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GROMOV

LIOR SILBERMAN

ABSTRACT. Written at the request of GAFA’s Editorial Board, with the goal of explicating
some aspects of M. Gromov’s paper [2]. Section 1 recalls the construction of the random
group, while section 2 contains a proof that the random group has property (T) based on
the ideas from the preprint. The appendix defines CAT(0) spaces and works out in detail
some geometric propositions from the preprint used in the proof.

1. RANDOM GROUPS

In this application of the probabilistic method, a “random group” will be a quotient of
a given group. We fix the set of generators (and possibly some initial relations) and pick
extra relations “at random” to get the group:

Let Γ be a finitely generated group, specifically generated by the finite symmetric set
S (of size2k). LetG = (V,E) be a (locally finite)undirectedgraph. ~E will denote the
(multi)set oforiented edgesof G, i.e. ~E = {(u, v), (v, u) | {u, v} ∈ E}. Given a map
(“S-coloring”) α : ~E → S and an oriented path~p = (~e1, . . . , ~er) in G, we setα(~p) =
α(~e1) · . . . ·α(~er). We will only consider the case ofsymmetricα (i.e.α(u, v) = α(v, u)−1

for all (u, v) ∈ ~E). Then connected components of the labelled graph(G,α) look like
pieces of the Cayley graph of a group generated byS. Such a group can result from
“patching together” labelled copies ofG, starting from the observation that in a Cayley
graph the cycles correspond precisely to the relations defining the group. Following this
idea letRα = {α(~c) | ~c a cycle inG},Wα = 〈Rα〉N (normal closure inΓ) and

Γα = Γ/Wα.

TheΓα will be our random groups, withα(~e) chosen independently uniformly at ran-
dom fromS, subject to the symmetry condition. Properties ofΓα then become random
variables, which can be studied using the techniques of the probabilistic method (e.g. con-
centration of measure). We prove here that subject to certain conditions onG (depend-
ing on k), the groupsΓα furnish examples of Kazhdan groups with high probability as
|V | → ∞.

We remark thatΓα is presented by thek generators subject to the relations correspond-
ing to the labelled cycles in the graph, together with the relations already present inΓ
(unlessΓ is a free group). In particular ifG is finite andΓ is finitely presented then so is
Γα.

Remark1.1. This can be done in greater generality: LetΓ be any group, letρ be a sym-
metric probability measure onΓ (i.e. ρ(A) = ρ(A−1) for any measurableA ⊂ Γ), and
denote byρE the (probability) product measure on the spaceA of symmetric maps~E → Γ.
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This is well defined sinceρ is symmetric and justifies the power notation. Now proceed
as before. The case considered in this paper is that of thestandard measure,assigning
probabilities 1

2k to the generators and their reciprocals.

Remark1.2. Assume thatΓ = 〈S|R〉 is a presentation ofΓ w.r.t. S. Then Γα =
〈S|R ∪Rα〉 is a quotient of〈S|Rα〉. Since a quotient of a (T)-group is also a (T)-group,
it suffices to prove that the latter groups has property (T) with high probability. In other
words, we can assume for the purposes of the next section thatΓ = Fk is the free group
onk generators (k ≥ 2).

2. GEOMETRY, RANDOM WALKS ON TREES ANDPROPERTY(T).

2.1. Overview. In this section we prove that with high probabilityΓα has property (T).
The idea is to start with a vector in a representation, and consider the average of its trans-
lates by the generators. Typically iterating the averaging produces a sequence rapidly con-
verging to a fixed point. The proof of this breaks down in the following parts:

(1) Property (T) can be understood in geometric language by examining random walks
on the groupΓα.

(2) A general analysis of random walks on trees gives some technical results.
(3) The spectral gap ofG can be expressed as a bound on the long-range variation of

functions onG in terms of their short-range variation.
(4) (“Transfer of the spectral gap”): With high probability (w.r.t the random choice

of α), a similar bound holds on the variation of certain equivariant functions onΓ
(these areΓ-translates of vectors in a representation ofΓα).

(5) By a geometric inequality and an estimate on the random walk on the treeΓ,
averaging such a function over the action of the the generatorsn times produces a
function whose (short-range) variation is bounded by the long-range variation of
the original function.

(6) Combining (3), (4) and (5) shows that repeated averaging over the action of the
generators converges to a fixed point. The rate of convergence gives a Kazhdan
constant.

2.2. Property (T). Let Γ be a locally compact group generated by the compact subsetS
(not to be confused with theΓ of the previous section).

Definition 2.1. Let π : Γ → Isom(Y ) be an isometric action ofΓ on the metric spaceY .
Fory ∈ Y setdiS(y) = supγ∈S dY (π(γ)y, y).

Say thaty ∈ Y is ε-almost-fixedif diS(y) ≤ ε. Say that{yn}∞n=1 ⊆ Y represents an
almost-fixed-point(a.f.p.) if limn→∞ diS(yn) = 0.

Definition 2.2. (Kazhdan, [3]) Say thatΓ hasproperty (T) if there existsε > 0 such
that every unitary representation ofΓ which hasε-almost fixed unit vectors is the trivial
representation. Such anε is called aKazhdan constantfor Γ w.r.t S. The largest suchε is
calledtheKazhdan constant ofΓ w.r.t. S.

Remark2.3. It is easy to see that the question of whetherΓ has property (T) is independent
of the choice ofS. Different choices may result in different constants though.

An alternative definition considers “affine” representations. For the purpose of most
of the discussion, the choice of origin in the representation space is immaterial, as we
consider an action of the group through the entire isometry group of the Hilbert space,
rather than through the unitary subgroup fixing a particular point (informally, we allow
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action by translations in addition to rotations). In this case we will say the Hilbert space is
“affine”. One can always declare an arbitrary point of the space to be the “origin”, letting
the norm denote distances from that point and vector addition and scalar multiplication
work “around” that point. However, the results will always be independent of such a
choice.

Theorem 2.4. (Guichardet-Delorme, see[1, Ch. 4]) Γ has property (T) iff every affine
(=isometric) action ofΓ on a Hilbert spaceY has a fixed point.

We now return to the groupΓ of the previous section and introduce the geometric lan-
guage used in the remainder of the discussion. As explained above we specialize to the
case ofΓ being a free group. LetY be a metric space,π : Γα → Isom(Y ). SinceΓα is a
quotient ofΓ we can think ofπ as a representation ofΓ as well. SettingX = Cay(Γ, S)
(a 2k-regular tree) allows us to separate the geometric objectX from the groupΓ acting
on it (by the usual Cayley left-regular action). We can now identifyY with the space1

BΓ(X,Y ) of Γ-equivariant functionsf : X → Y (e.g. by taking the value off at1).
We are interested in bounding the distancesdY (sy, y) for s ∈ S. More precisely we

will bound
1

2|S|
∑
γ∈S

d2
Y (γy, y).

Under the identification ofY with BΓ(X,Y ) this is:∑
x′∈X

µX(x→ x′)d2
Y (f(x′), f(x)),

whereµX is the standard random walk onX (i.e. µX(x → x′) = 1
2k if x′ = xγ for

some generatorγ ∈ S andµX(x→ x′) = 0 otherwise). We note that sincef andµX are
Γ-equivariant, this “energy” is independent ofx, and we can set:

EµX
(f) =

1
2

∑
x′

µ(x→ x′)d2
Y (f(x′), f(x))

and call it theµX -energyof f . To conform with the notation of section B.4 in the appendix,
one should formally integrate w.r.t. a measureν̄ on Γ\X, but that space is trivial. In this
languagef is constant (i.e. is a fixed point) iffEµX

(f) = 0 and{fn}∞n=1 represent an
a.f.p. iff limn→∞EµX

(fn) = 0.
In much the same way we can also consider longer-range variations inf , using then-

step random walk instead.µn
X(x → x′) will denote the probability of going fromx to x′

in n steps of the standard random walk onX,Eµn
X

(f) the respective energy. Secondly, we
can apply the same notion of energy to functions on a graphG as well (no equivariance
here: we consider all functionsf : V → Y ). Hereµn

G will denote the usual random walk
on the graph,νG will be the standard measure onG (νG(u) = 1

2|E| deg u) andEµn
G
(f) =

1
2

∑
u,v νG(u)µn

G(v)d2
Y (f(u), f(v)). The “spectral gap” property ofG can then be written

as the inequality (Lemma 2.10, and note that the RHS does not depend onn!)

Eµn
G
(f) ≤ 1

1− λ1(G)
EµG

(f),

whereλr(G) = max{|λi|r | λi is an e.v. of G andλr
i 6= 1}.

The core of the proof, section 2.4, carries this over toX with a worse constant. There
is one caveat: we prove that with high probability, for every equivariantf coming from a

1For the motivation for this notation see appendix B.
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representation ofΓα, the inequalityEµ2l
X

(f) ≤ 10.5
1−λ2(G)Eµ2

X
(f) holds forsomevalue ofl,

large enough. We no longer claim this holds foreveryl.
Leveraging this bound to produce an a.f.p. is straightforward: we use the iterated aver-

agesH l
µX
f(x), which are simply

(HµX
)l
f(x) = Hµl

X
f(x) =

∑
x′

µl
X(x→ x′)f(x′).

Geometric considerations show that ifl is large enough then (approximately, see Proposi-
tion 2.15 for the accurate result)EµX

(Hµl
X
f) � Eµl

X
(f), and together with the spectral

gap property this shows that continued averaging gives an a.f.p. which converges to a fixed
point. Moreover, if the representation is unitary (i.e. the action ofΓ on Y fixed a point
0 ∈ Y ), if f represents a unit vector (i.e. the values off are unit vectors) and ifEµX

(f)
is small enough to start with, then this fixed point will be nonzero. This gives an explicit
Kazhdan constant (for details see section 2.6).

One technical problem complicates matters: the treeX is a bipartite graph. It is thus
more convenient to consider the random walkµ2

X and its powers instead, since they are all
supported on the same half of the tree. Then the above considerations actually produce a
Γ2-f.p. whereΓ2 is the subgroup ofΓ of index2 consisting of the words of even length.
If Wα (i.e. G) contains a cycle of odd order thenΓ2

α = Γα and we’re done. Otherwise
[Γα : Γ2

α] = 2 andΓ2
α C Γα. Now averaging w.r.tΓα/Γ2

α produces aΓα-f.p. out of a
Γ2

α-f.p.

2.3. Random walks on trees.Let Td be ad-regular tree, rooted atx0 ∈ Td. Consider
the distance fromx0 of the random walk onTd starting atx0. At each step this distance
increases by1 with probability pd = d−1

d and decreases by1 with probability qd = 1
d ,

except if the walk happens to be atx0 when it must go away. Except for this small edge
effect, the distance of the walk fromx0 looks very much like a binomial random variable.

Formally letΩ1 = {+1,−1} with measurepd on +1, qd on−1 and letΩ = ΩN
1 with

product measure. We define two sequences of random variables onΩ: the usual Bernoulli
walk:

Xn(ω) =
n∑

i=1

ωi

as well as the “distance fromx0” one by settingY0(ω) = 0 and:

Yn+1(ω) =

{
Yn(ω) + ωn+1

1
Yn(ω) ≥ 1
Yn(ω) = 0

.

Let µn
d (r) = P(Yn = r) andbnd (r) = P(Xn = r). If µT is the standard random walk on

the tree then by spherical symmetryµn
d (r) = δd(r)µn

T (x0 → y0) whereδd(r) is the size
of the r-sphere inT anddT (x0, y0) = r. In similar fashionbnd (r) is the probability that
the skewed random walk onZ with probabilitiespd, qd goes from0 to r in n steps. We
also addηd = pd − qd andσ2

d = 4pdqd (the expectation and variance ofωn). Of course
µn

d (r) = bnd (r) = 0 if r 6≡ n (2) and otherwise

bnd (r) =
(

n
n+r

2

)
p

n+r
2

d q
n−r

2
d .

We drop the subscript′d′ for the remainder of the section. The following Proposition
collects some facts about the Bernoulli walk:

Proposition 2.5. E(Xn) = nη, σ2(Xn) = nσ2 and:
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(1) (Large deviation inequality, e.g. see[4])

P (Xn > ηn+ εn) ,P (Xn < ηn− εn) ≤ e−2nε2

so that

P (|Xn − ηn| > εn) ≤ 2e−2nε2
.

(2) (Non-recurrence) Letr ≥ 0 and assumep > q. Then

P (∀nXn > −r) = 1−
(
q

p

)r

.

The trivial observation thatXn(ω) ≤ Yn(ω) impliesP(Yn ≤ r) ≤ P(Xn ≤ r) leading
to the (one-sided) deviation estimate

(2.1) P (Yn ≤ r) ≤ e−2n(η− r
n )2 .

In the other direction the recurrence relation

µn+1(r) =


p · µn(r − 1) + q · µn(r + 1)
µn(0) + q · µn(2)
q · µn(1)

r ≥ 2
r = 1
r = 0

impliesµn(r) ≤ 1
pb

n(r), with equality forr = n (proof by induction, also carrying the
stronger assertionµn(0) ≤ bn(0)).

Corollary 2.6. P
(
|Yn − ηn| > θ

√
n log n

)
≤ 2

pn
−2θ.

This is a crucial point, since this will allow us to analyze expressions like
∑

x′ µ
n
X(x, x′)f(x′)

only whendX(x, x′) ∼ ηn, making a trivial estimate otherwise. In fact, from now on we
will only consider the range|r − ηn| ≤ 2

√
n log n.

Lemma 2.7. (Reduction to Bernoulli walks) Lett ≤ n . Then∣∣∣∣∣∣P(Yn = r)−
∑

1
2 ηt≤j≤t

P(Yt = j)P(Xn−t = r − j)

∣∣∣∣∣∣ ≤ e−η2t/2 +
(
q

p

) 1
2 ηt

.

Proof. As has been remarked before,P(Yt <
1
2ηt) ≤ P(Xt <

1
2ηt) ≤ e−η2t/2. Further-

more, definingX̃n = Yt +Xn −Xt we clearly have:{
ω ∈ Ω | Yt(ω) ≥ j0 ∧ Yn 6= X̃n

}
⊆
{
ω ∈ Ω | Yt(ω) ≥ j0 ∧ ∃u > t : X̃u = 0

}
.

However, by Proposition 2.5(2)P(Yt ≥ j0 ∧ ∃u > t : X̃u = 0) ≤
(

q
p

)j0
. Also by the

time translation-invariance of the usual random talk,

P(Yt = j | X̃n = r) = P(Xn −Xt = r) = P(Xn−t = r − j).

�

Proposition 2.8. Let |r − ηn| ≤ 2
√
n log n. Then for some constantsc1(d), c2(d) inde-

pendent ofn,∣∣µn+2
d (r)− µn

d (r)
∣∣ ≤ √

log n√
n

c1(d) · µn
d (r) + c2(d)

(
e−η2√n/2 +

(
q

p

) 1
2 η
√

n
)
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Proof. Sett = b
√
nc. By the Lemma,

|P(Yn+2 = r)− P(Yn = r)| ≤ 2e−η2t/2 + 2
(
q

p

) 1
2 ηt

+

+
∑

1
2 ηt≤j≤t

P(Yt = j) |P(Xn−t+2 = r − j)− P(Xn−t = r − j)| .

An explicit computation shows:

|P(Xn−t+2 = r − j)− P(Xn−t = r − j)| ≤ c1(d)
√

log n√
n

P(Xn−t = r − j).

Since
√

log n/n ≤ 1 the result follows withc2(d) = (2 + c1(d))(eη2/2 + (p/q)η/2). �

We also need a result about general trees. LetT be a tree rooted atx0 ∈ T such that the
degree of any vertex inT is at least3. We would like to prove that the random walk onT
tends to go further away fromx0 than the random walk onT3 due to the higher branching
rate.

Proposition 2.9. Let r < 1
3n. Thenµn

T (x0 → BT (x0, r)) ≤ e−2n( 1
3−

r
n )2 .

Proof. Label the (directed) edges exiting each vertexx ∈ T with the integers0, . . . ,deg(x)−
1 such that the edge leading towardx0 is labelled0 (any labelling ifx = x0). Assume that
the maximal degree occurring inBT (x0, n) is d, and letΩ = {0, . . . , d!−1} with uniform
measure. Again we define two random variables onΩn. First, letXi(ω) =

∑i
j=1X(ωj)

whereX(ωj) = −1 if 3
d!ωj < 1, X(ωj) = +1 if not. Secondly defineYi : Ωn → T by

Y0 ≡ x0 andYi(ω) follows the edge labelled
⌊

deg(Yi−1)
d! ωi

⌋
leavingYi−1(ω).

It is easy to see that theYi give a model for the standard random walk onT , while theXi

are a Bernoulli walk onZ with probabilityp3 of going to the right. Moreover, by induction
it is clear thatdT (x0, Ti(ω)) ≥ Xi(ω). The deviation inequality 2.5 now concludes the
proof. �

2.4. The spectral gap and its transfer.

Lemma 2.10.LetG = (V,E) be a finite graph, letνG be the standard probability measure
on V (νG(u) = deg(u)

2|E| ), and letµG be the standard random walk onG (µG(u → v) =
1

deg(u) if (u, v) ∈ ~E). Setλ2(G) = max
{
λ2 | λ 6= ±1 is an eigenvalue ofHµG

}
(note

thatλ2(G) < 1). LetY be an affine Hilbert space, and letf : V → Y . ThenEµ2n
G

(f) ≤
1

1−λ2(G)Eµ2
G
(f) for all n ∈ N.

Proof. Choose an arbitrary origin inY , making it into a Hilbert space. Then

Eµq
G
(f) =

1
2

∑
u∈V

νG(u)
∑
v∈V

µq
G(u→ v) ‖f(u)− f(v)‖2Y

=
1
2

∑
u,v∈V

νG(u)µq
G(u→ v)

[
‖f(u)‖2Y + ‖f(v)‖2Y − 2 〈f(u), f(v)〉Y

]
.

µ is ν-symmetric, i.e.ν(x)µq(x→ y) = ν(y)µq(y → x) and therefore
(2.2)

Eµq
G
(f) =

∑
u∈V

νG(u)

〈
f(u), f(/u)−

∑
v

µq
G(u→ v)f(v)

〉
=
〈
f, (I −Hq

µG
)f
〉

L2(νG)
,
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where we usedHµq
G

= (HµG
)q. Just like the caseY = C we can now decompose (the

vector-valued)f in terms of the (scalar!) eigenfunctions ofHµG
(the normalized adjacency

matrix). Assume these areψ0, . . . , ψn−1 corresponding to the eigenvaluesλ0 = 1 ≥ λ1 ≥
· · · ≥ λ|V |−1 ≥ −1, such thatλi0 is the first smaller than1 andλi1 is the last larger than
−1. Writing f =

∑
aiψi (ai ∈ Y ) and specializing to the caseq = 2n we get:

Eµ2n
G

(f) =
i1∑

i=i0

(1− λ2n
i ) |ai|2 .

For i0 ≤ i ≤ i1,

1− λ2t
i = (1− λ2

i )
t−1∑
j=0

λ2j
i ≤ (1− λ2

i )
∞∑

j=0

λ(G)2j =
1− λ2

i

1− λ2(G)
,

and thus

Eµ2n
G

(f) =
i1∑

i=i0

(1− λ2n
i ) |ai|2 ≤

1
1− λ2(G)

i1∑
i=i0

(1− λ2
i ) |ai|2 =

1
1− λ2(G)

Eµ2
G
(f).

�

Now recall the definition of the factor groupΓα in Section 1. We would like to transfer
the “boundedness of energy” property to the random walk on the random groupΓα. Let
Xα = Cay(Γα;S) with the standardS-labelling andΓ-action. Given a vertexu ∈ V and
an elementx ∈ Γα there exists a unique homomorphism of labelled graphs,

αu→x : Gu → Xα

(Gu is the component ofG containingu) which takesu to x and maps a directed edge of
~e ∈ ~E to an edge(y, y · α(~e)) of the Cayley graphXα = Cay(Γα;S). Given the measure
µG(u →) onVu we thus have its pushforward measureα∗u→x(µG(u →)) on Γα. We can
then define a pushforward random walk onΓα by averaging over all choices ofu ∈ V :

µ̄X,α(x→ A) =
∑

u

ν(u)α∗u→x(µG(u→ A)) =
∑

u

ν(u)µG(α−1
u→x(A)).

It is clear thatµ̄X,α is Γ-invariant. Theµ̄X,α-odds of going fromx to y are the average
overu of the odds of going from a vertexu to a vertexv such that the path fromu to v is
α-mapped tox−1y.

We now fixu0 ∈ V, x0 ∈ Γα (e.g. x0 = 1). Let Γα act by isometries on the metric
spaceY . Then we can identify an element ofY with a Γα-equivariant mapf : Xα →
Y through the valuef(x0). Any such function can be clearly pulled back to a function
f ◦ αu0→x0 : V → Y . Moreover,

Eµq
G
(f ◦ αu0→x0) =

1
2

∑
u,v∈V

νG(u)µq
G(u→ v)d2

Y (f(αu0→x0(u)), f(αu0→x0(v)))

and by the equivariance off this equals:

1
2

∑
x∈X

d2
Y (f(e), f(x)) ·

∑
αu→e(v)=x

νG(u)µq
G(u→ v) =

1
2
|df |2µ̃q

X,α
(e) = Eµ̃q

X,α
(f),

pushing forward any walkµq
G to a random walk̃µq

X,α onXα. We can now rewrite the
Lemma asEµ̃2n

X,α
(f) ≤ 1

1−λ2(G)Eµ̃2
X,α

(f).
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The spaceXα, however, is difficult to analyze – in particular it varies withα. We would
rather consider the treeX = Cay(Γ;S), which we also take with theS-labelling andΓ-
action. Fixingx ∈ X, every path inG has a uniqueα-pushforward to an path onX starting
at x and preserving the labelling. By averaging over all paths of lengthq in G we get a
Γ-invariant random walk onX, which we will denote bȳµq

X,α:

µ̄q
X,α(x→ x′) =

∑
|~p|=q;αp0→x(~p)=x′

νG(p0)µ
q
G(~p)

(this notation is acceptable since the pushforward of this walk by the quotient mapX →
Xα will give the walk µ̃q

X,αon Xα). The relevant space of functions is now all theΓ-
equivariant functionsf : X → Y such thatwf = f for all w ∈ Wα. It is clear that
averaging such a functionf w.r.t. this walk onX or onXα will give the same answer,
allowing us to only consider walks on the regular treeX. The final form of the Lemma is
then

(2.3) Eµ̄2n
X,α

(f) ≤ 1
1− λ2(G)

Eµ̄2
X,α

(f).

We now use the results of section 2.3 to obtain (with high probability) a similar inequality
about the variation of functions w.r.t. the standard walkµq

X :
For fixedq, x andx′, we think of the transition probabilitȳµq

X,α(x→ x′) as a function

of α, in other words a random variable. It expectation will be denoted byµ̄q
X,G(x→ x′) def=

Eµ̄q
X,α(x → x′). We show that̄µ2n

X,G(x → x′) is a weighted sum of theµq
X(x → x′),

where small values ofq give small contributions. Thus any bound onEµ̄2n
X,G

(f) can be

used to bound someEµ2l
X

(f). We then show that with high probabilitȳµq
X,α(x → x′) is

close to its expectation, so that equation (2.3) essentially applies toEµ̄2n
X,G

(f) as well.

We recall that thegirth of a graphG, denotedg(G), is the length of the shortest non-
trivial closed cycle inG. If q < 1

2g(G) then any ball of radiusq in G is a tree. We also
denote theminimal vertex degreeof G by δ(G) = min{deg(v) | v ∈ V }.

Lemma 2.11. Let 2n < 1
2g(G). Then there exist nonnegative weightsP 2n

G (2l) such that∑n
l=0 P

2n
G (2l) = 1, and

µ̄2n
X,G(x→ x′)

def
= Eµ̄2n

X,α(x→ x′) =
n∑

l=0

P 2n
G (2l)µ2l

X(x→ x′).

Moreover ifδ(G) ≥ 3 then

Q2n
G

def
=
∑

l≤n/6

P 2n
G (2l) ≤ e−n/9.

Proof. Since

µ̄2n
X,α(x→ x′) def=

∑
|~p|=2n;αp0→x(~p)=x′

νG(p0)µ2n
G (~p),

the expectation is

µ̄2n
X,G(x→ x′) =

∑
|~p|=2n

νG(p0)µ2n
G (~p)P(αp0→x(p2n) = x′).

Where the probability is w.r.t. the choice ofα.
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Let ~p be a path of length2n in G. By the girth assumption, the ball of radius2n around
p(0) is a tree. Thus there is a unique shortest path~p′ in it from p0 to p2n, and

αp0→x(~p) = αp0→x(~p′) = x · α(~e′1) · α(~e′2) · · · · · α(~e′|~p′|)

(just remove the backtracks by the symmetry ofα). Moreover, theα(~e′i) are independent
random variables since those edges are distinct. We conclude that the probability that
αp0→x(~p) = x′ is equal to the probability of the|~p′|-step random walk onX getting from
x to x′. Thus:

µ̄2n
X,G(x→ x′) =

n∑
l=0

P 2n
G (2l)µ2l

X(x→ x′)

where
P 2n

G (2l) =
∑

|~p|=2n;|~p′|=2l

νG(p0)µ2n
G (~p).

For anyu ∈ V Let Tu = BG(u, 2n). This is a tree, and ifP 2n
G,u(2l) is the probability of

the2n-step random walk onTu starting atu reaching the distance2l from u then clearly
P 2n

G (2l) =
∑

u νG(u)P 2n
G,u(2l). In particular it is clear that

∑
l P

2n
G (2l) = 1. Moreover

since we assume that the minimal degree inG is 3, we have
∑

l≤n/6 P
2n
G,u ≤ e−2n/18 by

Proposition 2.9. Averaging overu gives the bound onQ2n
G . �

Lemma 2.12. In addition to the assumptions of the previous Lemma, letdeg(u) ≤ d for
all u ∈ V , whered is independent of|V |. Then with probability tending exponentially to1
with |V |,

µ̄2n
X,α(x→ x′) ≥ 1

2
µ̄2n

X,G(x→ x′)

for all x, x′ ∈ X and
µ̄2

X,α(x→ x′) ≤ µ2
X(x→ x′)

for all x 6= x′ ∈ X.

Proof. The random variablēµq
X,α(x → x′) is a Lipschitz function on a product measure

space: return to the definition of̄µq
X,α(x → x′) as the average of the pushforwards of

random walks centered at the various vertices ofG. Changing the value ofα on one edge
only affects random walks starting at vertices with distance at mostq−1 from the endpoints
of the edge. Since each such contribution can change by at most1 the average can change
by at most

τ ≤ 2(d− 1)q−1

|V |
,

which is therefore the Lipschitz constant2. By the concentration of measure inequality (see
[4, Corollary 1.17]) the probability of̄µq

X,α(x→ x′) deviating from its mean by at leastε
(in one direction) is at most

e
− ε2

2τ2|E| ≤ e
− ε2

4d(d−1)2q−2 |V |

since2|E| ≤ d|V |.
Fixing q, x we now consider all thēµq

X,α(x→ x′) (differentx′) together. LetNk(q) be
the number of random variables:

Nk(q) = |{x′ ∈ X | dX(x, x′) ≤ q anddX(x, x′) ≡ q (mod 2)}| ,

2w.r.t. the Hamming metric on the product space.
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and letε(k, d, q) be the infimum over suchx′ (essentially over their distances – the walk
µ̄q

X,G is spherically symmetric) and over rooted treesT of depthq and degrees bounded

between3 andd of the expression3

µ̄q
X,T (x→ x′) =

∑
l≤q

∑
|~p|=q;|~p′|=l

µq
T (~p)µl

X(x→ x′),

the probability ofsomeµ̄q
X,α(x→ x′) being less than half its mean is then at most

Nk(2n) · e−
ε(k,d,2n)2

16d(d−1)4n−2 |V |.

To see this note that if the girth ofG is larger than2q theµ̄q
X,G is theνG-average of̄µq

X,Tu

whereTu is the ball of radiusq aroundu in G, which is a tree rooted atu.
As to µ̄2

X,α(x → x′), note that ifx 6= x′ but dX(x, x′) = 2 then µ̄2
X,G(x → x′) =

P 2
G(2)µ2

X(x → x′) (to get fromx to x′ we can only consider the paths of length2 in G)
so that the probability of̄µ2

X,α(x→ x′) > µ2
X(x→ x′) for some suchx′ is at most:

Nk(2) · e−
(1−P2

G(2))2(µ2
X (x→x′))2

4d(d−1)2
|V |
.

�

Combining the deviation estimates with the spectral gap of the graph, we obtain the
main result:

Proposition 2.13. Assume4 ≤ 2n < 1
2g(G) and that for everyu ∈ V , 3 ≤ deg(u) ≤ d.

Then with probability at least

1−Nk(2n) · e−
ε(k,d,2n)2

16d(d−1)4n−2 |V | −Nk(2) · e−
(1−P2

G(2))2

16k2(2k−1)2d(d−1)2
|V |

for everyY , π : Γα → Isom(Y ) and every equivariantf : Γα → Y there exists anl
(depending onf ) such that12ηdn < l ≤ n and

Eµ2l
X

(f) ≤ 2
1− e−2/9

· 1
1− λ2(G)

Eµ2
X

(f).

Proof. Let l0 = 1
2ηdn. By Lemma 2.12 we know that with high probability (as in the

statement of this Proposition),

Eµ̄2n
X,α

(f) ≥ 1
2
Eµ̄2n

X,G
(f),

and
Eµ̄2

X,α
(f) ≤ Eµ2

X
(f)

(The second inequality follows from the assumed bound on the random walkµ̄2
X,α since

terms withx = x′ don’t contribute on either side). Combining these two inequalities with
the graph spectral gap (equation 2.3) we get:

Eµ̄2n
X,G

(f) ≤ 2
1− λ2(G)

Eµ2
X

(f)

We now use Lemma 2.11 in the form:
1

1− e−2/9
Eµ̄2n

X,G
(f) ≥ 1

1−Q2n
G

Eµ̄2n
X,G

(f) ≥
∑

l0<l≤n

P 2n
G (2l)

1−Q2n
G

Eµ2l
X

(f)

3The sum is over paths~p starting at themarked rootof the tree.
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where
∑

l0<l≤n
P 2n

G (2l)

1−Q2n
G

= 1 by the definition ofQ2n
G , to get:∑

l0<l≤n

P 2n
G (2l)

1−Q2n
G

Eµ2l
X

(f) ≤ 2
1− e−2/9

1
1− λ2(G)

Eµ2
X

(f).

Finally, the smallest of theEµ2l(f) is at most equal to their average, so the desired conclu-
sion holds for that particularl. �

Remark2.14. Modifying the second Lemma and assumingn large enough, the factor
2

1−Q2n
G

could be replaced with a bound arbitrarily close to1. For brevity we also note
2

1−e−2/9 ≤ 10.5.

2.5. Geometry. We begin with some motivation from the case of a unitary representation.
The derivation of equation (2.2) then shows thatEµq

X
(f) =

〈
f, (I −Hq

µX
)f
〉

(this inner
product isΓ-invariant since the origin is now assumed to beΓ-invariant).Hµ is self-adjoint
w.r.t. this inner product, so

Eµ2
X

(Hµ2n
X
f) =

〈
f,Hµ2n

X

(
I −Hµ2

X

)
Hµ2n

X
f
〉

= Eµ4n
X

(f)− Eµ4n+2
X

(f).

Sinceµ4n
X (x→ x′), µ4n+2

X (x→ x′) are in some sense close for largen, this should imply
that averages off have small energy (see the rigorous discussion below). This is precisely
what we need in order to prove the existence of fixed points.

This analysis is insufficient for our purposes, however. We would like to analyze
affine (isometric) actions when inner products are no longer invariant, and even actions
on CAT(0) metric spaces, where the equation wouldn’t even make sense. Indeed, it turns
out that the the non-positive curvature of Hilbert space is all that is needed here: an ana-
logue of the above formula is proved in the appendix (Proposition B.25, for the random
walk µ = µ2

X ) in two parts, reading:
(2.4)

Eµ2
X

(Hµ2n
X
f) ≤ 1

2

∫
Γ\X

dν̄X(x)
∫

X

[
dµ2n+2

X (x→ x′)− dµ2n
X (x→ x′)

]
d2

Y (Hµ2n
X
f(x), f(x′)),

and
1
2

∫
Γ\X

dν̄X(x)
∫

X

dµ2n
X (x→ x′)d2

Y (Hµ2n
X
f(x), f(x′)) ≤ Eµ2n

X
(f).

In the present caseΓ\X is a single point, and the outer integrals can be ignored (anyx ∈ X
is a “fundamental domain” forΓ\X).

As just indicated, we would like to prove that averaging indeed reduces the variation of
f by producing an inequality of the form4:

Eµ2
X

(Hµ2n
X
f) ≤ o(1) · Eµ2n

X
(f).

If µ2n+2
X (x → x′) were all close to the respectiveµ2n

X (x → x′) (e.g. µ2n+2
X (x → x′) ≤

(1 + o(1))µ2n
X (x → x′)) we would be done immediately. Unfortunately, such an inequal-

ity does not hold for allx′. Fortunately, such an inequality does hold for mostx′. The
exceptions lie in the “tails” of the distribution:x′ which are very far or very close tox.
Moreover, in these cases bothµ2n+2

X (x→ x′) andµ2n
X (x→ x′) are extremely small and a

simple estimate ford2
Y (Hµ2n

X
f(x), f(x′)) suffices, leading to an inequality of the form:

Eµ2
X

(Hµ2n
X
f) ≤ o(1) · Eµ2n

X
(f) + o(1) · Eµ2

X
(f).

4Here lies the main motivation for only looking at walks of even length: one ofµn
X(x→ x′), µn+1

X (x→ x′)

is always be zero since the treeX is bipartite, meaning such an argument could not work.



12 LIOR SILBERMAN

To be precise letD = max{dY (f(x), f(x′)) | dX(x, x′) = 2} (compare the displace-
mentdiS of the introduction). ThenD2 ≤ 2(2k)(2k − 1)Eµ2

X
(f) ≤ 8k2Eµ2

X
(f). Also if

dX(x, x′) ≤ 2n and has even parity thend2
Y (f(x), f(x′)) ≤ nD2 by the triangle inequal-

ity and the inequality of the means. By the convexity of the ball of radius
√
nD around

f(x) we then haved2
Y (f(x),Hµ2n

X
f(x)) ≤ nD2 (Hµ2n

X
f(x) is an average of suchf(x′)).

Hence ifd(x, x′) ≤ 2n and is even:

(2.5) d2
Y (Hµ2n

X
f(x), f(x′)) ≤ 2 · nD2 ≤ 16nk2Eµ2

X
(f).

We can now split the integration in equation (2.4) into the region where|dX(x, x′)− 2η2kn| ≤
2
√

(2n) log(2n) and its complement. In the first region the difference[
dµ2n+2

X (x→ x′)− dµ2n
X (x→ x′)

]
is small by Proposition 2.8. The measure of the second region is small by Corollary 2.6,
and we can use there the simple bound (2.5) on the integrand. All-in-all this gives:

Eµ2
X

(Hµ2n
X
f) ≤ c1(2k)

√
log(2n)√

2n
Eµ2n

X
(f) +

32k2

p2k
n−3Eµ2

X
(f)+

+16k2c2(2k)

e−η2
2k

√
n/2 +

(
q2k

p2k

)η2k

√
n/2
n2Eµ2

X
(f).

The first term is the main term for the first region. The second is the bound on the contribu-
tion from the second region. The third is the contribution from the error term in Proposition
2.8 (again the first region) using simple bound and multiplying byn to account for the pos-
sible (even) values ofr. This last term goes to zero quickly asn→∞ so we can conclude:

Proposition 2.15. There exists constantsc3(k), c4(k) depending only onk such that for
all n:

Eµ2
X

(Hµ2n
X
f) ≤ c3(k)

√
log n√
n

Eµ2n
X

(f) + c3(k)
1
n3
Eµ2

X
(f).

2.6. Conclusion. We first prove the main theorem.

Theorem 2.16. If G is an expander,3 ≤ deg(u) ≤ d for all u ∈ V and the girth ofG is
large enough thenΓα has property (T) with high probability.

Remark2.17. Formally we claim: givenk ≥ 2, d ≥ 3 andλ0 < 1 there exists an explicit
g0 = g(k, λ0) such that if the girth ofG is at leastg0, λ2(G) ≤ λ2

0 and the degree of every
vertex inG is between3 andd, then the probability ofΓα having property (T) is at least
1− ae−b|V | wherea, b are explicit and only depend on the parametersk, d andλ0.

Proof. Choosen large enough such that for somel0 ≤ 1
6nwe haver = c3(k)

√
log l0√

l0

10.5
1−λ2(G)+

c3(k) 1
l30
< 1.

By Proposition 2.13 ifg(G) ≥ 4n (note that this minimum girth essentially only de-
pends onλ,k and the desired smallness ofr) then with high probability (going to1 at least
as fast as1−ae−b|V | for somea, b depending only onn, d, k) for any affine representation
Y of Γα and any equivariantf : X → Y we can findl in the rangel0 < l ≤ n such that

Eµ2l
X

(f) ≤ 10.5
1− λ2(G)

Eµ2
X

(f).

By Proposition 2.15 and the choice ofn we thus have

Eµ2
X

(Hµ2l
X

(f)) ≤ rEµ2
X

(f)
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for all f ∈ BΓα(Xα, Y ). This means that the sequence of functions defined byfq+1 =
Hµ2l

X
fq (the choice ofl of course differs in each iteration) represents an almost-fixed point

for the action of the subgroupΓ2
α on Y whereΓ2

α is the subgroup ofΓα generated by all
words of even length. In fact,Eµ2

X
(fq) ≤ rqEµ2

X
(f0). Usingd2

Y (Hµ2n
X
f(x), f(x)) ≤

8nk2Eµ2
X

(f) (derived in section 2.5), we see thatd2
Y (fq+1, fq) ≤ 8nk2rqEµ2

X
(f0). Since

r < 1 this makes{fq} into a Cauchy sequence, which thus converges to a fixed-pointf∞.
If f∞ is notΓα-fixed, then the midpoint of the interval[f∞, γf∞] is for anyγ ∈ Γα \ Γ2

α.
Moreover,

dY (f∞, f0) ≤
1

1−
√
r

√
8nk2Eµ2

X
(f0).

This means that

ε =
1−

√
r

2
√

16nk2

is a Kazhdan constant forΓα w.r.t S: Let π : Γα → U(Y ) be a unitary representation, and
letf0 be a unit vector,ε-almost invariant forS. ThendY (γ1γ2f0, f0) < ε for all γ1, γ2 ∈ S
soEµ2

X
(f0) < 1

2ε
2 which meansdY (f∞, f0) < 1

2 , in particularf∞ 6= 0. Note thatf∞
is Γ2

α-invariant, so that the closed subspaceY0 ⊂ Y of Γ2
α-invariant vectors is nonempty.

Pick γ ∈ S, y ∈ Y0 and considery + π(γ)y. This vector is clearlyΓα-invariant and we
are thus done unlessπ(γ)y = −y for all y ∈ Y0. In that case we haveγf∞ = −f∞, and
sinceε ≤ 1

8 we obtain the contradiction:

2 = dY (f∞, π(γ)f∞) ≤ dY (f∞, f0) + dY (f0, γf0) + dY (γf0, γf∞)

<
1
2

+
1
8

+
1
2
.

�

A slightly different version is actually needed for the result in [2]. For a fixed integerj,
letGj be the graph obtained fromG by subdividing each edge ofG into a path of lengthj,
addingj − 1 vertices in the process. On large scales, the new graph resembles the original
one (e.g. every ball of radius< 1

2g(G) ·j is a tree), but the minimum degree is no longer3:
most vertices, in fact, now have degree2. We now indicate how to adapt the proof above
to this case.

We first remark that the spectral gap ofGj can be bounded in terms of the spectral gap
of G. In fact, if f : V (Gj) 7→ R is an eigenfunction onGj with eigenvaluecosϕ = λ,
thenf �V is an eigenfunction onG with eigenvaluecos jϕ. To see this observe first that
if (u, v) ∈ E thenf(u), f(v) determine the values off along the subdivided edge since
λf(wi) is the average of the neighbouring values for any internal vertexwi of the subdi-
vided edge. Plugging this in the expression ofλf(u) as an average over the neighbours
in Gj gives the desired result. Nowλ cannot be too close to±1since that that would
imply ϕ too close to0 or π, makingjϕ close (but not equal) to a multiple ofπ, so that
cos jϕ would be too close to±1, contradicting the spectral gap ofG. Write this bound as

1
1−λ2(Gj)

≤ c(λ2(G), j).
We next adjust Proposition 2.13. Defineε(k, d, j, 2n) to be the maximum ofµ2n

T (x →
x′) over all trees of depth2n rooted atx, which are obtained by subdividing edges in trees
with degrees in the interval[3, d]. We then have:
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Proposition. Assume that200j ≤ 2n < 1
2g(Gj) and that for everyu ∈ V , 3 ≤ deg(u) ≤

d. Then with probability at least

1−Nk(2n) · e−
ε(k,d,j,2n)2

16d(d−1)4n−2 |V | −Nk(2) · e−
(1−P2

Gj
(2))2

8kd(2k−1)(d−1)2
|V |

for everyY , π : Γα → Isom(Y ) and every equivariantf : Γα → Y there exists anl
(depending onf ) such that12ηd

n
8j log n < l ≤ n and

Eµ2l
X

(f) ≤ 11
1− λ2(Gj)

Eµ2
X

(f).

Proof. Also note thatP 2
Gj

(2) can be readily bounded since we know all possible balls
of radius2 in Gj . The only other change needed in the proof is a reevaluation of the
bound on the inverse of the probability that the2n-step random walk on the graphGj

travels a distance at least1
2ηd

n
8j log n from its starting point (the factor2 used to compare

µ2n
X,α(x → x′) to µ2n

X,G(x → x′) remains). The idea of this is to think of the random
walk onGj as a series of ’macro-steps’, each consisting of a random walk on the ’star’
of radiusj centered at a vertex ofG until a neighbouring vertex inG is reached. In this
context we will term ’micro-steps’ the steps of this last random walk, i.e. the usual steps
from before. The sequence of ’macro-steps’ is a random walk onG (every neighbour
is clearly reach with equal probability), which we know to travel away from the origin
with high probability, assuming enough ’macro-steps’ are taken. The expected number of
’micro-steps’ until reaching an ’endpoint’ isj2, so on first approximation we can think of
the2n-step walk onGj as a variant of the2n

j2 -step walk onG (up to a correction of length
j at the first and last steps). Of course, there can deviations. It clearly suffices to estimate
the probability that all ’macro-steps’ take less than8j2 log n ’micro-steps’ to complete,
since if that happens then we must have made at leastj−2 2n

8 log n ’macro-steps’. Then the

probability of the final distance from the origin being less than1
2ηd

2n
j28 log n · j is at most

e−2/9 for the same reason as in the original proposition. A bound for an individual ’macro-
step’ follows from a large deviation estimate. Noting that there are at most2n macro-steps
in the process completes the bound. �

Corollary 2.18. Givenk, d, λ0 and j there exists an explicitg0 = g(k, λ0, j) such that
if the girth ofG is at leastg0, λ2(G) ≤ λ2

0 and the degree of every vertex inG is be-
tween3 andd, then the probability of a random groupΓα resulting from a labelling ofGj

having property (T) is at least1 − ae−b|V | wherea, b are explicit and only depend on the
parametersk, d, λ0 andj.

Proof. Identical to the main theorem, except we now choosen large enough so thatl0 <
1
2ηd

n
8j log n satisfiesr = c3(k)

√
log l0√

l0
11 · c(λ2(G), j) + c3(k) 1

l30
< 1. �

APPENDIX A. CAT(0) SPACES AND CONVEXITY

Let (Y, d) be a metric space.

Definition A.1. A geodesic pathin Y is a rectifiable pathγ : [0, l] → Y such that
d(γ(a), γ(b)) = |a − b| for all a, b ∈ [0, l]. The spaceY is calledgeodesicif every
two points ofY are connected by a geodesic path. We say thatY is uniquely geodesicif
that path is unique.
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Definition A.2. Let Y be a geodesic space,λ > 0. Say thatf : Y → R is (λ-)convexif
f ◦ γ is (λ-)convex for every geodesic pathγ. We sayf : [a, b] → R is λ-convex if it is
convex, and furthermore(D+f)(y) − (D−f)(x) ≥ λ(y − x) for everya < x < y < b.
(informally, the second derivative of the function is bounded away from zero).

We need the following property ofλ-convex functions on intervals:

Lemma A.3. Let f : [a, b] → R be λ-convex. Thenmax f([a, b]) − min f([a, b]) ≥
1
8λ(b− a)2.

Proof. Assume first thatf is monotone nondecreasing. By convexity, the convergence of
f(x+h)−f(x)

h to (D+f)(x) ash → 0+ is monotone. The limit is nonnegative. By the
monotone convergence Theorem,∫ b−δ

a

(D+f)(x)dx = lim
h→0+

1
h

∫ b−δ+h

b−δ

f(x)dx− lim
h→0+

1
h

∫ a+h

a

f(x)dx

and by continuity off in the interior of the interval we get:∫ b−δ

a

(D+f)(x)dx = f(b− δ)− f(a)

letting δ → 0 and using the monotone convergence Theorem again (D+f is nonnegative
by assumption) we obtain:∫ b

a

(D+f)(x)dx ≤ f(b)− f(a)

now by theλ-convexity assumption,(D+f)(x) ≥ λ(x−a) (since(D+f)(x) ≥ (D−f)(x) ≥
(D+f)(a) + λ(x− a) and(D+f)(a) ≥ 0). Thus

(A.1) f(b)− f(a) ≥
∫ b

a

λ(x− a)dx = λ
(b− a)2

2

In the general case, letf obtain its minimum on[a, b] at c ∈ (a, b). Thenf is monotone
non-increasing on[a, c] and nondecreasing on[c, b]. It follows thatf(a)−f(c) ≥ λ

2 (a−c)2
andf(b)− f(c) ≥ λ

2 (b− c)2. Since eitherc− a ≥ 1
2 (b− a) or b− c ≥ 1

2 (b− a) we are
done. �

Lemma A.4. Letf be aλ-convex function, bounded below, on a complete geodesic metric
spaceY . Thenf has a unique global minimum.

Proof. Letm = inf{f(y) | y ∈ Y }, and forε > 0 consider the closed set

Yε = {y ∈ Y | f(y) ≤ m+ ε}.
We claim thatlimε→0 diam(Yε) = 0 and therefore that their intersection is nonempty. Let
x, y ∈ Yε, and consider a geodesicγ : [0, d(x, y)] → Y connectingx, y. g = f ◦ γ is a
2-convex function on[0, d(x, y)] and sincex, y ∈ Yε we haveg(0), g(d(x, y)) ≤ m + ε,
and thusm ≤ g(t) ≤ m + ε for all t ∈ [0, d(x, y)]. By the previous Lemma we get

d(x, y)2 ≤ 8ε
λ and thereforediam(Yε) ≤

√
8ε
λ as promised. �

Definition A.5. A geodesic space(Y, d) will be called a CAT(0) space if for every three
pointsp, q, r ∈ Y , and every points on a geodesic connectingp, q, it is true thatd(s, r) ≤
|SR|whereP,Q,R ∈ E2 (Euclidean 2-space) form a triangle with sides|PQ| = d(p, q), |QR| =
d(q, r), |RP | = d(r, p) andS ∈ PQ satisfies|PS| = d(p, s).
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RemarkA.6. This clearly implies the usual CAT(0) property: ifs ∈ [p, q], t ∈ [p, r] and
S ∈ PQ, T ∈ PR such that|PS| = d(p, s), |PT | = d(p, t) thend(s, t) ≤ |ST |.

From now on letY be a complete CAT(0) space.

Lemma A.7. (Explicit CAT(0) inequality) LetP,A,B be a triangle inE2 with sides
|PA| = a, |PB| = b, |AB| = c+ d, and letQ ∈ AB satisfy|Q− A| = c, |Q− B| = d.
Let l = |PQ|. Then:

l2 =
d

c+ d
a2 +

c

c+ d
b2 − cd

Moreover, letp, q, r, s ∈ Y wheres lies on the geodesic containingp, q. Then

d2(r, s) ≤ d(p, s)
d(p, q)

d2(q, r) +
d(s, q)
d(p, q)

d2(p, r)− d(p, s)d(s, q)

Proof. cos(∠BAP ) = c2+a2−l2

2ac = (c+d)2+a2−b2

2(c+d)a and therefore

l2 = c2 + a2 − c(c+ d)− c

c+ d
a2 +

c

c+ d
b2

as desired. The second part is a restatement of the definition of a CAT(0) space. �

Corollary A.8. Fix y0 ∈ Y . Then the functionf(y) = d2(y, y0) is strictly convex along
geodesics. In fact, it is2-convex.

Proof. Let y1, y2, y3 ∈ Y be distinct and lie along a geodesic in that order. By Lemma A.7

f(y2) ≤
d(y2, y3)
d(y1, y3)

f(y1) +
d(y1, y2)
d(y1, y3)

f(y3)− d(y1, y3)d(y2, y3),

and sinced(y1, y3)d(y2, y3) > 0 we have strict convexity. In particular, we obtain the two
inequalities

f(y2)− f(y1)
d(y2, y1)

≤ f(y3)− f(y1)
d(y3, y1)

− d(y2, y3)

and
f(y3)− f(y2)
d(y3, y2)

≥ f(y3)− f(y1)
d(y3, y1)

+ d(y1, y2)

which together imply:

f(y3)− f(y2)
d(y3, y2)

− f(y2)− f(y1)
d(y2, y1)

≥ d(y1, y2) + d(y2, y3) = d(y1, y3)

As to the second part, lety1 < y4 lie along a geodesic pathγ. Let y1 < y2 < y3 < y4.
Then applying the last inequality twice, for the triplets(y1, y2, y3) and (y2, y3, y4) we
obtain:

f(y4)− f(y3)
d(y4, y3)

− f(y2)− f(y1)
d(y2, y1)

≥ d(y1, y3) + d(y2, y4)

letting y2 → y1 andy3 → y4 the LHS converge to the difference of the right- and left-
derivatives off ◦ γ at y1 andy4 respectively, while the RHS converges to2d(y1, y4) as
desired. �

Lemma A.9. The metricd : Y × Y → R is convex.
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Proof. Let a1, a2, b1, b2 ∈ Y and letγi : [0, 1] → Y be uniformly parametrized geodesics
from ai to bi. We need to prove:

d(γ1(t), γ2(t)) ≤ (1− t)d(a1, a2) + td(b1, b2).

Consider first the caseγ1(0) = γ2(0) (i.e. a1 = a2). Thenγi(t) are two points along two
edges of the geodesic trianglea1, b1, b2. By similarity of triangles inE2 and the strong
CAT(0) condition we are done.

In the general case, letpi = γi(t). Let γ0 : [0, 1] → Y be the uniformly parametrized
geodesic froma1 to b2, and letr = γ′(t). Then by the special case forγ1, γ0 which begin at
a1 we haved(p1, r) ≤ td(b1, b2). Similarly by the special case forγ−1

2 , γ−1
0 which begin

at b2 are haved(p2, r) ≤ (1− t)d(a2, a1). By the triangle inequality we are done. �

APPENDIX B. RANDOM WALKS ON METRIC SPACES

This appendix follows quite closely section 3 of [2] supplying proofs of the results. The
target is Proposition B.25, the geometric result needed for the property (T) proof.

B.1. Random Walks and the Center of Mass.Let X be a topological space, and let
MX be the set of regular Borel probability measures onX (if X is countable & discrete
this is the set of non-negative norm1 elements ofl1(X)). TopologizeMX as a subset of
the space of finite regular Borel measures onX (with the total variation norm). This makes
MX into a closed convex subset of a Banach space.

Definition B.1. A random walk (or adiffusion)onX is a continuous mapµ : X →MX ,
whose value atx we write asµ(x→). The set of random walks will be denoted byWX .

(1) Thecompositionof a measureν ∈ MX with the random walkµ ∈ WX is the
measure:

(ν · µ)(A) =
∫

X

dν(x)µ(x→ A).

This is well defined sinceµ is continuous and bounded. It is clearly a probability
measure. It seems natural to also think of this definition in terms of a vector-valued
integral.

(2) Thecomposition(or convolution) of two random walksµ, µ′ is the random walk:

(µ ∗ µ′)(x→) =
∫

X

dµ(x→ x′)µ′(x′ →).

The integral is continuous so this is, indeed, a random walk.
(3) We will also write

µn def= µ ∗ · · · ∗ µ︸ ︷︷ ︸
n

,

and alsodµn(x → y) for the probability (density) of going fromx to y in n
independent steps.

If X is discrete, we think ofµ(x→ y) = µ(x→)(y) as the transition probability for a
Markov process onX. In this case the stationary Markov process

δ(x→ A) = δx(A) =

{
1
0

x ∈ A
x /∈ A

is a random walk under the above definition. It isn’t in the non-discrete case since the map
x → δx is weakly continuous but not strongly continuous. It might be possible to define
random walks asweaklycontinuous mapsX →MX but this would require more analysis.
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Definition B.2. Let ν be a (possibly infinite) regular Borel measure onX, µ ∈ WX .
Say thatµ is ν-symmetric, or thatν is a stationary measure forµ if for all measurable
A,B ⊆ X ∫

A

µ(x→ B)dν(x) =
∫

B

µ(y → A)dν(y).

In other words,µ is ν-symmetric iff for all measurableϕ : X ×X → R≥0∫
X×X

ϕ(x, x′)dν(x)dµ(x→ x′) =
∫

X×X

ϕ(x, x′)dν(x′)dµ(x′ → x).

If X is discrete, we say thatµ is symmetricif this holds whereν is the counting measure
(i.e. if µ(x→ {y}) = µ(y → {x}) for all x, y).

Example B.3. Let G = (V,E) be a graph where the degree of each vertex is finite. We
can then define a random walk by havingµ(u→ v) = 1

du
Nu(v), whereNu is the number

of edges betweenu andv (i.e. we take account of multiple and self- edges if they exist).
This walk isν-symmetric for the measureν(u) = du.

In particular, ifG is the Cayley graph of a groupΓ w.r.t. a finite symmetric generating
setS we obtain thestandard random walkon Γ. This is a symmetric random walk since
the associated measureν̄G onΓ is Γ-invariant.

Definition B.4. A codiffusionon a topological spaceY is a continuous mapc : M → Y
defined on a convex subsetM ⊆ MY containing all the delta-measuresδy such that
c(δy) = y for everyy ∈ Y and such that the pullbackc−1(y) is convexfor everyy ∈ Y .

Example B.5. In an affine space we have the “centre of mass”:

c(σ) =
∫
Y

~y · dσ(~y)

defined on the set the measures for which the co-ordinate functionsyi are integrable.

In the case whereY is an affine inner product space, we can characterizec(σ) for some5

σ ∈MY in a different fashion: consider the function (“Mean-Square distance fromy”)

d2
σ(y) =

∫
Y

‖y − y′‖2Y dσ(y′),

and note that

d2
σ(y) =

∫
Y

‖(y − c(σ))− (y′ − c(σ))‖2Y dσ(y′) =

= ‖(y − c(σ))‖2Y + d2
σ(c(σ)) + 2

〈
y − c(σ), c(σ)−

∫
Y

y′dσ(y′)

〉
.

Sincec(σ)−
∫
Y

y′dσ(y′) = 0 by definition, we find:

(B.1) d2
σ(y) = ‖(y − c(σ))‖2Y + d2

σ(c(σ)).

In other words,c(σ) is theuniquepoint of Y whered2
σ(y) achieves its minimum. More

generally ifY be a metric space andσ ∈MY , we set:

d2
σ(y) def=

∫
Y

d2(y, y′) · dσ(y′).

5σ must be such that the following integral converges for ally ∈ Y .
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Lemma B.6. d2
σ(y) ≤ d2

σ(y1)+ d2
Y (y, y1)+2dY (y, y1)dσ(y1) = (dY (y, y1)+ dσ(y1))2.

Proof. By the triangle inequality,dY (y, y′) ≤ dY (y, y1) + dY (y1, y′). Squaring and inte-
gratingdσ(y′) gives:

d2
σ(y1) ≤ d2

Y (y, y1) + d2
σ(y1) + 2dY (y, y1)

∫
Y

dY (y1, y′)dσ(y′).

Using Cauchy-Schwarz (which, for probability measuresσ, reads(
∫
fdσ)2 ≤

∫
f2dσ)

completes the proof. �

Corollary B.7. If dσ(y) is finite for somey ∈ Y then it is finite everywhere.

Corollary B.8. If dσ(y) is finite, then it isσ-integrable. Furthermore, for anyy1 ∈ Y we
have:

4d2
σ(y1) ≥

∫
Y

d2
σ(y)dσ(y) =

〈
d2

Y (y, y′)
〉

σ×σ
.

Proof. This follows from Lemma B.6 immediately by integratingdσ(y) and using Cauchy-
Schwarz again. �

We therefore letM0 be the set of (regular Borel) probability measures onY such that
d2

σ(y) is finite. This is clearly a convex set (though it is not closed ifd is unbounded).

Definition B.9. Let σ ∈ M0. If dσ(y) has a unique minimum onY , it is called the
(Riemannian) centre of mass ofσ, denoted again byc(σ).

If Y is a CAT(0)-space, then Corollary A.8 states that, as a function ofy, d2
Y (y, y′) is

2-convex. This property clearly also holds tod2
σ(y) (seen e.g. by differentiating under the

integral sign and using the monotone convergence Theorem). The existence ofc(σ) then
follows from Lemma A.4. In this case we can takeM = M0.

RemarkB.10. The 2-convexity ofd2
σ(y) on the segment[y, c(σ)] implies the following

crucial inequality6:

(B.2) d2
σ(y) ≥ d2

σ(c(σ)) + d2
Y (c(σ), y)

(c.f. equation (A.1)).

We can also integrate this inequalitydσ(y) to obtain the boundd2
σ(c(σ)) ≤ 1

2

〈
d2

Y (y, y′)
〉

σ×σ
.

B.2. The Heat operator. From now on letX be a topological space,(Y, d) a complete
CAT(0) space. We also fix a measureν ∈ MX , a ν-symmetric random walkµ ∈ WX ,
and letc be the center-of-mass codiffusion onY , defined on the convex setM0 ⊆ MY .
Our arena of play will be two subspaces ofM(X,Y ), the space of measurable functions
fromX to Y . The first one is a generalization of the usualL2 spaces:

Definition B.11. Let f, g : X → Y be measurable. TheL2 distancebetweenf, g (denoted
dL2(ν)(f, g)) is given by

dL2(ν)(f, g) =

∫
X

d2
Y (f(x), g(x))dν(x)

1/2

.

6This formula (and the next one) are actually equalities in the Hilbertian case – see equation (B.1).
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This is a (possibly infinite) pseudometric. Moreover,dL2(ν)(f, g) = 0 iff f = g ν-a.e. as
usual. Fixingf0 ∈M(X,Y ), we set:

L2
ν(X,Y ) =

{
f ∈M(X,Y )

∣∣∣dL2(ν)(f, f0) <∞
}
.

As usual, the completeness ofY implies the completeness ofL2
ν(X,Y ).

RemarkB.12. ThatL2
ν(X,Y ) is a CAT(0) space follows fromY having the property.

Proof. We start with some notation. Lety1, y2 ∈ Y , t ∈ [0, 1]. Set[y1, y2]t to be the point
at distancetd(y1, y2) from y1 along the segment. In a CAT(0) space this is a continuous
function onY ×Y × [0, 1]. Now letf, g ∈M(X,Y ) and define[f, g]t(x) = [f(x), g(x)]t.
Then [f, g]t is measurable as well, and clearlyd2

L2(ν)(f, [f, g]t) = t2d2
L2(ν)(f, g) since

dY (f(x), [f, g]t(x)) = t2dY (f(x), g(x)) holds pointwise. ThusL2
ν(X,Y ) is a geodesic

space. Next, letf, g, h ∈ L2
ν(X,Y ) and letu = [f, g]t. The explicit CAT(0) inequality for

h(x), f(x), g(x), u(x) reads:

d2
Y (h(x), u(x)) ≤ td2

Y (g(x), h(x)) + (1− t)d2
Y (f(x), h(x))− t(1− t)d2

Y (f(x), g(x),

and integration w.r.t.dν(x) gives the explicit CAT(0) inequality ofL2
ν(X,Y ). This is

immediately equivalent to the general CAT(0) condition. �

Definition. Let f ∈ M(X,Y ), and letτ ∈ MX . Thepushforward measuref∗τ ∈ MY

is the Borel measure onY defined by(f∗τ)(E) = τ(f−1(E)).

Definition B.13. Let ε ∈ [0, 1], f ∈M(X,Y ).
(1) TheHeat operatorsHε

µ are

(Hε
µf)(x) = c (f∗ (εµ (x→) + (1− ε) δx))

Whenever this makes sense. In particularH = H1
µ = H1 is called theheat

operator. Note that by the convexity ofM ,Hεf are defined wheneverH1f is.
(2) Say that a functionf ∈ M(X,Y ) is (µ-) harmonicif Hf(x) is defined forall

x ∈ X and equal tof(x).

RemarkB.14. If Hf(x) = f(x) thend2
f∗µ(x→)(y) andd2

Y (y, f(x)) achieve their mini-
mum at the same point,y = f(x). ThusHεf(x) = f(x) for all 0 ≤ ε ≤ 1. In other
words,f is harmonic iffHεf = f for all ε.

Example B.15. Consider a graphG = (V,E) with the graph metric, and letµ be the
standard random walk onG. Let f : V → R by any function. It is then clear thatH1 is the
“local average” operator (the normalized adjacency matrix).

By the following Lemma (sincef∗(εµ(x →) + (1 − ε)δx) = εf∗(µ(x →)) + (1 −
ε)δf(x)),Hεf is well defined for someL2

ν(X,Y ) spaces.

Lemma B.16. Let f0 ∈ M(X,Y ) be aµ-harmonic, and letf ∈ L2
ν(X,Y ) (aroundf0).

Thenf∗µ(x→) ∈M for ν-a.e.x ∈ X. In particular,Hεf is definedν-a.e.

Proof. Sincea+b
2 ≤

√
a2+b2

2 we have for anyy ∈ Y , x′ ∈ X:∫
X

d2
Y (y, f(x′)) dµ(x→ x′) ≤ 2

∫
X

d2
Y (y, f0(x′)) dµ(x→ x′)+2

∫
X

d2
Y (f0(x′), f(x′)) dµ(x→ x′).
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The first integral is finite byµ-harmonicity and Lemma B.6. Integrating the second one
dν(x) and using the fact thatµ is ν-symmetric, we find:∫

X×X

dν(x)dµ(x→ x′)d2
Y (f0(x′), f(x′)) dµ(x→ x′)

=
∫

X×X

d2
Y (f0(x′), f(x′)) dν(x′)dµ(x′ → x) =

∫
X

d2
Y (f0(x′), f(x′)) dν(x′)

= d2
L2(ν)(f, f0) <∞.

It must thus be finiteν-a.e. �

Actually the same proof shows that ifHf0 is well-definedν-a.e. then so isHf for all
f ∈ L2

ν(X,Y ) – but we should know more:

Claim B.17. Let σ1, σ2 ∈ M0, and letτ be a probability measure onY × Y such that
τ(A× Y ) = σ1(A) andτ(Y ×A) = σ2(A) for all measurableA ⊆ Y . Then

d2
Y (c(σ1), c(σ2)) ≤

∫
Y×Y

d2
Y (y, y′)dτ(y, y′).

Proof. I have only managed to prove the Hilbertian case. This should hold for CAT(0)
spaces in general.

c(σ1) =
∫

Y

ydσ1(y) =
∫

Y×Y

ydτ(y, y′)

and

c(σ2) =
∫

Y×Y

y′dτ(y, y′),

we have by Cauchy-Schwarz:

‖c(σ1)− c(σ1)‖2Y ≤
∫

Y×Y

‖y − y′‖2Y dτ(y, y
′) ·
∫

Y×Y

dτ(y, y′).

�

Proposition B.18. Let f1, f2 ∈ M(X,Y ) satisfyfi∗µ(x →) ∈ M0 for ν-a.e. x ∈ X.
ThendL2(ν)(Hεf1,H

εf2) ≤ dL2(ν)(f1, f2). In particular,Hε : L2
ν(X,Y ) → L2

ν(X,Y )
is Lipschitz continuous.

Proof. Let σi = fi∗µε(x →), and letτ = (f1 × f2)∗(µε(x →)) wheref1 × f2 : X →
Y × Y is the product map. By the claim

d2
Y (Hεf1(x),Hεf2(x)) ≤

∫
X×X

d2
Y (f1(x′), f2(x′)) dµε(x→ x′).

The result now follows by integratingdν(x) and using the symmetry ofµε. In particular,
we note that

dL2(ν)(Hεf,Hεf0) ≤ dL2(ν)(f, f0)

and if, in addition,Hεf0 ∈ L2
ν(X,Y ) (e.g. if f0 is harmonic) thenHεf ∈ L2

ν(X,Y ) for
all f ∈ L2

ν(X,Y ). �
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Continuing in a different direction, in order forHf(x) to be defined, it suffices to know
that

∫
X
d2

Y (y, f(x′))dµ(x → x′) is finite for somey. Thinking “locally” we make the
natural choicey = f(x), and set:

|df |2µ (x) def=
∫

X

d2
Y (f(x), f(x′)) dµ(x→ x′).

The second (and more important) space of functions to be considered is

Bν(X,Y ) =
{
f ∈M(X,Y )

∣∣∣|df |µ ∈ L2(ν)
}

(L2(ν) = L2
ν(X,R) is the usual space of square-integrable real valued-functions onX).

By the preceding discussion iff ∈ Bν(X,Y ) thenHf(x) is definedν-a.e. Anticipating
the following section we callBν(X,Y ) the space of functions offinite energy.

We return now to the formulad2
σ(y) ≥ d2

σ(c(σ)) + d2
Y (y, c(σ)) which followed from

the 2-convexity ofd2
σ(y). Settingσ = f∗(µ(x →)) (so thatc(σ) = Hµf(x)) and writing

outd2
σ(Hµf(x)) in full we define:

|d′f |2µ (x) def= d2
σ(c(σ)) =

∫
X

d2
Y (Hµf(x), f(x′)) dµ(x→ x′)

(finite for anyf ∈ Bν(X,Y )). Then for any measurablef

(B.3)
∫

X

d2
Y (y, f(x′))dµ(x→ x′) ≥ d2

Y (y,Hµf(x)) + |d′f |2µ (x)

(Note thatHµf is undefined iff the LHS is infinite). We now derive an important pair of
inequalities which are a basic ingredient of the proof that our random groups have property
(T):

Lemma B.19.
|d′f |2µn (x) ≤ |df |2µn (x).

Proof. Follows from equation (B.3) by replacingµ with µn (which is alsoν-symmetric),
settingy = f(x) and ignoring thed2

Y (y,Hf(x)) term. �

Proposition B.20. Let7Hn = Hµn . Then∫
X

dν(x)·|d(Hnf)|2µ (x) ≤
∫

X×X

dν(x)
[
dµn+1(x→ x′)− dµn(x→ x′)

]
d2

Y (Hnf(x), f(x′)).

Proof. Sety = Hnf(x′′), and integrate (B.3) w.r.t.dν(x′′)dµ(x′′ → x) = dν(x)dµ(x→
x′′) on the RHS and LHS respectively to get:∫

X×X

dν(x′′)dµ(x′′ → x)
∫

X

dµn(x→ x′)d2
Y (Hnf(x′′), f(x′)) ≥

∫
X×X

dν(x)dµ(x→ x′′)d2
Y (Hnf(x),Hnf(x′′))+

+
∫

X×X

dν(x)dµ(x→ x′′)
∫

X

dµn(x→ x′)d2
Y (Hnf(x), f(x′)).

Now on the LHS,
∫

X
dµ(x′′ → x)µn(x → A) def= µn+1(x′′ → A). On the LHS the inner

integral does not depend onx′′ and
∫

X
dµ(x→ x′′) = 1. In other words:∫

X×X

dν(x′′)dµn+1(x′′ → x′)d2
Y (Hnf(x′′), f(x′)) ≥

∫
X×X

dν(x)dµ(x→ x′′)d2
Y (Hnf(x),Hnf(x′′))+

7In the affine case (but not in general) this equals then-th power (iterate) ofHµ.
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+
∫

X×X

dν(x)dµn(x→ x′)d2
Y (Hnf(x), f(x′)).

On the LHS we can now rename the variablex′′ to bex. We also move the second term
on the RHS to the left. Finally we note that

∫
X
dµ(x → x′′)d2

Y (Hnf(x),Hnf(x′′)) def=
|d(Hnf)|2µ (x). �

B.3. The Energy. We can rewrite the results of the previous section more concisely by
introducing one more notion.

Definition B.21. Let f ∈M(X,Y ). Theenergy off is:

E(f) =
1
2
‖|df |µ‖2L2(ν) =

1
2

∫
X

dν(x)
∫
X

dµ(x→ x′)d2
Y (f(x), f(x′)).

Lemma B.22. Let f0, f ∈ M(X,Y ) such thatdL2(ν)(f, f0) <∞. If f0 has finite energy
then so doesf .

Proof. We recall that
∫
dν(x)dµ(x → x′)d2

Y (f(x′), f0(x′)) = d2
L2(ν)(f, f0). Using the

inequality of the means and the triangle inequality we get:

d2
Y (f(x), f(x′)) ≤ 3d2

Y (f(x), f0(x)) + 3d2
Y (f0(x), f0(x′)) + 3d2

Y (f0(x′), f(x′)).

Multiplying by 1
2 and integratingdν(x)dµ(x→ x′) gives:

E(f) ≤ 3E(f0) + 3d2
L2(ν)(f0, f).

�

Proposition B.23. Bν(X,Y ) is a convex subset ofM(X,Y ). E(f) is a convex function
onBν(X,Y ).

Proof. We prove the stronger assertion that
√
E is convex. Letf, g ∈ Bν(X,Y ) and let

t ∈ [0, 1]. Letut = [f, g]t. By the convexity of the metric (Lemma A.9), we have

dY (ut(x), ut(x′)) ≤ (1− t) · dY (f(x), f(x′)) + t · dY (g(x), g(x′)).

Now since √
2E(f) = ‖dY (f(x), f(x′))‖L2(ν·µ) ,

the triangle inequality ofL2(ν · µ) reads:√
E(ut) ≤ (1− t)

√
E(f) + t

√
E(g).

This implies both thatE(ut) <∞ (i.e. ut ∈ Bν(X,Y )) and the convexity of
√
E. �

Definition B.24. Let (X,µ, ν) and(Y, d) be as usual, and letf range overBν(X,Y ). We
define thePoincaré constants:

πn(X,Y ) = sup
Eµ(f)>0

Eµn(f)
Eµ(f)

.

For example, in section 2.4 we saw that for a graphG with the usual random walk and a
Hilbert spaceY one hasπn(G, Y ) ≤ 1

1−λ(G) where1 − λ(G) is the (one-sided) spectral
gap ofG).
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B.4. Group actions. Let Γ be a locally compact group acting on the topological spaceX,
and assumeν ∈ MX is Γ-invariant. Assume that there exists a measureν̄ on X̄ = Γ\X
such that ifE ⊂ X is measurable andγE ∩E = ∅ for all γ ∈ Γ \ {e} thenν(E) = ν̄(Ē).
Also assume thatΓ\X can be covered by countably many suchĒ of finite measure. In
this setup everyΓ-invariant measurable functionf : X → R descends to a measurable
function f̄ : X̄ → R, and we can set:

‖f : Γ‖2L2(ν) =
∫

X̄

|f̄(x̄)|2dν̄(x̄)

For example, ifΓ is a finite group acting freely onX then‖f : Γ‖2L2(ν) = 1
|Γ| ‖f‖

2
L2(ν)

where‖f‖2L2(ν) is the usualL2 norm on(X, ν).
We now throw in an equivariant diffusionµ ∈ WX , and a metricΓ-spaceY (i.e. Γ acts

onY by isometries). Iff ∈MΓ(X,Y ) is equivariant thenHµf (wherever defined) is also
equivariant,|df |µ(x) is invariant and the energy is properly defined by

Eµ(f) =
1
2
‖|df |µ : Γ‖2L2(ν)

We then consider the spaceBΓ
ν (X,Y ) of equivariant functions of finite energy. In this

context Lemma B.19and Proposition B.20 above read:

Proposition B.25. Let8Hn = Hµn . Then

Eµ(Hnf) ≤ 1
2

∫
X̄

dν̄(x)
∫

X

[
dµn+1(x→ x′)− dµn(x→ x′)

]
d2

Y (Hnf(x), f(x′)),

and
1
2

∫
X̄

dν̄(x)
∫

X

dµn(x→ x′)d2
Y (Hnf(x), f(x′)) ≤ Eµn(f).

Proof. Essentially the same as before, integratingdν̄ instead ofdν since the integrands are
Γ-invariant in all cases. �

Equation (B.3) has two more important implications:

Proposition B.26. Letf ∈ BΓ(X,Y ). Then

d2
L2(ν)(f,Hµf) ≤ 2Eµ(f).

Proof. Sety = f(x)in the equation and ignore the second term on the RHS to get:

|df |2µ(x) =
∫

X

d2
Y (f(x), f(x′))dµ(x→ x′) ≥ d2

Y (f(x),Hµf(x)).

Integrating thisdν̄(x) we obtain the desired result. �

Proposition B.27. Letf ∈ BΓ(X,Y ). ThenE(Hµf) ≤ 2E(f).

Proof. By the triangle inequality and the inequality of the means,

1
2
d2

Y (Hµf(x),Hµf(x′)) ≤ d2
Y (Hµf(x), f(x′)) + d2

Y (f(x′),Hµf(x′)).

Integratingdµ(x→ x′) gives:

1
2
|dHµf |2µ (x) ≤ |d′f |2µ (x) +

∫
X

dµ(x→ x′)d2
Y (f(x′),Hµf(x′)).

8In the Hilbertian case (but not in general) this equals then-th power (iterate) ofHµ.
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We now integratedν̄(x). We evaluate the second term first using theν-symmetry ofµ:∫
X̄

dν̄(x)
∫

X

dµ(x→ x′)d2
Y (f(x′),Hµf(x′)) =

∫
dν̄(x′)d2

Y (f(x′),Hµf(x′)),

so that:

Eµ(Hµf) ≤
∫

X̄

dν̄(x)
[
|d′f |2µ (x) + d2

Y (f(x),Hµf(x))
]
.

By Equation (B.3) we get:

Eµ(Hµf) ≤
∫

X̄

dν̄(x)
∫

X

dµ(x→ x′)d2
Y (f(x), f(x′)) = 2Eµ(f).

�
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