + t/2− t2/9. Its square is 1 + t+ t2/36− t3/9 + t4/81, which is bigger than 1 + t. So our estimate
for
√

1 + t has error less than t2/8− t2/9, which is t2/72, about 1.4× 10−14, good enough, by a lot.

Comment. The approximation
√

1 + t ≈ 1 + t/2 − t2/8 will be familiar to students of calculus,
since 1 + x− x2/8 is the degree 2 Taylor polynomial for (1 + x)1/2. But the method by which the
approximation was derived makes no explicit use of the calculus.

There are other ways to show that 1 + t/2− t2/8 is a good enough approximation to
√

1 + t. We
want to estimate the absolute value of

√
1 + t− (1 + t/2− t2/8).

Multiply “top” and “bottom” by
√

1 + t+ (1 + t/2− t2/8). When the smoke clears, we get

t3/8− t4/64√
1 + t+ (1 + t/2− t2/8)

.

The denominator is clearly greater than 2, and the numerator is less than t3/8, so the error is less
than t3/16, thus less than 6.25× 10−20. We get a similar estimate for the size of the error in our
estimate of

√
1− t, and since the errors are in opposite directions, our ultimate error is less than

6.25 × 10−17 (remember the 1000 in front of our expression for x). We found that x is roughly
2.5 × 10−10. Our error estimate now shows that this is correct to at least 6 significant figures.
Unfortunately, that is not good enough to settle part (b).
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Another Way. It is handy, and fairly natural, to note that

x =
(

1000−
√

999999
)
−
(√

1000001− 1000
)
.

Look first at 1000−
√

999999. We have

1000−
√

999999 =
(1000−

√
999999)(1000 +

√
999999)

1000 +
√

999999
=

1

1000 +
√

999999
.

A similar calculation with the rest of the expression shows that

x =
1

1000 +
√

999999
− 1√

1000001 + 1000
=

√
1000001−

√
999999

(1000 +
√

999999)(
√

1000001 + 1000)
.

We still have a difference of nearly equal quantities. But now multiply “top” and “bottom” by√
1000001−

√
999999. We get

x =
2

(1000 +
√

999999)(
√

1000001 + 1000)(
√

1000001 +
√

999999)
.

Finally, something that gives no roundoff issues! The denominator is a product of 3 terms, all of
them nearly equal to 2000. Use a calculator, or more sensibly decide that for our purposes the
denominator is almost exactly 20003. We obtain the estimate x ≈ 2.5× 10−10.

Another Way. Actually, we will write the preceding solution over again, the way it should have been
done. The previous way involved an awful lot of typing: 999999 and 1000001 are not pleasant to
write down over and over again. So let a = 1000 and let e = 1. Then we are trying to estimate

2a−
√
a2 − e−

√
a2 + e.

But √
a2 − e−

√
a2 + e = a

(√
1− ε+

√
1 + ε

)
,

where ε = e/a2. So we are estimating

a
(
2−
√

1− ε−
√

1 + ε
)
.

(In our case, ε = 10−6.)
Now do exactly the same simplification as in the previous solution. After not very long, we arrive

at
2aε2

(1 +
√

1− ε)(1 +
√

1 + ε)(
√

1− ε+
√

1 + ε)
.

Since ε is close to 0, the denominator is nearly equal to 8. So our expression is nearly equal to aε2/4,
or, since ε = e/a2, our expression is nearly equal to e2/(4a3). (By nearly equal we mean that the
ratio of our expression to e2/(4a3) is nearly equal to 1. Note that although 0.0002 and 0.0003 are
not far from each other, they are not “nearly equal” in this sense. )

There is nothing special about a = 1000 and e = 1. The only thing that matters is that e is
much smaller than a. So the approximation we have obtained is in fact general. If a is positive and
|d/a| is close to 0, then 2a−

√
a2 − e−

√
a2 + e is nearly equal to e2/(4a3).
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(b) We had observed in the solution to (a) that

x = 1000(2−
√

1− t−
√

1 + t),

where t = 10−6. Now we try to get even better approximations to
√

1− t and
√

1 + t than we found
in two of the solutions to part (a). After a while we find that

√
1 + t ≈ 1 +

t

2
− t2

8
+

3t3

16
− 5t4

128
and

√
1− t ≈ 1− t

2
− t2

8
− 3t3

16
− 5t4

128
.

That gives the following estimate for x:

x = 103
(
t2

4
+

5t4

64

)
.

But 1000t2/4 = 2.5× 10−10 and 5t4/64 = 7.8125× 10−23. We conclude that x is probably awfully
close to

2.50000000000078125× 10−10.

(For 15 significant figures, we could cut off the “125” part, but it seems a shame to do that.) We
have not shown that our estimate is indeed correct to 15 significant figures. An approach much like
the one used for part (a) will work.

Comment. This problem has roots in the calculus. If f(x) is a nice function, and h is small, then
the second-order difference

(f(a+ h)− f(a))− (f(a)− f(a− h)

h2

is a good approximation to f ′′(a). Or, a little more sloppily,

f(a+ h)− 2f(a) + f(a− h) ≈ h2f ′′(a).

Let f(x) = −
√

1 + x, and let a = 0. Then f ′′(a) = 1/4. It follows that −
√

1 + h+2−
√

1− h ≈ h2/4,
which is an informal version of what we showed in part (a).

When we try to estimate f ′(a) by calculating (f(a+ h)− f(a))/h, where h is very small, we end
up taking the difference of “large” nearly equal numbers. It is very easy, unless one is careful, to end
up with seriously flawed results because of roundoff error. The situation is ordinarily much worse if
we attempt the numerical evaluation of a second derivative. Our problem is a good illustration of
this.
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