ADDENDUM TO “RANDOM WALK ON RANDOM GROUPS” BY M.
GROMOQOV

LIOR SILBERMAN

ABSTRACT. Written at the request of GAFA's Editorial Board, with the goal of explicating
some aspects of M. Gromov’s paper [2]. Section 1 recalls the construction of the random
group, while section 2 contains a proof that the random group has property (T) based on
the ideas from the preprint. The appendix defines @)Bpaces and works out in detail
some geometric propositions from the preprint used in the proof.

1. RANDOM GROUPS

In this application of the probabilistic method, a “random group” will be a quotient of
a given group. We fix the set of generators (and possibly some initial relations) and pick
extra relations “at random” to get the group:

Let I" be a finitely generated group, specifically generated by the finite symmetric set
S (of size2k). LetG = (V, E) be a (locally finite)undirectedgraph.ﬁ will denote the
(multi)set of oriented edgesf G, i.e. E = {(u,v), (v,u) | {u,v} € E}. Given a map
(“S-coloring”) « : E — S and an oriented patfi = (&,,...,¢,) in G, we seta(p) =
a(éy)-...-a(&.). We will only consider the case sfymmetriax (i.e. a(u,v) = a(v,u) !
for all (u,v) € E). Then connected components of the labelled graghy) look like
pieces of the Cayley graph of a group generatedSbySuch a group can result from
“patching together” labelled copies 6f, starting from the observation that in a Cayley
graph the cycles correspond precisely to the relations defining the group. Following this
idea letR,, = {«(@) | Za cycle inG}, W, = (R,)" (normal closure iT") and

T, =T/W,.

TheT', will be our random groups, with(&) chosen independently uniformly at ran-
dom from S, subject to the symmetry condition. Properties'gf then become random
variables, which can be studied using the techniques of the probabilistic method (e.g. con-
centration of measure). We prove here that subject to certain conditio6s(depend-
ing on k), the groupd’, furnish examples of Kazhdan groups with high probability as
V| — oo.

We remark that',, is presented by thke generators subject to the relations correspond-
ing to the labelled cycles in the graph, together with the relations already presEnt in
(unlessl is a free group). In particular if7 is finite andI" is finitely presented then so is
r,.

Remarkl.1 This can be done in greater generality: Lebe any group, lep be a sym-
metric probability measure oh (i.e. p(A) = p(A~1!) for any measurablel c T'), and
denote by” the (probability) product measure on the spaosf symmetric map& — T.
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2 LIOR SILBERMAN

This is well defined since is symmetric and justifies the power notation. Now proceed
as before. The case considered in this paper is that otdredard measuregssigning
probabilitiesi to the generators and their reciprocals.

Remarkl1l.2 Assume thaf® = (S|R) is a presentation of' w.rt. S. ThenT, =
(S|RU R,,) is a quotient of(S|R,). Since a quotient of a (T)-group is also a (T)-group,

it suffices to prove that the latter groups has property (T) with high probability. In other
words, we can assume for the purposes of the next sectiofr' that, is the free group

on k generatorsi > 2).

2. GEOMETRY, RANDOM WALKS ON TREES AND PROPERTY(T).

2.1. Overview. In this section we prove that with high probabilify, has property (T).

The idea is to start with a vector in a representation, and consider the average of its trans-
lates by the generators. Typically iterating the averaging produces a sequence rapidly con-
verging to a fixed point. The proof of this breaks down in the following parts:

(1) Property (T) can be understood in geometric language by examining random walks
on the groud’,,.

(2) A general analysis of random walks on trees gives some technical results.

(3) The spectral gap aff can be expressed as a bound on the long-range variation of
functions onG in terms of their short-range variation.

(4) (“Transfer of the spectral gap”): With high probability (w.r.t the random choice
of ), a similar bound holds on the variation of certain equivariant functionis on
(these ard'-translates of vectors in a representatiof’'gj.

(5) By a geometric inequality and an estimate on the random walk on thd'tree
averaging such a function over the action of the the generattinges produces a
function whose (short-range) variation is bounded by the long-range variation of
the original function.

(6) Combining (3), (4) and (5) shows that repeated averaging over the action of the
generators converges to a fixed point. The rate of convergence gives a Kazhdan
constant.

2.2. Property (T). LetT be a locally compact group generated by the compact sibset
(not to be confused with thE of the previous section).

Definition 2.1. Letw : I" — Isom(Y") be an isometric action df on the metric spac¥.
Fory € Y setdis(y) = sup,cs dy (7(7)y, ).

Say thaty € Y is e-almost-fixedf dis(y) < e. Say that{y, }52, C Y represents an
almost-fixed-poinfa.f.p.) iflim,,_, dig(y,) = 0.

Definition 2.2. (Kazhdan, [3]) Say thal' hasproperty (T)if there existse > 0 such
that every unitary representation Bfwhich hass-almost fixed unit vectors is the trivial
representation. Such aris called aKazhdan constarfor I' w.r.t S. The largest suchis
calledthe Kazhdan constant df w.r.t. S.

Remark2.3. Itis easy to see that the question of whethiéras property (T) is independent
of the choice ofS. Different choices may result in different constants though.

An alternative definition considers “affine” representations. For the purpose of most
of the discussion, the choice of origin in the representation space is immaterial, as we
consider an action of the group through the entire isometry group of the Hilbert space,
rather than through the unitary subgroup fixing a particular point (informally, we allow
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action by translations in addition to rotations). In this case we will say the Hilbert space is
“affine”. One can always declare an arbitrary point of the space to be the “origin”, letting

the norm denote distances from that point and vector addition and scalar multiplication
work “around” that point. However, the results will always be independent of such a

choice.

Theorem 2.4. (Guichardet-Delorme, sed, Ch. 4) I' has property (T) iff every affine
(=isometric) action ofl” on a Hilbert spac&” has a fixed point.

We now return to the group of the previous section and introduce the geometric lan-
guage used in the remainder of the discussion. As explained above we specialize to the
case ofl" being a free group. Lét” be a metric space;, : I', — Isom(Y). Sincel', is a
quotient ofl" we can think ofr as a representation dfas well. SettingX = Cay(T', 5)
(a2k-regular tree) allows us to separate the geometric objefiom the groupl™ acting
on it (by the usual Cayley left-regular action). We can now identifvith the spack
BY(X,Y) of I'-equivariant functiong : X — Y (e.g. by taking the value of at1).

We are interested in bounding the distandessy, y) for s € S. More precisely we

will bound
2|S| Z (v, ).

Under the identification of” with BF(X, Y) this is:
Y nx(e = a)dy (f(a), f(2)),

z’'eX
wherepx is the standard random walk o¥i (i.e. px(z — 2') = o if 2/ = ay for
some generatoy € S andux (z — 2’) = 0 otherwise). We note that singeand.. x are
I'-equivariant, this “energy” is independentagfand we can set:

£) =5 S me = &) (), 7))

and call it theu x -energyof f. To conform with the notation of section B.4 in the appendix,
one should formally integrate w.r.t. a measarenI'\ X, but that space is trivial. In this
languagef is constant (i.e. is a fixed point) if/,, (f) = 0 and{f,};2, represent an
af.p. ifflim, o E, . (fn) = 0.

In much the same way we can also consider longer-range variatighausing then-
step random walk instead.’; (z — «’) will denote the probability of going froms to 2’
in n steps of the standard random walk 8n . (f) the respective energy. Secondly, we
can apply the same notion of energy to functions on a g@@s well (no equivariance
here: we consider all functions: V' — Y. Herepg will denote the usual random walk
on the graphy¢ will be the standard measure 6h(vg(u) = 2|E‘ degu) andE,» (f) =

i > uw Va(u)ug(v)d3-(f(u), f(v)). The “spectral gap” property @ can then be written
as the inequality (Lemma 2.10, and note that the RHS does not depenijl on

1
Eup(f) < mEuc(f%
where)\"(G) = max{|\;|" | A; isan ev. of G and\ # 1}.
The core of the proof, section 2.4, carries this oveXtavith a worse constant. There
is one caveat: we prove that with high probability, for every equivarfacbming from a

IFor the motivation for this notation see appendix B.
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representation df ,, the inequalityEHg!(f) < %Eﬂi (f) holds forsomevalue ofl,
large enough. We no longer claim this holds éveryi.
Leveraging this bound to produce an a.f.p. is straightforward: we use the iterated aver-
agesH/, f(x), which are simply

(Hux)' f(2) = Hy f@) =D py(x — o) f(2).

Geometric considerations show that is large enough then (approximately, see Proposi-
tion 2.15 for the accurate resul), , (H,: f) < E,; (f), and together with the spectral

gap property this shows that continued averaging gives an a.f.p. which converges to a fixed
point. Moreover, if the representation is unitary (i.e. the actiol @h Y fixed a point

0 €Y), if f represents a unit vector (i.e. the valuesfaire unit vectors) and iE,, , (f)

is small enough to start with, then this fixed point will be nonzero. This gives an explicit
Kazhdan constant (for details see section 2.6).

One technical problem complicates matters: the ffers a bipartite graph. It is thus
more convenient to consider the random watk and its powers instead, since they are all
supported on the same half of the tree. Then the above considerations actually produce a
I'2-f.p. wherel'? is the subgroup of of index2 consisting of the words of even length.

If W, (i.e. G) contains a cycle of odd order thé§ = I', and we're done. Otherwise
[[o : T2] = 2 andT? < T',. Now averaging w.r.T, /T2 produces d',-f.p. out of a
r2-fp.

2.3. Random walks on trees.Let T,; be ad-regular tree, rooted aty € T;. Consider
the distance fromx, of the random walk off; starting atzo. At each step this distance
increases byl with probability p; = % and decreases hlywith probability ¢; = é,
except if the walk happens to be& when it must go away. Except for this small edge
effect, the distance of the walk fromy looks very much like a binomial random variable.
Formally letQ; = {+1, —1} with measurep; on +1, ¢; on —1 and letQ = Q' with
product measure. We define two sequences of random variabfestbe usual Bernoulli

walk:
Xn(w) - Zwi
=1
as well as the “distance fromy” one by settingty(w) = 0 and:
Y, (W) + wy, Y, (w)>1
}/n—i-l( ) _ ( ) +1 ( ) -
1 Y,(w)=0

Let w7y (r) = P(Y,, = r) andd}(r) = P(X,, = r). If pup is the standard random walk on
the tree then by spherical symmep§j(r) = dq(r)pi(zo — yo) Wheredy(r) is the size
of ther-sphere inl" anddr(xzo, yo) = r. In similar fashionb’; () is the probability that
the skewed random walk da with probabilitiesp,, ¢4 goes from0 to r in n steps. We
also addy; = ps — g4 ande? = 4puqq (the expectation and variance ©f). Of course
pli(r) ="02(r) =0if r #n (2) and otherwise

n n 'n;»T n;r
b (T) =\ ngr |Pa” 99" -
2

We drop the subscrigid’ for the remainder of the section. The following Proposition
collects some facts about the Bernoulli walk:

Proposition 2.5. E(X,,) = nn, 0%(X,,) = no? and:
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(1) (Large deviation inequality, e.g. sé4)
P(Xn>nn+en),P(X, <nn—en) < e 2ne’
so that
P (| X, —nn| >en) < 2¢~ 2"
(2) (Non-recurrence) Let > 0 and assume > ¢. Then

P(VnXy > —1)=1- (i)

The trivial observation thak, (w) < Y, (w) impliesP(Y,, < r) < P(X,, < r) leading
to the (one-sided) deviation estimate
(2.1) P (Y, <7) < e 2n=3)°,
In the other direction the recurrence relation
p-put(r=1)+q p*(r+1) r>2

pr ) =< (0) + g pn(2) r=1
q- 1" (1) r=0

implies " (r) < %b”(r), with equality forr = n (proof by induction, also carrying the
stronger assertion™(0) < b™(0)).

Corollary 2.6. P (|Y,, — nn| > 6y/nlogn) < %n’ze.

This is a crucial point, since this will allow us to analyze expressionslike u’x (x, z’) f (z”)
only whendx (z,z") ~ nn, making a trivial estimate otherwise. In fact, from now on we
will only consider the rangé — nn| < 2v/nlogn.

Lemma 2.7. (Reduction to Bernoulli walks) Let< n . Then
s (4)2"
PG =)= X P0G =P =) < (1)
Int<j<t b
Proof. As has been remarked befo(Y; < int) < P(X, < int) < e 7'/2. Further-
more, definingf(n =Y; + X,, — X; we clearly have:
{wEQH@(w)Z]’O/\Yn;&Xn}Q{w€Q|}Q(w)2j0/\3u>t:)~(u:0}.
~ J
However, by Proposition 2.5((Y; > joAJu >t : X, = 0) < (%) °. Also by the
time translation-invariance of the usual random talk,
PYi=j|Xn=r)=PXn—Xs=7)=P(Xp_t =7 —j).
O

Proposition 2.8. Let|r — nn| < 2y/nlogn. Then for some constants(d), c2(d) inde-
pendent of,

ogn 2 %n\/ﬁ
T2 (r) — p(r)] < VRS @) () + cala (677 T (q> )

Vn p



6 LIOR SILBERMAN

Proof. Sett = |/n]. By the Lemma,
2 2t
Pluss = 1) = Pt =) <272 2 (1)

+ Z P(Ye =) IP(Xn—t42 =7 —j) = P(Xp—t =7 —j)|.
Fnt<j<t
An explicit computation shows:
Viogn
NG
Since/log n/n < 1 the result follows withey (d) = (2 + ¢1(d))(e" /2 + (p/q)"/?). O

|P(Xn—tra=7—J) = P(Xn—t =7 —j)| < c1(d)

,P(ant =T _])

We also need a result about general treesIlLé a tree rooted aty € T' such that the
degree of any vertex ift" is at leas. We would like to prove that the random walk @h
tends to go further away from, than the random walk oii; due to the higher branching
rate.

Proposition 2.9. Letr < in. Thenu!:(zo — Br(wg,r)) < e 2n(5—5)°

Proof. Label the (directed) edges exiting each vertex T with the integer9, . . ., deg(x)—
1 such that the edge leading towarglis labelled0 (any labelling ifx = x¢). Assume that
the maximal degree occurring By (zg, n) isd, and letQ = {0, ..., d! — 1} with uniform
measure. Again we define two random variable€X3n First, let X (w) = Z;i:l X (wy)
whereX (w;) = —1if 3w; < 1, X(w;) = +1 if not. Secondly defing; : Q" — T by

d!
Y, = z0 andY;(w) follows the edge Iabelle%%wﬁ leavingY;_ (w).

Itis easy to see that thé give a model for the standard random walkibnwhile the X;
are a Bernoulli walk orZ with probabilityps of going to the right. Moreover, by induction
it is clear thatd(zo, T;(w)) > X;(w). The deviation inequality 2.5 now concludes the
proof. |

2.4. The spectral gap and its transfer.

Lemma2.10.LetG = (V, E) be afinite graph, let be the standard probability measure

onV (vg(u) = dgng)), and letuc be the standard random walk @& (ug(u — v) =

m if (u,v) € E). SetA?(G) = max {)\? | A # +1is an eigenvalue ofl,,., } (note

that\?(G) < 1). LetY be an affine Hilbert space, and I¢t: V — Y. ThenE 2. (f) <
%E#é(f) forall n € N.

Proof. Choose an arbitrary origin i, making it into a Hilbert space. Then

B (f) = 5 3" volw) Y th(u = o) 1) = F0)]3
ueV veV
=2 3 velwull— o) [IF@IE + 1F@IE -2 (7@, @)y ]
u,veV

wis v-symmetric, i.ev(x)u?(x — y) = v(y)nd(y — x) and therefore
(2.2)

B ()= Y va(w <f<u>,f</u> A v)f(v)> = (£ (T~ HI) D) o

ueV
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where we usedd,,s = (H,)?. Just like the cas#’ = C we can now decompose (the
vector-valued)f in terms of the (scalar!) eigenfunctionsHf,, (the normalized adjacency
matrix). Assume these atl), . . ., ¥,,_1 corresponding to the eigenvalugs=1 > \; >
©+ 2 Aly|-1 = —1, such that\;; is the first smaller tham and \;, is the last larger than
—1. Writing f = " a;9; (a; € Y) and specializing to the cage= 2n we get:
11
Ean(f) =D (1= A" lal”.
1=10

Forig <i <1y,

t—1 0
. ) 1—)\2
L2 (]2 2 < (1 A2 2 2N
L= N = (10D A <=2 ) NOY = ey
7=0 3=0
and thus
i1 1 i1 1
on (F) = el —— MV alP=——E . (f).
E;LG (f) Z(l )‘7. )|al| — 1—)\2(G) Z(l )‘z)|a1‘ 1—A2(G)Euc(f)

i:io Z:io

Now recall the definition of the factor grodp, in Section 1. We would like to transfer
the “boundedness of energy” property to the random walk on the random §roupet
X, = Cay(T'y; S) with the standard-labelling andl’-action. Given a vertex € V and
an element: € T',, there exists a unique homomorphism of labelled graphs,

Qymg Gy — Xo

(G is the component ofr containingu) which takesu to = and maps a directed edge of
¢ € E to an edgdy, y - () of the Cayley graphX,, = Cay(I',; S). Given the measure
pa(u —) on'V, we thus have its pushforward measute , . (1c(u —)) onT',. We can
then define a pushforward random walkiogn by averaging over all choices afe V:

Axal(z = A) =Y v(wa;_,(ne(u— A) = v(wpe(a,L,(A)).

It is clear thatiix . is I'-invariant. Thenx ,-0dds of going fromz to y are the average
overwu of the odds of going from a vertaxto a vertexv such that the path from to v is
a-mapped tac~ly.

We now fixuy € V,zy € T, (€.9. zg = 1). LetT',, act by isometries on the metric
spaceY. Then we can identify an element &f with a I',-equivariant mapf : X, —
Y through the valuef(z). Any such function can be clearly pulled back to a function
foay,—qz 1 V — Y. Moreover,

Eu (f o quyay) = % Y vawng(u = 0)dy (f(Qug—e (W), f(Qug—zg (v)))
u,veV

and by the equivariance gfthis equals:
1 1
5 L BFE @) Y velwulu—v) = Sldf% (€)= By (f),
zeX Ay—e(V)=z
pushing forward any walle, to a random walkagm on X,. We can now rewrite the

Lemma astzz. (f) < %Egg(,a(f)-
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The spaceX,,, however, is difficult to analyze — in particular it varies withWe would
rather consider the tre¥ = Cay(I';.S), which we also take with th&-labelling andr'-
action. Fixingz € X, every path irGG has a unique--pushforward to an path oi starting
at x and preserving the labelling. By averaging over all paths of lepdgthG we get a
T-invariant random walk o', which we will denote byi% ,:

q

[ oz —a') = > vG (po) g (P)

|Pl=g;0pg—= (P) =2
(this notation is acceptable since the pushforward of this walk by the quotienXmap
X, will give the walk % _on X,). The relevant space of functions is now all the
equivariant functiong : X — Y such thatwf = f for all w € W,. Itis clear that
averaging such a functiofi w.r.t. this walk onX or on X, will give the same answer,
allowing us to only consider walks on the regular tfée The final form of the Lemma is
then
1

(2.3) E;@gla (f) < mEu’;’( o (f)-

We now use the results of section 2.3 to obtain (with high probability) a similar inequality
about the variation of functions w.r.t. the standard watlk
For fixedg, = andz’, we think of the transition probability% ,(z — 2’) as a function

of a, in other words a random variable. It expectation will be denoted’py,(z — z’) oef

Ei% (z — 2'). We show tha’ai%ng(x — ') is a weighted sum of the’ (z — 2),
where small values af give small contributions. Thus any bound ﬁiﬂggfc(f) can be
used to bound some|»; (f). We then show that with high probabiligy,  (z — ') is
close to its expectatlon so that equation (2.3) essentially appl@,gﬁo ( f ) as well.

We recall that theyirth of a graphG, denotedy(G), is the length of the shortest non-
trivial closed cycle inG. If ¢ < 3g(G) then any ball of radiug in G is a tree. We also
denote theninimal vertex degreef G by §(G) = min{deg(v) | v € V'}.

Lemma 2.11. Let2n < $¢(G). Then there exist nonnegative weight¥® (2!) such that
So P& (20) =1,and

Xz — ') d:efEﬂ (z — ') ZP DX (z — ).
=0

Moreover if6(G) > 3 then
2 ENT PR < e,
1<n/6
Proof. Since
_om def n
N%{ ol® — ') = Z VG(?O)P%‘ (D),
‘ﬁ‘an?apoﬂm(ﬁ):m/
the expectation is
@ =)= > vapo)ud (F)P(apy—z(pan) = 2').
|B1=2n

Where the probability is w.r.t. the choice of
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Letp’be a path of lengtBn in G. By the girth assumption, the ball of radi2s around
p(0) is a tree. Thus there is a unique shortest path it from p, to py,,, and

py—a(P) = Opya (D) = - (€)) - (&) -+ - (7))

(just remove the backtracks by the symmetrywf Moreover, thex(¢}) are independent
random variables since those edges are distinct. We conclude that the probability that
ap,—o(P) = 2’ is equal to the probability of thg'|-step random walk oX' getting from
ztoz'. Thus:

ole ) = 3 ROl =)

where
reren = > valpo)ud ().
|]=2n;|p" |=21

Foranyu € V LetT, = Ba(u,2n). Thisis a tree, and iPg", (2) is the probability of
the 2n-step random walk off’, starting atu reaching the distanc® from « then clearly
Pgr(21) = X, va(u)PE",(21). In particular it is clear tha} -, PZ"(21) = 1. Moreover
since we assume that the minimal degreéiis 3, we havey",_,,  P2", < ¢ /'8 by

Proposition 2.9. Averaging overgives the bound o). O

Lemma 2.12. In addition to the assumptions of the previous Lemmajdetu) < d for
all w € V, whered is independent dfi’|. Then with probability tending exponentially to
with |V,

Balw— ) 2 Siole — o)
forall z,2’ € X and
Bxale —a') < pk(z — o)
forall z # 2’ € X.

Proof. The random variablﬁgm(x — ') is a Lipschitz function on a product measure
space: return to the definition @fy  (z — 2') as the average of the pushforwards of
random walks centered at the various vertice&/'ofChanging the value af on one edge
only affects random walks starting at vertices with distance at prestrom the endpoints
of the edge. Since each such contribution can change by atinlostaverage can change
by at most

< 2(d —1)771

— |V| )

which is therefore the Lipschitz constanBy the concentration of measure inequality (see
[4, Corollary 1.17]) the probability oﬁg(’a(x — z’) deviating from its mean by at least
(in one direction) is at most

.2 22 v
e T 272(E| <6 4d(d— 1)2q 7|V

since2|E| < d|V]|.
Fixing ¢, = we now consider all thg%  (z — =') (differentz’) together. LetVy(¢) be
the number of random variables:

Ni(q) = {2’ € X | dx(x,2") < qanddx(z,2’) =q (mod 2)}|,

2w.rt. the Hamming metric on the product space.
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and lete(k, d, ¢) be the infimum over such’ (essentially over their distances — the walk
ﬁg(_rc is spherically symmetric) and over rooted trédesf depthq and degrees bounded

betweerB andd of the expressich

NXT x — a') Z Z Ng‘(ﬁ)ﬂlx(m_)x’)v

I<q |pl=g;|p"|=l
the probability ofsomeji% ,(z — ') being less than half its mean is then at most

_ e(k,d2n)? V|
Nk(Qn)-e 16d(d—1)In—=2

To see this note that if the girth ¢t is larger tharq the i , is thev-average ofi% ;.
whereT,, is the ball of radiug aroundu in G, which is a tree rooted at 7

As to ﬂgga(x — 2'), note that ifx # 2’ butdx(z,2') = 2 then[@(,G(x —a') =
PZ(2)u% (x — 2') (to get fromz to 2’ we can only consider the paths of lengtin G)
so that the probability ofi% , (x — 2) > p% (z — 2’) for some such’ is at most:

(1-P2 @) (n% (@—a))?

Nk(Q) e 1d(d—1)2

vi
O

Combining the deviation estimates with the spectral gap of the graph, we obtain the
main result:

Proposition 2.13. Assumel < 2n < 2¢(G) and that for everys € V, 3 < deg(u) < d.
Then with probability at least

e(k,d,2n)2 % _a-rZe)? V]
I_Nk(Qn) e 16d(d—1)4n—2 Nk(Q).e 16k2(2k—1)2d(d—1)2

for everyY, = : I'y, — Isom(Y) and every equivarianf : ', — Y there exists ar
(depending ory) such that%ndn <l<nand

2 1
1—e"2/9 1-)X2(Q)
Proof. Let [y = %ndn. By Lemma 2.12 we know that with high probability (as in the
statement of this Proposition),

Ea(f) <

Bz (f)-

1

2E 2n (f)a

Eﬁgga (f) =
and
Epa (f) < B (f)

(The second |nequaI|ty follows from the assumed bound on the randomp#alksince
terms withz = 2’ don’t contribute on either side). Combining these two inequalities with
the graph spectral gap (equation 2.3) we get:

2
Eug("c (f) < m

We now use Lemma 2.11 in the form:

1 1 PZ(21)
Tz e ) 2 7 Bre () 2 > Tz B

lo<l<n

Bz (f)

3The sum is over pathg starting at thenarked rootof the tree.
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wherey™, ., %C%) = 1 by the definition 0fQ2?, to get:
P2(21) 2 1
~E 2 (f) < — E.: (f).
Finally, the smallest of th& - (f) is at most equal to their average, so the desired conclu-
sion holds for that particuldr O

Remark2.14 Modifying the second Lemma and assumindarge enough, the factor

%an could be replaced with a bound arbitrarily closelto For brevity we also note
G

—2 5 <10.5.

1—e—2/9

2.5. Geometry. We begin with some motivation from the case of a unitary representation.
The derivation of equation (2.2) then shows thgt (f) = (f,(I — Hg)f) (this inner
product isI-invariant since the origin is now assumed tdbmvariant). H,, is self-adjoint
w.r.t. this inner product, so

By () = (£ oo (1= Hyg ) Hao £ ) = By (£) = Ejaesa ().

Sincep iy (z — 2'), u3 T2 (x — ') are in some sense close for largethis should imply
that averages of have small energy (see the rigorous discussion below). This is precisely
what we need in order to prove the existence of fixed points.

This analysis is insufficient for our purposes, however. We would like to analyze
affine (isometric) actions when inner products are no longer invariant, and even actions
on CAT(0) metric spaces, where the equation wouldn’t even make sense. Indeed, it turns
out that the the non-positive curvature of Hilbert space is all that is needed here: an ana-
logue of the above formula is proved in the appendix (Proposition B.25, for the random
walk u = p%) in two parts, reading:

(2.4)
Pt h<s [ o) [ e = ) = i (@ = o)) (e £ S0,
and

1

5 /F\X dDX(JS) /X dan(x — m/)dY(Hugg"f(x)7f(aj’)) < E“%(" (f)

In the present cade\ X is a single point, and the outer integrals can be ignored{anyX
is a “fundamental domain” for\ X).

As just indicated, we would like to prove that averaging indeed reduces the variation of
f by producing an inequality of the fofim

E;L%( (H/J%("f) < 0(1) : E;L%(" (f)
2n+2 2n—+2

If w3 ™% (x — ') were all close to the respectiy&? (z — ') (e.9. ux " “*(z — 2') <
(14 o(1))u3*(z — z')) we would be done immediately. Unfortunately, such an inequal-
ity does not hold for allz’. Fortunately, such an inequality does hold for me'st The
exceptions lie in the “tails” of the distributionz’ which are very far or very close to.
Moreover, in these cases bgif'*?(z — 2') andu%? (z — 2') are extremely small and a
simple estimate fod%(Hﬂg(nf(:c), f(z")) suffices, leading to an inequality of the form:

By (Hyzn f) < o(1) - Eyao (f) + 0(1) - By ():

4Here lies the main motivation for only looking at walks of even length: onélpfz — '), ,u?("'l(:r — ')
is always be zero since the trégis bipartite, meaning such an argument could not work.
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To be precise leD = max{dy (f(z), f(z")) | dx(z,z") = 2} (compare the displace-
mentdis of the introduction). The? < 2(2k)(2k — 1)E,z2 (f) < 8k*E,z (f). Also if
dx(z,z") < 2n and has even parity the. (f(z), f(z')) < nD? by the triangle inequal-
ity and the inequality of the means. By the convexity of the ball of ragdiusD around
f(z) we then havels, (f(z), H,zn f(x)) < nD? (H,z20 f(2) is an average of such(z")).
Hence ifd(z,2') < 2n and is even:

(2.5) A2 (H, 0 f(2), (') < 2-nD? < 160k2 B, (f).

We can now split the integration in equation (2.4) into the region whkfér, ') — 2n9,n| <
24/(2n)log(2n) and its complement. In the first region the difference

[dp3et2(z — o) — dp3(z — )]
is small by Proposition 2.8. The measure of the second region is small by Corollary 2.6,
and we can use there the simple bound (2.5) on the integrand. All-in-all this gives:

log(2n) 32k% _
EH%( (Hﬂf%(nf) S Cl(2]€)WEM§(n (f) + kaTL 3EN§( (f)+
2K/ 1/2
+16k?co(2k) (enikv"/“' + (q2"> ) n’E,z (f).
P2k

The first term is the main term for the first region. The second is the bound on the contribu-
tion from the second region. The third is the contribution from the error term in Proposition
2.8 (again the first region) using simple bound and multiplying by account for the pos-
sible (even) values of. This last term goes to zero quickly as— oo so we can conclude:

Proposition 2.15. There exists constantg(k), c4(k) depending only ok such that for

all n:
Eug( (H;L%("f) S C3(k)1;%nEu§(" (f) + c3(k)%Eu§( (f)

2.6. Conclusion. We first prove the main theorem.

Theorem 2.16. If G is an expandeR} < deg(u) < d for all w € V and the girth ofG is
large enough thel', has property (T) with high probability.

Remark2.17. Formally we claim: giverk > 2, d > 3 and )y < 1 there exists an explicit
go = g(k, \o) such that if the girth of7 is at leasyy, A?(G) < A3 and the degree of every
vertex inG is betweer andd, then the probability of’,, having property (T) is at least
1 — ae~ "Vl whereq, b are explicit and only depend on the parametegrgand .

Proof. Choosen large enough such that for somae< in we haver = c3(k) Vi;%lo 1_1;)2"2’(;) +
Cg(k)% < 1.

By Proposition 2.13 ify(G) > 4n (note that this minimum girth essentially only de-
pends om\,k and the desired smallnessrfthen with high probability (going ta at least
as fast ag — ae %!Vl for someq, b depending only om, d, k) for any affine representation
Y of ', and any equivarianf : X — Y we can find in the rangd, < [ < n such that

10.5
E - < ——— _F - .
M)(l(f)— 17)\2((;1) /,Lx(f)
By Proposition 2.15 and the choiceofve thus have

B (H2(f) <rEu (f)
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forall f € BY(X,,Y). This means that the sequence of functions defined,by =

H 2l fq (the choice of of course differs in each iteration) represents an almost-fixed point
for the action of the subgroup?, on Y wherel'? is the subgroup of , generated by all
words of even length. In facty,2 (f) < r?E,2 (fo). Using d%,(Huz;;Lf(m),f(x)) <
8nk*E,z (f) (derived in section 2.5), we see th§t(f,1, f,) < 8nk*r9E,z (fo). Since

r < 1 this makeq{ f,} into a Cauchy sequence, which thus converges to a fixed-jigint

If f- is notl',-fixed, then the midpoint of the intervgf.., v f~.] is for anyy € T',, \ T'2.

Moreover,

1
dY(fooafO) < 1_\/; S”szu?x(f@
This means that
E = 71 _ ﬁ
2v/16nk?2

is a Kazhdan constant f@r, w.r.t S: Letw : T, — U(Y) be a unitary representation, and
let fo be a unit vectorz-almost invariant folS. Thendy (y17v2 fo, fo) < eforallyy, v € S
S0E,z2 (fo) < 3¢* which meansly (fw, fo) < 3, in particularfo, # 0. Note thatf.

is I'2-invariant, so that the closed subspagecC Y of I'2-invariant vectors is nonempty.
Picky € S, y € Y, and considey + 7 (y)y. This vector is clearly(,-invariant and we
are thus done unlessy)y = —y for all y € Y}. In that case we havef,, = — f,, and
sincee < % we obtain the contradiction:

2 =dy(foo, T(V)fe) < dy(foor fo) + dy (fo,7fo) +dy (v o,V o)
1 1 1
< §+g+§-

A slightly different version is actually needed for the result in [2]. For a fixed intgger
let G; be the graph obtained froti by subdividing each edge 6f into a path of lengtly,
addingj — 1 vertices in the process. On large scales, the new graph resembles the original
one (e.g. every ball of radius 1¢(G)-j is a tree), but the minimum degree is no longer
most vertices, in fact, now have degzeWe now indicate how to adapt the proof above
to this case.

We first remark that the spectral gap®jf can be bounded in terms of the spectral gap
of G. Infact, if f : V(G,) — R is an eigenfunction oi; with eigenvaluecos ¢ = A,
thenf [y is an eigenfunction olr with eigenvaluecos jo. To see this observe first that
if (u,v) € E then f(u), f(v) determine the values gf along the subdivided edge since
Af(w;) is the average of the neighbouring values for any internal vesteof the subdi-
vided edge. Plugging this in the expression\gf{u) as an average over the neighbours
in G; gives the desired result. Now cannot be too close te-1since that that would
imply ¢ too close to) or 7, makingj¢ close (but not equal) to a multiple af, so that
cos j would be too close te-1, contradicting the spectral gap 6f Write this bound as
Ty < cV(G), ).

We next adjust Proposition 2.13. Defing, d, j, 2n) to be the maximum ofi2" (z —

2') over all trees of deptBn rooted atz, which are obtained by subdividing edges in trees
with degrees in the interva3, d]. We then have:
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Proposition. Assume tha200;j < 2n < ¢(G;) and that for every: € V, 3 < deg(u) <
d. Then with probability at least

(1-PZ (2))?

e(k,d,j,2n)? V| -~ ‘
_ Nk(2) . e B8kd(2k—1)(d—1)2

1— Ni(2n) - e T6d(d—1m—2 Vi

for everyY, r» : I'y — Isom( ) and every equivarianf : I'y, — Y there exists ar

(depending orf) such thatznd 5 log <l<nand

11
Eugg (f) < ﬁQ(G)EMX (f)-

Proof. Also note thatPC%j(Q) can be readily bounded since we know all possible balls
of radius2 in G;. The only other change needed in the proof is a reevaluation of the
bound on the inverse of the probability that the-step random walk on the gragh;
travels a distance at Iea};t]d% from its starting point (the facta? used to compare

P o (x — a') to u¥'q(z — 2') remains). The idea of this is to think of the random
walk on GG; as a series of ‘'macro-steps’, each consisting of a random walk on the 'star’
of radiusj centered at a vertex @ until a neighbouring vertex i is reached. In this
context we will term 'micro-steps’ the steps of this last random walk, i.e. the usual steps
from before. The sequence of 'macro-steps’ is a random walk;qevery neighbour

is clearly reach with equal probability), which we know to travel away from the origin
with high probability, assuming enough 'macro-steps’ are taken. The expected number of
‘micro-steps’ until reaching an 'endpoint’ j&, so on first approximation we can think of
the2n-step walk onG; as a variant of thé2-step walk onG (up to a correction of length

j at the first and last steps). Of course, there can deviations. It clearly suffices to estimate
the probability that all 'macro-steps’ take less tHaji log n 'micro-steps’ to complete,

since if that happens then we must have made atpé’%ti macro steps’. Then the

logn
probability of the final distance from the origin being less tléam 281 oam is at most

e~2/9 for the same reason as in the original proposition. A bound for an individual ‘'macro-
step’ follows from a large deviation estimate. Noting that there are at 2nostacro-steps
in the process completes the bound. |

Corollary 2.18. Givenk, d, Ao and j there exists an explicgy = g(k, Ao, j) such that
if the girth of G is at leastgy, A?(G) < A3 and the degree of every vertex@his be-
tween3 andd, then the probability of a random group, resulting from a labelling ot~
having property (T) is at least — ae "IVl whereq, b are explicit and only depend on the
parametersk, d, Ao andj.

Proof. Identical to the main theorem, except we now choedarge enough so thag <

i satisfies = c3(k) V‘\ngO 11-c(W(G). ) + es(k) e < 1. O

APPENDIXA. CAT(0) SPACES AND CONVEXITY
Let (Y, d) be a metric space.

Definition A.1. A geodesic pathn Y is a rectifiable pathy : [0,!]] — Y such that
d(v(a),v(b)) = |a — b| for all a,b € [0,1]. The space’ is calledgeodesidf every
two points ofY” are connected by a geodesic path. We say Yhat uniquely geodesiif

that path is unique.
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Definition A.2. LetY be a geodesic spacg,> 0. Say thatf : Y — R is (A-)convexif
f o~ is (\-)convex for every geodesic path We sayf : [a,b] — R is A\-convex if it is
convex, and furthermoreD™ f)(y) — (D~ f)(z) > Ay — ) for everya < z < y < b.
(informally, the second derivative of the function is bounded away from zero).

We need the following property of-convex functions on intervals:

Lemma A.3. Let f : [a,b] — R be A-convex. Themax f([a,b]) — min f([a,b]) >
AN —a)2.
8

Proof. Assume first thaff is monotone nondecreasing. By convexity, the convergence of
w to (D*f)(z) ash — 07 is monotone. The limit is nonnegative. By the
monotone convergence Theorem,

b—¢ 1 b—d+h 1 a+h
TA(x)der = lim — r)dr — lim — x)dx
JARIE [ @ [ i@

-5 h—0+ h

and by continuity off in the interior of the interval we get:

b—4
/ (D" f)()dz = f(b—6) — f(a)

letting § — 0 and using the monotone convergence Theorem adainf(is nonnegative
by assumption) we obtain:

b
/ (D* f)(@)dz < F(b) — f(a)

now by theh-convexity assumptiod, D" f)(z) > A(x—a) (since(D* f)(z) > (D~ f)(z) >
(DY f)(a) + Mz — a) and(D* f)(a) > 0). Thus

(b—a)?

b
(A1) £0) = 5@ = [ Mo apdo =

In the general case, Igtobtain its minimum orja, b] atc € (a,b). Thenf is monotone
non-increasing ofu, ¢] and nondecreasing ¢ b]. It follows thatf(a)— f(c) > 3 (a—c)?
andf(b) — f(c) > 5(b— c)?. Since either —a > 2(b—a) orb—c > (b — a) we are
done. O

Lemma A.4. Let f be aA-convex function, bounded below, on a complete geodesic metric
spaceY . Thenf has a unique global minimum.

Proof. Letm = inf{f(y) | y € Y}, and fore > 0 consider the closed set
Yo={yeY|fly) <m+e}

We claim thatlim. _,, diam(Y;) = 0 and therefore that their intersection is nonempty. Let
x,y € Y., and consider a geodesijc: [0,d(x,y)] — Y connectinge,y. ¢ = fo~yisa
2-convex function orf0, d(z, y)] and sincer,y € Y. we haveg(0), g(d(z,y)) < m + ¢,
and thusm < g(t) < m 4 ¢ forallt € [0,d(z,y)]. By the previous Lemma we get

d(z,y)* < 5 and thereforeliam(Y.) < /5 as promised. O

Definition A.5. A geodesic spacfY, d) will be called a CATO0) space if for every three
pointsp, ¢, € Y, and every point on a geodesic connectingg, it is true thatd(s, r) <
|SR|whereP, Q, R € E? (Euclidean 2-space) form a triangle with sid€€)| = d(p, q), |QR| =
d(q,r), |RP| = d(r,p) andS € PQ satisfie§ PS| = d(p, s).
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RemarkA.6. This clearly implies the usual CAD) property: ifs € [p,q|, t € [p,r] and
S € PQ,T € PRsuchthalPS| = d(p,s), |PT| = d(p,t) thend(s,t) < |ST].

From now on le” be a complete CA[D) space.

Lemma A.7. (Explicit CAT(0) inequality) LetP, A, B be a triangle inE? with sides
|PA| = a,|PB| =b,|AB| = ¢+ d, and letQ € AB satisfy|Q — A| = ¢, |Q — B| = d.
Let! = |PQ|. Then:
d c
2 _ 2 2
l—c+da +c+db cd
Moreover, letp, ¢, r, s € Y wheres lies on the geodesic containingg. Then

d(p, s) d(s,q)
d?(r,s) < Ld? (g, ) + L d? (p,r) — d(p, s)d(s,q
(r.s) d(p, q) (1) d(p, q) (,r) = d(p, s)d(s,q)
Proof. cos(/BAP) = €4 =" _ (”;()jj;):bz and therefore

P=c+a®>—clct+d) — © 2y S
C
as desired. The second part is a restatement of the definition of &0C#pace. O

Corollary A.8. Fix yo € Y. Then the functiorf(y) = d(y, yo) is strictly convex along
geodesics. In fact, it i8-convex.

Proof. Lety;,y2,ys € Y be distinct and lie along a geodesic in that order. By Lemma A.7

d(y2,y3) d(y1,y2) .
fly2) < mf(yl) + mf(%) d(y1,y3)d(y2,y3),

and sincel(y1, y3)d(y2,y3) > 0 we have strict convexity. In particular, we obtain the two
inequalities
fly2) — fy)
d(y2,v1)

f(ys) — f(y1)

— d(ys,
d(ys, 1) (2, 45)

IN

and
fys) — fy2)
d(y3,y2)
which together imply:
flys) = fly2)  fly2) — f(yn)

— > d(y1,y2) + d(y2,y3) = d(y1,
d(y3, y2) dlyz, 1) (y1,92) + d(y2,y3) = d(y1, y3)

As to the second part, lgt < y4 lie along a geodesic path Lety; < y2 < y3 < 4.
Then applying the last inequality twice, for the triplétg, yo, y3) and (y2, ys, y4) We
obtain:

f(ys) = fy1)
d(ys, y1)

Y

+ d(y17 y2)

flya) = Flys)  fly2) — f(nn)
- > d(y1,y3) + d(ya,
d(ya,ys3) d(y2,y1) (W1,30) + dl 1)
lettingyo — 1 andys — y4 the LHS converge to the difference of the right- and left-
derivatives off o v aty; andy, respectively, while the RHS converges2d(y;,y4) as

desired. O

Lemma A.9. The metricd : Y x Y — R is convex.
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Proof. Letay, as,b1,b2 € Y and lety; : [0,1] — Y be uniformly parametrized geodesics
from a; to b;. We need to prove:

d(71(t),72(t)) < (1 —t)d(a1,az) + td(b1, ba).

Consider first the casg (0) = v2(0) (i.e. a; = a2). Then;(t) are two points along two
edges of the geodesic trianglg, b1, bo. By similarity of triangles inE? and the strong
CAT(0) condition we are done.

In the general case, Igt = ~;(t). Letyo : [0,1] — Y be the uniformly parametrized
geodesic fronu; to bs, and letr = +/(¢). Then by the special case for, v, which begin at
ay we haved(py,r) < td(by,bs). Similarly by the special case fag *,~, ' which begin
atb, are havel(ps,r) < (1 — t)d(asz, a1). By the triangle inequality we are done. O

APPENDIXB. RANDOM WALKS ON METRIC SPACES

This appendix follows quite closely section 3 of [2] supplying proofs of the results. The
target is Proposition B.25, the geometric result needed for the property (T) proof.

B.1. Random Walks and the Center of Mass.Let X be a topological space, and let
M x be the set of regular Borel probability measuresifif X is countable & discrete
this is the set of non-negative norirelements of, (X)). TopologizeM x as a subset of
the space of finite regular Borel measures®ofwith the total variation norm). This makes
M x into a closed convex subset of a Banach space.

Definition B.1. A random walk ér adiffusion)on X is a continuous map : X — My,
whose value at we write asu(z —). The set of random walks will be denoted Wy .

(1) Thecompositionof a measurer € M x with the random walkt € Wx is the
measure:

- wA) = [ dvi)uta = A).

This is well defined since is continuous and bounded. It is clearly a probability
measure. It seems natural to also think of this definition in terms of a vector-valued
integral.

(2) Thecomposition(or convolutior of two random walks:, i’ is the random walk:

(s i) =) = [ duta — '@’ =),

The integral is continuous so this is, indeed, a random walk.

(3) We will also write
n def

= R
——

and alsodu™(xz — y) for the probability (density) of going from to y in n
independent steps.

If X is discrete, we think ofi(z — y) = u(z —)(y) as the transition probability for a
Markov process otX . In this case the stationary Markov process

5(x—>A):6x(A):{ é z;j

is a random walk under the above definition. It isn’'t in the non-discrete case since the map
x — §, is weakly continuous but not strongly continuous. It might be possible to define
random walks aweaklycontinuous mapX — M x but this would require more analysis.
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Definition B.2. Let v be a (possibly infinite) regular Borel measure &n u € Wx.
Say thatu is v-symmetri¢ or thatv is a stationary measure fop if for all measurable
A, BCX

/Au(w — B)dv(z) = /Bu(y — A)dv(y).
In other wordsy is v-symmetric iff for all measurable : X x X — Rxg

/ oz, 2" )dv(z)du(z — ') = / oz, 2")dv(z")dp(x" — x).
XxX XxX

If X is discrete, we say that is symmetridf this holds wherev is the counting measure
(i.e. if u(z — {y}) = u(y — {=}) for all z,y).
Example B.3. Let G = (V, E) be a graph where the degree of each vertex is finite. We
can then define a random walk by having: — v) = diuNu(v), whereN,, is the number
of edges between andv (i.e. we take account of multiple and self- edges if they exist).
This walk isv-symmetric for the measutgu) = d,,.

In particular, ifG is the Cayley graph of a groupw.r.t. a finite symmetric generating
set.S we obtain thestandard random walkn I". This is a symmetric random walk since
the associated measurge onT is I'-invariant.

Definition B.4. A codiffusionon a topological spac¥ is a continuous map: M — Y
defined on a convex subsgf C My containing all the delta-measurég such that
¢(6,) = y for everyy € Y and such that the pullbaek ! (y) is convexfor everyy € Y.

Example B.5. In an affine space we have theehtre of mas's

(o) = [ 7 do(a)
Y
defined on the set the measures for which the co-ordinate fungti@re integrable.

In the case wher¥ is an affine inner product space, we can charactefizgfor somé
o € My in a different fashion: consider the function (“Mean-Square distance §#9ym

2 (y) = / ly —¥'I1% do (),
Y

and note that

Ew) = [y~ @) - o - cloDI} doty) =

= Ity ~ coDlly +d(c(o)) +2 <y ~o)elo) - [ y'da(y’>> .
Sincec(o) — [ y'do(y’) = 0 by definition, we find: '
Y

(B.1) dz(y) = Ity = o)y + d (c(0)).
In other words¢ (o) is theuniquepoint of Y whered? (y) achieves its minimum. More
generally ifY” be a metric space ande My, we set:

02 (y) / () - do(y).
Y

5 must be such that the following integral converges foyall Y.



ADDENDUM TO “RANDOM WALK ON RANDOM GROUPS” BY M. GROMOV 19

LemmaB.6. d2(y) < dZ(y1) +d5 (y, y1) +2dy (y, y1)do (y1) = (dy (y,51) +do(11)).

Proof. By the triangle inequalitydy (y,vy’) < dy (y,y1) + dy (y1,y’). Squaring and inte-
gratingdo (y') gives:

d2(y1) < d5-(y,y1) + d (1) + 2dy (y, 1) /dy(yuy’)da(y’)-
Y

Using Cauchy-Schwarz (which, for probability measuseseads( [ fdo)? < [ fdo)
completes the proof. |

Corollary B.7. If d,(y) is finite for some; € Y then it is finite everywhere.

Corollary B.8. If d,(y) is finite, then it iso-integrable. Furthermore, for any; € Y we
have:

4d2 () > / @2 (y)do(y) = (a2 (5, 1)), . -
Y

Proof. This follows from Lemma B.6 immediately by integratidg(y) and using Cauchy-
Schwarz again. O

We therefore letV/, be the set of (regular Borel) probability measuresyosuch that
d?(y) is finite. This is clearly a convex set (though it is not closedig unbounded).

Definition B.9. Let o € M,. If d,(y) has a unique minimum ol it is called the
(Riemanniahcentre of mass af, denoted again by(o).

If Y is a CAT(0)-space, then Corollary A.8 states that, as a functiop, @& (y, y’) is
2-convex. This property clearly also holdsd®(y) (seen e.g. by differentiating under the
integral sign and using the monotone convergence Theorem). The existet{eg tien
follows from Lemma A.4. In this case we can take= M.

RemarkB.10. The 2-convexity ofd2(y) on the segmeniy, c(c)] implies the following
crucial inequality:
(B.2) da(y) = dg(c(0)) + d¥(c(0), y)
(c.f. equation (A.1)).
We can also integrate this inequality () to obtain the bound? (c(0)) < 1 (d% (y,¥'))

oxo

B.2. The Heat operator. From now on letX be a topological spacé¢y, d) a complete
CAT(0) space. We also fix a measwes M x, av-symmetric random walk € Wy,
and letc be the center-of-mass codiffusion ®h defined on the convex sét, C My
Our arena of play will be two subspacesMf(X,Y'), the space of measurable functions
from X to Y. The first one is a generalization of the usiidlspaces:

Definition B.11. Let f, g : X — Y be measurable. Th&? distancebetweeny, g (denoted
dr2() ([, 9)) is given by

1/2
dr2w)(f,9) = (/di(f(ﬂc),g(w))dl/(z)) :
X

This formula (and the next one) are actually equalities in the Hilbertian case — see equation (B.1).
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This is a (possibly infinite) pseudometric. Moreowés; . (f,g) = 0iff f = g v-a.e. as
usual. Fixingfy € M(X,Y), we set:

LIQ/(Xv Y) = {f € M(X7 Y) sz(u)(fa .fO) < OO} :
As usual, the completenessfimplies the completeness € (X, Y).

RemarkB.12 ThatL2(X,Y) is a CAT(0) space follows front” having the property.

Proof. We start with some notation. Lgt,y. € Y, t € [0, 1]. Set[y;, y2]: to be the point
at distanced(y1, y2) from y; along the segment. In a CAD) space this is a continuous
functiononY xY x[0,1]. Nowletf,g € M(X,Y) and defindf, gl:(x) = [f(z), g(z)]:-
Then[f, g]; is measurable as well, and cleatly. ,(f,[f,g]:) = t*d7:,(f.g) since
dy (f(x),[f,g)(z)) = t2dy (f(z),g(z)) holds pointwise. Thug.2(X,Y) is a geodesic
space. Next, lef, g,h € L2(X,Y) and letu = [f, ;. The explicit CAT0) inequality for
h(z), f(x), g(x), u(z) reads:

dy (h(x), u(x)) < td3 (g(x), h(2)) + (1 = )d5 (f(x), h(z)) = (1 = t)d3 (f (@), (),
and integration w.r.t.dv(zx) gives the explicit CAT0) inequality of L2(X,Y). This is
immediately equivalent to the general CAIJ condition. |

Definition. Let f € M(X,Y), and letr € Mx. Thepushforward measurg¢,r € My
is the Borel measure o¥i defined by(f.7)(E) = 7(f~1(E)).

Definition B.13. Lete € [0,1], f € M(X,Y).
(1) TheHeat operatorst; are

(Hf)(z) = c(fe (ep(z =) + (1 =€) bz))

Whenever this makes sense. In particutir= H,, = H' is called theheat
operator. Note that by the convexity af/, H¢ f are defined whenevei' f is.

(2) Say that a functiorf € M(X,Y) is (u-) harmonicif H f(z) is defined forall
x € X and equal tof (x).

RemarkB.14. If Hf(z) = f(z) thend} ,, ,(y) andds(y, f(x)) achieve their mini-
mum at the same point, = f(z). ThusHef(z) = f(x) forall0 < ¢ < 1. In other

words, f is harmonic iff H¢ f = f for all e.

Example B.15. Consider a graplé: = (V, E) with the graph metric, and lei be the
standard random walk of. Let f : V' — R by any function. Itis then clear thaf; is the
“local average” operator (the normalized adjacency matrix).

By the following Lemma (sincef. (epu(z —) + (1 — €)d,) = efu(pu(z —)) + (1 —
€)04(z)), He f is well defined for somé?(X,Y') spaces.

Lemma B.16. Let fy € M(X,Y) be au-harmonic, and letf € L2(X,Y) (around fo).
Thenf.u(x —) € M for v-a.e.xz € X. In particular, H¢ f is defined--a.e.

Proof. Sincett < \/2*+¥* we have forany € Y, 2’ € X:

/ & (y, f()) dulz — ') < 2 / & (y fole)) dule — ') 42 / & (fola'), F(2')) dpu(x — ).

X X X
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The first integral is finite by:-harmonicity and Lemma B.6. Integrating the second one
dv(x) and using the fact that is v-symmetric, we find:

/ du(@)dp(z — )& (fola'), f(a')) du(z — o)

XxX

- / @2 (fol@'), f(&)) dv()du(z' — z) = / @2 (fol'), F(z")) dv(z")
XxX X
= d}2(,)(f, fo) < 0.
It must thus be finiter-a.e. O

Actually the same proof shows thatif f, is well-definedv-a.e. then so ig{ f for all
f € L2(X,Y) — but we should know more:

Claim B.17. Letoy,00 € My, and letr be a probability measure ani x Y such that
T(AXY)=01(A) and7(Y x A) = 02(A) for all measurabled C Y. Then

& (c(on) e(02)) < / & (y.4/)dr(y.9).
Y XY

Proof. | have only managed to prove the Hilbertian case. This should hold forf QAT
spaces in general.

(o) = /Y ydoy (y) = /Y )
and
e(0s) = /Y ).

we have by Cauchy-Schwarz:

Je(on) = clon)l < [

Y %

2
ly = ¥'lly dr(y,y) - / dr(y,y').
Y

Y xY

O
Proposition B.18. Let f1, fo € M(X,Y) satisfy fi.u(z —) € M, for v-a.e. z € X.
Thendpz,)(HE f1, H® f2) < dp2(,)(f1, f2). In particular, He : L2(X,Y) — L2(X,Y)
is Lipschitz continuous.

Proof. Let o; = ficpe(z —), and letr = (f1 x fo)«(pe(x —)) wheref; x fo : X —
Y x Y is the product map. By the claim

02 (H® f (), HE fo(2)) < /X (A, ) e — ),

The result now follows by integrating(x) and using the symmetry @f.. In particular,
we note that

dr2)(HE f, H fo) < dr2(f, fo)

and if, in addition,H¢ fy € L%(X,Y) (e.g. if fo is harmonic) therf{* f € L2(X,Y) for
all f € L2(X,Y). O
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Continuing in a different direction, in order féf f () to be defined, it suffices to know
that [ d3 (y, f(2))du(z — ) is finite for somey. Thinking “locally” we make the
natural choicey = f(x), and set:

def

jdf;, () € /Xd% (f(x), (") du(z — 2').
The second (and more important) space of functions to be considered is
B,(X,Y) = {f € M(X,Y)||df], € LQ(V)}

(L?(v) = L2(X,R) is the usual space of square-integrable real valued-functiods)on
By the preceding discussion jf € B, (X,Y) thenH f(x) is definedv-a.e. Anticipating
the following section we calB,, (X, Y") the space of functions dinite energy

We return now to the formuldZ (y) > d2(c(o)) + d3-(y, c(o)) which followed from
the 2-convexity ofi2(y). Settinge = f.(u(z —)) (so thate(s) = H,, f(z)) and writing
outd2(H, f(z)) in full we define:

11} (@) & @(ele)) = [ (1, @), ) dur = o)
(finite for any f € B,(X,Y)). Then for any measurable

(B.3) /X d3 (v, f(&))dp(x — 2) > d3- (y, Huf (2)) + |d' £, ()

(Note thatH,, f is undefined iff the LHS is infinite). We now derive an important pair of
inequalities which are a basic ingredient of the proof that our random groups have property

(m):
Lemma B.19.
' 1 (2) < |df L2 ().

Proof. Follows from equation (B.3) by replacingwith ™ (which is alsov-symmetric),
settingy = f(«) and ignoring thel? (v, H f(z)) term. d

Proposition B.20. Let’ H,, = H,». Then
/dl/(x)|d(an)‘i (1‘) < / dl/(l‘) [d,un+1(x — 1;/) — dun(x — x/)] d%/(an(x)7 f(g;’))
X

XxX

Proof. Sety = H,, f(«"), and integrate (B.3) w.r.dv(z")du(z" — ) = dv(x)du(z —
z") on the RHS and LHS respectively to get:

[ vt o) [ dp e B S 2 [ dve)dute — o) (Haf (@), Haf )+
XxX X XxX

+ /X | dvla)dua —a") /X d" (z — ) (Hof (), F(o)).

Now on the LHS, [ du(z" — z)p"(z — A) % m+1 (2" — A). On the LHS the inner
integral does not depend aff and [ du(z — «”) = 1. In other words:

/ dv(a")dp" (2" — )d5 (Hy f(2), f(2)) 2/ dv(z)du(x — &")d5 (Hp f (@), Ho f(2"))+
XxX XxX

7In the affine case (but not in general) this equalsitith power (iterate) of ;.
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+/ dv(z)dp" (x — 2')dy (H, f(2), f(2')).
XxX

On the LHS we can now rename the variableto bexz. We also move the second term
on the RHS to the left. Finally we note thit du(z — «”)d3 (H, f(z), Hn f (")) def
|d(H f)]2 (). O

B.3. The Energy. We can rewrite the results of the previous section more concisely by
introducing one more notion.

Definition B.21. Let f € M(X,Y’). Theenergy off is:

B = 5 1dflullay = 5 [ i) [ due — )& (£(2). 1)),

X X

Lemma B.22. Let fo, f € M(X,Y) such thatd 2, (f, fo) < oo. If fo has finite energy
then so doeg.

Proof. We recall that[ dv(z)dp(z — z')d5 (f(2'), fo(z')) = dZz(,,(f, fo). Using the
inequality of the means and the triangle inequality we get:

&y (f(x), f(2')) < 3d3-(f(x), fo(x)) + 3d3- (fo(@), fola")) + 3d3-(fo(a"), F(x)).
Multiplying by 1 and integratinglv(z)du(z — ') gives:
E(f) < 3B(fo) + 3di2(, (fo, f)-
(I

Proposition B.23. B, (X,Y) is a convex subset @i/ (X,Y"). E(f) is a convex function
onB,(X,Y).

Proof. We prove the stronger assertion thaE is convex. Letf,g € B,(X,Y) and let
t €10,1]. Letu; = [f, g]:- By the convexity of the metric (Lemma A.9), we have

dy (ue(z),ue(2')) < (1 —t) - dy (f(2), f(2) + 1 dy(g9(z),g(z')).
Now since
2E(f) = lldy (f (@), F @Dl z2(0p0) »
the triangle inequality of ?(v - ;1) reads:
VE(uy) < (1=t)VE(f) + 1ty E(g).

This implies both thaf (u;) < oo (i.e. u; € B,(X,Y)) and the convexity of/E. O

Definition B.24. Let (X, u,v) and(Y, d) be as usual, and lgtrange oveB, (X, Y"). We
define thePoincaré constants:

EL"(f)
(X Y)= s we\S)
(XY= s )

For example, in section 2.4 we saw that for a gréptvith the usual random walk and a
Hilbert spaceY” one hasr, (G,Y) < ﬁ(c) wherel — A(G) is the (one-sided) spectral
gap ofG).
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B.4. Group actions. LetI be a locally compact group acting on the topological space
and assume € M x is I'-invariant. Assume that there exists a measuon X = I'\ X

such that ifE' C X is measurable andE N E = () forall v € T'\ {e} thenv(E) = 0(E).
Also assume thalf\ X can be covered by countably many sughof finite measure. In
this setup every -invariant measurable functiofi : X — R descends to a measurable
function f : X — R, and we can set:

1 Tl = /X F(@)do(z)

For example, ifl" is a finite group acting freely oX then||f : FHiQ(V) = ﬁ ||f||2Lz(l,)

Where||inQ(V) is the usuall? norm on(X, v).

We now throw in an equivariant diffusign € Wy, and a metrid'-spaceY” (i.e. T acts
onY by isometries). Iff € M'(X,Y) is equivariant thettl,, f (wherever defined) is also
equivariant|df|, (z) is invariant and the energy is properly defined by

1
Bu(f) = 5 Mldfls : Tl e

We then consider the spad#, (X,Y) of equivariant functions of finite energy. In this
context Lemma B.19and Proposition B.20 above read:

Proposition B.25. Le H,, = H,,». Then

P < 5 [ dota) [ [0 o = of) = i o = 2] & (T, ). 1),

X
and

5 [ ao@) [ e =B (1@ 1) < B (D).

X

Proof. Essentially the same as before, integratingnstead ofiv since the integrands are
I-invariant in all cases. O

Equation (B.3) has two more important implications:
Proposition B.26. Let f € BY(X,Y). Then
720 (fs Huf) < 2E,(f).

Proof. Sety = f(x)in the equation and ignore the second term on the RHS to get:
AE() = | B @) Sl = o) > B (F(e). H,f @)
Integrating thisiz(z) we obtain the desired result. O

Proposition B.27. Let f € BY(X,Y). ThenE(H,,f) < 2E(f).

Proof. By the triangle inequality and the inequality of the means,
]' / ! /
S (Huf (0), Huf (@) < d (Huf (2), £(@)) + 3 (f(2'), Hyf (2')),

Integratingdp(z — z') gives:

3 WHE @) < IR 0)+ [ dulo — 2 (7). Huf ().
X

8In the Hilbertian case (but not in general) this equalsitith power (iterate) ofd ;.
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We now integratel(x). We evaluate the second term first using th& mmetry ofy:

/, d(x) /X Ao — Va2 (f('), Hy f(a!)) = / do(2) B (f (o), H, f(2')),

X
so that:

B ) < [ dota) (1011, )+ (@), H, @)
By Equation (B.3) we get:

Bu(H,f) < /X d(z) /X dp(z — o)d (f(), f(&)) = 2B, ().
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