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Abstract

We report progress on the equidistribution problem of automorphic forms on locally
symmetric spaces. First, generalizing work of Zelditch-Wolpert we construct a represen-
tation theoretic analog of the micro-local lift, showing that (under a technical condition of
non-degeneracy) every weak-* limit of the generalized Wigner measures associated to a
sequence of Maass forms with divergent spectral parameters on a locally symmetric space
['\G/K can be lifted to a measure on the homogeneous spaGewhich is invariant by
a maximal split torusd in G. Secondly, we consider the case whére~ PGL,(R) and
I' < G is a lattice associated to a division algebra o@eof prime degreel. When the
measures are associated to Hecke-Maass eigenforms, we generalize the work of Bourgain-
Lindenstrauss to show that every non-triviale A acts with positive entropy on each
ergodic component of the lifted measure. Applying recent measure rigidity results of
Einsiedler-Katok we find that the limit measure must be the Haar measure(anin par-
ticular we prove that a non-degenerate sequence of Hecke-Maass forms becomes equidis-
tributed in['\G/ K in the semiclassical limit.

These results arise from joint work with Akshay Venkatesh of the Courant Institute of
Mathematical Sciences.
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CHAPTER 1

Introduction

1.1. General starting point: the semi-classical limit on Riemannian manifolds

LetY be a compact Riemannian manifold, with the associated Laplace opAratwl
Riemannian measurép. An important problem of harmonic analysis (or mathematical
physics) onY is understanding the asymptotic behaviour of eigenfunctiond af the
large eigenvalue limit. The equidistribution problem asks whether for an eigenfunction
with a large eigenvalug, |¢)(x)| is approximately constant dri. This can be approached
“pointwise” and “on average” (bounding|| ;- and ||¢[| .y in terms ofA, respec-
tively), or “weakly”: asking whether af\| — oo, the probability measures defined by
diy(y) = |¥(y)|> dp(y) converge in the weak-* sense to the “uniform” measyf .

For example, Sogge2] derives L? bounds for2 < p < oo, and in the special case of
Hecke eigenfunctions on hyperbolic surfaces, Iwaniec and Safrthlgdve a non-trivial

L bound. Here we will consider the weak-* equidistribution problem for a special class
of manifolds and eigenfunctions.

A general approach to the weak-* equidistribution problem was found by $nael
[28]. To an eigenfunction) he associates a distributign, on the unit cotangent bundle
S*Y projecting toji, on Y. Generalizing the “Wigner function” formalism of statisti-
cal physics (see, e.gl], pp. 58-59] or the original accour®?)]), this construction (the
“microlocal lift”) proceeds using the theory of pseudo-differential operators and has the
property that, for any sequen¢e, } -, C L*(Y") with eigenvalues\, tending to infinity,
any weak-* limit of theu,, = 11, iS a probability measure on the unit tangent burftig’,
invariant under the geodesic flow. Since any weak-* limit of theprojects to a weak-*
limit of the 1, it suffices to understand these limits; Liouville’'s measiixeon S*Y plays
here the role of the Riemannian measur&on

This construction has a natural interpretation from the point of view of semi-classical
physics. The geodesic flow dn describes the motion of a free particle (“billiard ball”).
S*Y is (essentially) thgphase spacef this system, i.e. the state space of the motion. In
this setting one calls a functiop € C*(S*Y’) an observable The state space of the
quantum-mechanical billiard i5%(Y"), with the infinitesimal generator of time evolution
—A. “Observables” here are bounded self-adjoint operaaré.?(Y) — L*(Y'). Decom-
posing a state) € L*(Y) w.r.t. the spectral measure 6f gives a probability measure on
the spectrum oB3 (which is the set of possible “outcomes” of the measurement). The ex-
pectation value of the “measurirgwhile the system is in the stat€ is then given by the
matrix element B, v). In the particular case wheie is aOth-order pseudo-differential
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operator with symboy € C*°(S*Y"), we think of B as a “quantization” of;, and any such
a B will be denotedOp(g).
We can now describe Snifelan construction: it is given by, (g) = (Op(g)w, ).
This indeed liftsi,, since forg € C*°(Y') we can takeéDp(g) to be multiplication byy. If
1 is taken to be an eigenfunction then, asymptotically, this construction does not depend
on the choice of “quantization scheme,” that is to say, on the choice of the assignment
g — Op(g). Indeed, ifB;, B, have the same symbol of orderand—Avy = Ay (i.e. “¢
is an eigenstate of energy) then one hag(B; — By)y, ) = O(A\~1/?),

On a philosophical level we expect our quantum-mechanical description to approach
the classical one at the limit of large energies. We will not formalize this idea (the “corre-
spondence principle”), but depend on it for motivating our main question, whether ergodic
properties of the classical system persist in the semi-classical limit of the “quantized” ver-
sion:

PrROBLEM 1.1.1. (Quantum Ergodicity) Lgt),,} -, € L*(Y') be an orthonormal basis
consisting of eigenfunctions of the Laplacian.
(1) What measures occur as weak-* limits of thg,}? In particular, when does
fin e, dp hold?
(2) What measures occur as weak-* limits of the,}? In particular, when does
Lhn WK, d) hold?

DEFINITION 1.1.2. Call a measurg on S*Y a (microlocal)quantum limitif it is a
weak-* limit of a sequence of distributions,, associated, via the microlocal lift, to a
sequence of eigenfunctions, with |\, | — oc.

In this language, the main problem is classifying the quantum limits of the classical
system, perhaps showing that the Liouville measure is the unique quantum limit. As for-
malized by Zelditch35] (for surfaces of constant negative curvature) and Colin de Verdiére
[4] (for generalY’), the best general result known is still:

THEOREM 1.1.3. (Snirelman-Zelditch-Colin de Verdiére) L&t be a compact mani-
fold, {¢,},-, € L*(Y)) an orthonormal basis of eigenfunctionsAf ordered by increas-
ing eigenvalue. Then:

(1) 4 ~ Z N R —— d\ holds with no further assumptions.
(2) Under the addltlonal assumption that the geodesm flow"dn is ergodic, there
exists a subsequenée, } -, of densityl s.t. 11,,, k—> d.

. _ K-*
COROLLARY. For this subsequencg,,, k"v—> dp.
—00

It was proved by Hopf14] that the geodesic flow on a manifold of contant negative curva-
ture is ergodic. This was generalized to the case of non-constant negative sectional curva-
ture by Anosov ]]. In that situation Rudnick and Sarn&kd] conjecture a simple situation:
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CONJECTURE1.1.4. (Quantum unique ergodicity) L&t be a compact manifold of
strictly negative sectional curvature. Then:

(1) (QUE onY’) Thef, converge weak-* to the Riemannian measuré’on
(2) (QUE onS*Y) dA is the unique quantum limit oH.

We remark that25] also give an example of a hyperbofienanifoldY’, a pointP € Y/,
and a sequence of eigenfunctiafswith eigenvalues,,,, such thaty,,(P)| > A/ The
point P is a fixed point of many Hecke operators, and behaves in a similar fashion to the
poles of a surface of revolution. This remarkable phenomenon does not seem to contradict
Conjecture 1.1.4. The scarcity of such points and their higher-dimensional analogues will
play an important role in the analysis of Chapters 4 and 5.

One difficulty associated with this problem is that of multiplicity of the spectrum. For a
negatively curved manifolt, it is believed that the multiplicities of the Laplacidnacting
on L?(Y) are quite small, i.e. tha-eigenspace has dimensian. \°. This question seems
extremely difficult even foiSL,(Z)\H, and no better bound is known than the general
O(A\Y2/1log())), valid for all negatively curved manifolds. The freedom associated with
high degeneracy might allow the construction of “scarred” eigenfunctions which become
concentrated on singular subsetsof

However, even lacking information on the multiplicities, it transpires that in many nat-
ural instances we havedistinguished basifor L*(Y). In that context, it is then natural
to ask whether Conjecture 1.1.4 can be resolved with respect to this distinguished basis.
Since it is believed that thé&-multiplicities are small, this modification is, philosophi-
cally, not too far from the original question. However, it is in many natural cases far more
tractable. The main example is thataingruenceguotients of symmetric spaces, where
the distinguished basis is that of Hecke eigenforms. This is discussed further below, after
introducing the important work on surfaces of constant negative curvature.

1.2. Hyperbolic surfaces and automorphic forms

The quantum unique ergodicity question for hyperbolic surfaces has been intensely
investigated over the last two decades. We recall some important results.

Zelditch’s work [34, 3 on the case of compact surfacEsof constant negative cur-
vature provided a representation-theoretic alternative to the original construction of the
microlocal lift via the theory of pseudo-differential operators. It is well-known that the
universal cover of such a surfaééis the upper half-plan&l ~ PSL,(R)/SO2(R), so
Y = T\H for a uniform latticel' < G = PSLy(R). Then theSOy(R) ~ S bun-
dle X = I'\PSLy(R) — Y is isomorphic to the unit cotangent bundle ¥f In this
parametrization, the geodesic flow 1Y is given by the action of the maximal split torus

t/2
A= { ( ‘ ot/ ) } on X from the right. Zelditch’s explicit microlocal lift starts with

the observation that an eigenfunctigp (considered as & -invariant function onX) can
be thought of as the spherical vecméfl) in an irreducibleG-subrepresentation df?(X).
He then constructs another (“generalized”) vector in this subrepresentation, a distribution
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6, and shows that the distribution given py, (¢) = 5™ (ggpo )Y for g € C>°(X) agrees

(up to terms which decay as the grow) with the microlocal lift. He then observes that
the distributiony,,, is exactly annihilated by a differential operator of the foH‘n+

where H is the infinitesimal generator of the geodesic flaiva certain (fixed) second-
order differential operator, and, = 4 r2. Itis then clear that any weak-* limit taken
as|\,| — oo will be annihilated (in the sense of distributions) by the differential operator
H, or in other words be invariant under the geodesic flow. Wol&Sjt inade Zelditch’s
approach self-contained by showing that the limits are positive measures without using
pseudo-differential calculus. One advantage of this approach is that it is based entirely on
the right action oS, (R) on X, and in particular respects structuresXrthat commute

with this action.

WhenI" < PSL,(R) is a so-calleccongruencdattice, there are additional operators
acting on functions o' = I"\ PSL,(RR): for each primep (except for a finite set of “ram-
ified primes” depending of) there exists an operat@t,: L*(X) — L?(X) commuting
with the right action ofSLy(RR). It arises from &SL,(IR)-equivariant foliation ofX into
p + 1-regular graphs (the “Hecke Foliation”; almost all the leafs are trees)/amlthe
graph Laplacian operator on each leaf. In particllaalso acts on functions ol and
commutes withA. These are thelecke operatorsand they all commute. The joint eigen-
functions of all theT), and A are called Hecke-Maass forms. They encode considerable
arithmetic information and are central objects of study in analytic number theory. They are
the prototypical examples of the more general automorphic forms considered below, and
will form our distinguished basis.

Much more results are known on the quantum chaos problem for Hecke-Maass forms.
One example is the lwaniec-Sarnak result mentioned above. Of interest to us, a quantum
limit 1., arising from micro-local lifts of these eigenfunctions is callechathmetic quan-
tum limit The arithmetic quantum chaos problem (posed in general below generality) is
the classification of such limits.

The study of arithmetic quantum limits started with the seminal result of Rudnick and
Sarnak P5], that a weak-* limiti,, coming fromj,,, attached to Hecke-Maass eigenforms
cannot be supported on a finite union of closed geodesics. One way to think of this result
is as stating that arithmetic quantum limits cannot be too singular, due to the behaviour of
Hecke eigenfunctions along the Hecke foliation: if a Hecke eigenfunction is too large on
a piece of the geodesic, it must also be somewhat large at translates of this piece by the
Hecke foliation. A clever choice of the prime(depending on the closed geodesics under
consideration) assured that the translates were all disjoint, and a contradiction was obtained
to the fact thaf, (V) = 1.

Using many places at once, Bourgain and LindenstraBissltained a significantly
stronger result: they showed that the -measure of ar-neighbourhood of a piece of a
geodesic must decay at least as fast’as In the language of ergodic theory, they have
shown that any: € A acts on every ergodic component of an arithmetic quantum Jigit
with positive entropy.
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Building on this result, Lindenstraus$9] proved a theorem classifying-invariant
measures oX satisfying the positive entropy property as well as a “recurrence” property
easily satisfied by arithmetic quantum limits: such measures must be proportional to the
Haar measurédz. This (almost) answered the arithmetic QUE problem for congruence
surfaces:

THEOREM 1.2.1. (Lindenstrauss) LeY” = I"\H be a congruence quotient of the hy-
perbolic plane, and let,, be an arithmetic quantum limit oX' = I'\PSLy(R) ~ S*Y".
Thenu, = ¢ - dz for somec € [0,1]. If ' is co-compact (ie arising from a quaternion
algebra) therc = 1.

The main theorem of this thesis is a generalization of this theorem to division algebras
of degree greater thah As the basic strategy of the proof remains the same, we shall
record it here:

(1) Start with a sequence of Hecke-Maass fofms} -, ¢ L*(Y') and their associ-
ated measure§i, }, converging to a limit measure,..

(2) Passing to a subsequence, lift them to measuyesn the bundleX — Y con-
verging to a limitu., which is invariant under a subgroup< PSL»(R). The lift
is constructed in way which respects the Hecke-eigenform condition.

(3) Using the Hecke correspondence, show that an arithmeticignitannot be too
singular, in that it must have positive entropy w.r.t. the action of elemeats!.

(4) Apply a measure-rigidity theorem to show that o fiHaar

We should remark that the special case of congruence surfaces can also be attacked from
a different direction. A beautiful formula of WatsoB(] relates the triple-product integral
fin(¥m) to a special value of an L-function attachedvtp x ,, x 1,,,. Equidistribution

of the z,, would follow from fast enough decay of this special value, which in turn would
follow from an appropriate Generalized Riemann Hypothesis. The rate of decay obtained
this way from the GRH is best possible (that was show2#h)[ Moreover, conditioned on

the GRH the formula permits an evaluation of the normalizatiom.ofn the non-compact

case (the “escape-of-mass” problem) givimg(Y) = 1 in that case as well. In fact, to

show thatc = 1 it suffices to give a sub-convex bound in the eigenvalue aspect for the
Rankin-Selberd.-function L(%, v, x ).

1.3. Quantum unique ergodicity on locally symmetric spaces

Lindenstrauss’s clear expositiofd of the Zelditch-Wolpert microlocal lift actually
considers the case af = I'\ (H x --- x H) for an irreducible latticd” in PSLy(R) x
-+ x PSLy(R). The natural candidates fgr, there are not eigenfunctions of the Laplacian
alone, but rather of all the “partial” Laplacians associated to each factor separately. Set now
G = PSLy(R)", K = SO,(R)", X =T\G, Y =T'\G/K, and takeA, to be the Laplacian
operator associated with thth factor (so thaC [A4, ..., A,] is the ring of K-bi-invariant
differential operators of). Assume that\;,, + A, ;¢,, = 0, wherelim,,_,, A, ; = oo for
eachl < < h separately. Generalizing the Zelditch-Wolpert construction, Lindenstrauss

obtains distributions™ 4" on X, projecting toji,, onY, and so that every weak-* limit
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of these (a “quantum limit”) is a finite positive measure invariant under the action of the
full maximal split torusA”.

It is important to note that the lift is to the bundé — Y which is not the unit
cotangent bundle adf’, in fact much smaller: it iSh-dimensional whereaS*Y would be
4h — 1-dimensional. Moreover, the limits obtained are invariant by a much larger subgroup
(of dimensionh) rather than the-dimensional geodesic flow di*Y. The last fact is
not entirely surprising, in that we have assumed thaare eigenfunctions of a family of
h independent commuting differential operators. This phenomenon will repeat with our
general representation-theoretic lift below.

Following the construction, Lindenstrauss proposes the following version of QUE, also
due to Sarnak:

PrRoBLEM 1.3.1. (QUE on locally symmetric spaces) &be a connected semi-simple
Lie group with finite center. Lei be a maximal compact subgroup@fI" < G a lattice,
X =T\G,Y =I'\G/K. Let{¢,}.-, C L*(Y) be a sequence of normalized eigenfunc-
tions of the ring ofG-invariant differential operators ofi/ K, with the eigenvalues w.r.t.
the Casimir operator tending te in absolute value. Is it true that, converge weak-* to
the normalized projection of the Haar measur& @

We remark that a central character should certainly play no role in this problem, and it
is possible to consider instead the case wiiéie a reductive group, and,, € L*(Y,w,)
is a sequence of eigenfunctions which transform under unitary central chatagters,
whereZ is the center ofs. The measures,,, are then probability measuresbp = Z\Y,
since|v,(y)|* is Z-invariant. We take this point of view from now on. We therefore also
will use the notationX, = Z\ X.

Chapter 3 is devoted to showing the first result of this thesis (Theorem 1.3.2 below): the
construction of the microlocal lift in this setting. We will impose a mild non-degeneracy
condition on the sequence of eigenfunctions (see Section 3.3.2; the assumption essentially
amounts to asking that all eigenvalues tend to infinity, at the same rate for operators of the
same order.)

With K andG as in Problem 1.3.1, letl be as in the lwasawa decompositiGh=
NAK, i.e. A = exp(a) wherea is a maximal abelian subspace jof (Full definitions
are given in Section 2.2). Fa&f = GL,(R) and K = O,(R), one may taked to be the
subgroup of diagonal matrices with positive entries. tetX;, — Y, be the projection.

We denote byix the G-invariant probability measures o¥iz, and bydy the projection of
this measure td7.

The content of the Theorem that follows amounts, roughly, té-eetuivariant mi-
crolocal lift” on Y. While our definitions have been specificGd.,,(R), the proof will not
make any use of this fact. The theorem holds for any reductive group, with appropriate
generalization of the non-degeneracy assumption.
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THEOREM 1.3.2. Letv,, C L*(Y,w,) be a non-degenerate sequence of normalized
eigenfunctions, whose eigenvalues approachThen, after replacing),, by an appropri-
ate subsequence, there exist functignse L?*(X,w,) and distributionsy,, on X such
that:

(1) The projection of.,, to Y, coincides withyi,,, i.e.m. i, = fiy.

(2) Leto, be the measurg), (z)|2dz on X,. Then, for every € C°(X ), we have
limy, oo (0 (9) — 1n(g)) = 0.

(3) Every weak-* limitv, of the measures,, (necessarily a positive measure of mass
< 1) is A-invariant.

(4) (Equivariance). Letr C Endg(C*°(X 7)) be aC-subalgebra of bounded endo-
morphisms of”>°(X;), commuting with th&7-action. Noting that eaclh € FE
induces an endomorphism 6 (Y"), suppose that,, is an eigenfunction fos
(i.e. By, C Ci,). Then we may choosg, so thati, is an eigenfunction foE
with the same eigenvalues asg, i.e. for all e € E there exists\. € C such that

€¢n - /\el/}m 677Z)n = Ae¢n-

We first remark that the distributions, (resp. the measures,) generalize the con-
structions of Zelditch (resp. Wolpert). Although, in view of (2), they carry roughly equiv-
alent information, it is convenient to work with both simultaneously: the distributigns
are canonically defined and easier to manipulate algebraically, whereas the megsures
are patently positive and are central to the arguments of Chapter 5.

PROOF In Section 3.3.1 we define the distributioms (In the language of Definition
3.3.3, we takeu,, = 1y, (0, 9)).

Claim (1) is established in Lemma 3.3.6.

In Section 3.3.2 we introduce the non-degeneracy condition. Proposition 3.3.13 defines
¥, and establishes the claims (2) and (4). (Observe that this Proposition establishes (2)
only for K -finite test functiong. Since the extension to genetgils not necessary for any
of our applications, we omit the proof.)

Finally, in section 3.4 we establish claim (3) (Corollary 3.4.9) by finding enough dif-
ferential operators annihilating,. O

REMARK 1.3.3.

(1) Itis important to verify that non-degenerate sequences of eigenfunctions exist. We
mostly consider here the case compact quotightsfor which [7, 6 show that a
positive proportion of the unramified spectrum lies in every open subcone of the
Weyl chamber (for definitions see Theorem 3.2.7 and the discussion in Section
3.1). A similar statement for finite-voluneerithmeticquotientsY” should follow
from the recent techniques d1(]. Earlier, 23, Thm. 5.3] has treated the case of
SL3(Z)\SL3(R)/SO3(R).

(2) We shall use the phrasen-degenerate quantum limd denote any weak-* limit
of o,,, where notations are as in Theorem 1.3.2. Note that.ifis such a limit,
then claim (2) of the Theorem shows that there exists a subsequepcef the
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integers such that,,(g) = lim,, .. pin, (g) forall ¢ € C°(Xz). Depending on
the context, we shall therefore use the notatignor 1., for a non-degenerate
quantum limit.

(3) Itis not necessary to pass to a subsequence in Theorem 1.3.2. See Remark 3.3.12.

(4) ltis likely that theA-invariance aspect of Theorem 1.3.2 could be established by
standard microlocal methods; however, the equivariance property does not follow
readily from these methods and is absolutely crucial for our application. For us
the invariance arises from the action of the ring of invariant differential operators,
which is a polynomial algebra ingenerators where = dim A.

(5) The measureg,, all are invariant by the compact groug = Zx(a). In fact,
Theorem 1.3.2 should strictly be interpreted as lifting measures; 10/ rather
than X ;.

(6) Theorem 1.3.2 admits a natural geometric interpretation. Informally, the bundle
X/M — Y may be regarded as a bundle parameterizing maximal flats and
the A-action onX /M corresponds to “translation along flats.” We refer 23,[

Sec. 5.3] for a further discussion of this point.

The existence of the microlocal lift already places a restriction on the possible weak-*
limits of the measure$/i, } onY,. For example, thel-invariance ofu., shows that the
support of any weak-* limit measure,, must be a union of maximal flats.

More importantly, Theorem 1.3.2 allows us to pose a new version of the problem:

PrRoOBLEM 1.3.4. (QUE on homogeneous spaces) In the setting of Problem 1.3.1, is the
G-invariant measure o ; the unique non-degenerate quantum limit?

REMARK 1.3.5. When formulating Conjecture 1.1.4, Rudnick and Sarnak could rely
on part (2) of Theorem 1.1.3 to guarantee that the conjectured unique limit is, in fact, a
guantum limit. As the geodesic flow on the locally symmetric spaces we consider is also
ergodic, this argument extends to the context of Problem 1.3.1 (at leastiMs@ompact).
While our work on the arithmetic case outlined in the next section implies (in certain special
cases) the analogous fact for Problem 1.3.4, it is likely that a direct proof is possible. This
is especially so in the compact quotient case, when the main problem is of technical nature:
showing that most of the spectrum is non-degenerate in our sense. This should follow from
the results of T].

1.4. Arithmetic QUE in the higher-rank case

The main result of this thesis is the resolution of Problem 1.3.4 for certain higher rank
symmetric spaces, in the contextarithmeticquantum limits. We first recall their defini-
tion and significance.

As in the special case of congruence quotients of the hyperbolic plane, the situation
of having (something close to) a distinguished basis occur¥fer I'\G/K andI’ C G
a congruence lattice. For almost all primeshere exists a commutative algelirg of
operators acting o.?(X) arising from a discrete foliation. These operators commute
with each other and with th&-invariant differential operators. This distinguished basis
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is obtained by simultaneously diagonalizing the action of the Hecke operators. Precise
definitions of the foliation and the Hecke operators in the case under consideration are given
in Section 2.3; in any case, we refer to quantum limits arising via the lift from subsequences
of Hecke-Maass forms awithmetic quantum limits A special case of Problem 1.3.4 is
then:

CONJECTUREL.4.1. (Arithmetic QUE) Lety,, € L?(Y,w,) be a (non-degenerate ?)
sequence of Hecke-Maass eigenformsdighe unique weak-* limit of the:,? Is the
G-invariant measure oX ; the unique (non-degenerate ?) arithmetic quantum limit?

In Chapters 4 and 5 we study the properties of arithmetic quantum limits in the case
wherel arises from the multiplicative group of a division algebra of prime dedreeer
Q. The casel = 2 is the theorem of Lindenstrauss discussed above.

For brevity, we state the result in the language of automorphic forms; in partidulsr,
the ring of adéles af. Detailed discussion of the construction may be found in Chapter 2.
Let D/Q be a division algebra of prime degréeand letG = D* be the associated

general linear group. Assume thatis split atoo, ie thatG = G(R) ~ GL4(R). Let

K; be an open compact subgroup @A) such thatX = G(Q)\G(A)/K; contains a
singleG-orbit. Then there exists a discrete subgréug G(R) such thatX = I'\G, and
Section 2.3 develops a Hecke algebtga; acting on functions ok’ via Hecke operators
at almost all primes. There exists an abundance of open compact subgfpsatsfying
the condition above. For example, quotientssbby congruence subgroups associated to
Eichler orders are of this type (see Lemma 2.3.7 for details).

The subgrougd’ projects to a co-compact lattice ®/Z ~ PGL4(R) whereZ is the
center ofG. As in the previous section we l&f, = ZI"\G denote the resulting compact
homogeneous spaceBGL,(R), A denote the maximal split torus of diagonal matrices in
G, andw,, denote unitary characters gt

The second result of this thesis is:

THEOREM 1.4.2. Let v, € L*(X,w,) be a sequence 0fl () eigenforms onX such
that the associated probability measures on X, converge weak-* to am-invariant
probability measurer,,. Then every, € A\ Z acts on everyl-ergodic component af .,
with positive entropy.

PROOF This is essentially a rephrasing of Theorem 5.0.1, where the uniformity of the

estimate means it carries over to weak-* limits. By that theorem we fingl an0 such

that for any fixedC' ¢ M, A, as defined in Section 4.2 and small enoughe have for

all x € X thato(zB(C,¢)) < €. For a proof that this bound implies thatacts with
positive entropy seé€l[r, Sec. 8]. While written for the case of quaternion algebias @),

that discussion readily generalizes to our situation by modifying its “Step 2" to account for
the action ofz on the Lie algebra — compare our Section 4.2 and the definitions at the start
of [17, Sec. 7]. O
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REMARK 1.4.3. The statement of Theorem 5.0.1 gives a direct bound on singular be-
haviour of theo,,. Its proof follows the ideas of Rudnick-Sarnak and Bourgain-Linden-
strauss: translating the seB(C, ¢), which is ane-neighbourhood of a pied€ of a “gen-
eralized geodesic” (Levi subgroup) by the Hecke correspondence at many places we show
that it must have smatt,,-measure.

1.5. The Main Theorem

Following the strategy proposed above, we now state and prove the main result of this
thesis:

THEOREM 1.5.1. Let Y, ~ T'\PGL4(R)/SO4(R) be a compact locally symmetric
space, where the latticE is associated to an Eichler order in a division algebra of the
prime degreel overQ, split overR. Let{¢,} -, C L?(Y;) be a non-degenerate sequence
of Maass forms which are also eigenforms of the Hecke algefra of Section 2.3. Then
the associated probability measures converge weak-* to the normalized Haar measure
onY, as their lifts u,, converge weak-* to the normalized Haar measdseon X, =
M\PGLy(R).

In other words, then the normalized Haar measure is the unique non-degenerate arith-
metic quantum limit in this case.

PrROOF In fact, the proof generalizes to the case wherec L?(Y,w,) for central
characters,,. The casel = 2 is Lindenstrauss’s Theorem quoted as Theorem 1.2.1 above,
and we will thus assumé > 3. Passing to a subsequence,idgte L*(Y,w,) be a non-
degenerate sequence of Hecke-Maass formg saoch thati, — ., weakly. Passing to
a subsequence, Ié;tn ando,, be as in Theorem 1.3.2 such that — o, weakly ando,
lifts i.. Theno,, is a non-degenerate arithmetic quantum limit'on. By Theorem 1.4.2,

0 IS @n A-invariant probability measure aki; such that every, € A\ Z acts on every
A-ergodic component af,, with positive entropy. Ther® Th. 4.1(iv)] shows that ., has
a unique ergodic componentyaar. O

REMARK 1.5.2.

(1) The assumption thatis associated to an Eichler order is of technical nature. The
result certainly holds for Hecke eigenfunctions on an adelic double-coset space
X = G(Q)\G(A)/K; whereG is the group of invertible elements ofgdivision
algebra which iR-split. In general, however, such a space is a disjoint union of
several components of the fori = I'\ G wherel is a congruence subgroup, and
we would like to consider eigenfunctions on the components themselves. It is not
clear, whoever, whether we can form a sufficiently large explicit Hecke algebra
acting on such a component. For this one is interested in the set of prisueh
that each leaf of the-Hecke foliation (defined in Section 2.3) is contained in a
single componenk’ of X.

(2) In all likelihood it is possible to obtain a version of Theorem 1.3.2 for degen-
erate sequences as well. The resulting quantum limitswould be invariant
under subtorid; < A depending on the degeneracy of the limit parameéter
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A measure rigidity theorem generalizing9], requiring only invariance under a
one-parameter subgroup, positive entropy and recurrence would then allow us to
drop the non-degeneracy assumption and resolve the AQUE problem for division
algebras of prime degree> 3.

We expect the techniques developed for the proof of Theorem 1.5.1 will generalize
at least to some other locally symmetric spaces, the caBebeing the simplest;

but there are considerable obstacles to obtaining a theoreamy@rithmetic lo-

cally symmetric space at present. For a gen€rathe results of Chapter 4 can

be generalized to show that the intersections will be controlled by a pf@per
subgroup. However, this subgroup can be quite large, making the analysis on the
building much more difficult even whe@(Q,) ~ GL4(Q,). Moving from the
building of GL, to buildings of other types might present difficulties of its own.

It is also possible to prove results for the case wiieie split, i.e. isomorphic to

GL, over@Q. The proof is essentially the same except that the measure rigidity
results of LO] are used instead. Since in that case the quotient is not compact
this does not address the escape-of-mass question. Somewhat surprisingly, how-
ever, the normalization of the measure is already controlled by the degenerate
Eisenstein series. Hence a sub-convexity result for the Rankin-Sdlkiergction

would control the escape as in the casé&b,.



CHAPTER 2

Notation and Fundamentals

We define here standard notation and recall basic facts about division algebras over the
rationals and the real, p-adic and adelic Lie groups associated to them.

2.1. Division Algebras

2.1.1. Central simple algebras and their general linear groupsLet K be an infinite

field, D(K)/K afinite-dimensional central simpl€-algebra, i.e. & -algebra with no two-

sided ideals and centéf. Then for any field. /K, ID(L) gef D(K)®g L is a central simple

L-algebra of the same dimension. It is easy to s&& @rop. 1X-1-2]) that such an algebra
must be of the fornD(K) ~ M,(H) whereH is a central division algebra ovéf. In
particular,dimyx D(K) = n?* dimg H.

By the Cayley-Hamilton theorem, every elemenigf.) is algebraic over.. In partic-
ular, if L/ K is algebraically closed thehis the unique division algebra ovér and hence
D(L) ~ My(L) for somed > 1. We then have:

dimg D(K) = dim; D(L) = d*.
In particular, the numbet only depends ofd( /) and is called thelegreeof D(K). It also
follows that the dimension of every central simplealgebra is a square. An field/ K for
whichDD(L) ~ My(L) is said tosplit D(K). Alternatively, we say thdb(K') splits overL.

Fixing a linear basi:{ui}f; C D(K), we note that it is also a basis oveof D(L) for
any L/ K. We can then write any € D(L) uniquely in the forme; x;u;. Working in
this co-ordinate systeifx, ) — (z-y); is then a bilinear max® x K% — K and hence
there exist;;;, € K such that

d? d? d? d?
(Z ijuj> (Z ykuk> = Z (Z aijkxiyj> U
Jj=1 k=1 i=1 \jk=1
NoTATION 2.1.1. We will use the notatio;{mi}i1 to denote the co-ordinates of any
x € D(L) w.r.t. our basis{g:i(g)}fi1 for the co-ordinates of € D*(L).

We remark that arl-automorphism of\/,,(L) is given by a change of basis, i.e. by
conjugation by an element 6L, (L). It follows that if A is an L-algebra isomorphic to
M, (L) then the pullback of the maget: M, (L) — L to A is well-defined independently
of the choice of isomorphism.

12
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FACT 2.1.2. B1, Prop. XI-2-6]

(1) There exists a magyx): D(K) — K such that for any.,/ K whereD splits we
havedet r]D)(K): VD(K)-

(2) There exists a polynomialy € Klxy,..., 24| of degreed depending on the
choice of basis such thaky)(z) = vp(x1,...,24) for any L/K (not neces-
sarily split) and anyr € ID(L). Herevpy: D(L) — L is the map constructed in
the first part.

(3) The maps/, k) andvy are both known as theeduced norm.

Passing to a split extension shows that for anys’, x € D(L) is invertible iff vp(z) #
0, in which case it is possible to compute the co-ordinates éfby polynomial functions
of its co-ordinateqz;} anduvp(z)~*. We now identifyG ©'D* with the set of solutions
to vp(z1,...,74e) - To = 1in d* + 1-dimensional affine space. Since the multiplication
operation inD is also polynomial in the co-ordinates (ang(zz’) = vp(x)vp(2’)) this
makesG into a linear algebraic group defined ov&r, with the mapsr;: G — A! all
algebraic and defined ovéf. We will thus supplement our previous notation by using
xo(g) € L* to denote the inverse of the reduced norng & D*(L).

The center ofs is precisely the invertible elements of the centeDof.e. the invertible
elements of the ground field, and we &3¢ = G/Z;. We also seG' = {g | vp(g) = 1}.
This is a Zariski-closed subgroup.

If K is an algebraic closure df then we havéD(K) ~ My(K). Itis then clear that
G(K) ~ GL4(K), G¥(K) ~ PGLy(K) andG'(K) ~ SL4(K). In particular, the last
isomorphism shows th&t! is simply connected as an algebraic group.

2.1.2. Algebras over local and global fieldsLet D, be a central simple algebra over
the fieldQ,. An order O, C D, is a finitely-generated,,-subalgebra which spans,,.
Equivalently, it is a compact opefy,-subalgebra.

Now let D be a central simple algebra ov&: An order is a finitely-generated.-
subalgebra® C D(Q) which contains a basis fd»(Q) over Q. An order ismaximalif
it is not properly contained in another order. These exist (e.g. by Zorn’s Lemma) and we
choose a maximal ord&? C D(Q). Itis a torsion-free abelian group of radk. We can
thus fix aZ-basis{q,LZ-}g.i1 C O once and for all. The structure coefficients, with respect
to this basis then all lie i.

For a placev € |Q|, the local fieldQ, is an extension of) and we seD, = D(Q,) =
D(Q) ®g Q, andG, = G(Q,) = D;. In particular we denoté& = G.,. We say thaiD
splits atv € |Q] if it splits overQ,.

FAacT 2.1.3. (for proofs, sef81]) For a finite primep of Q let O, denote the (topologi-
cal) closure of0 in D(Q,).
(1) vp, (D)) = Q) and hencep, (O)) = Z).
(2) relatively compact multiplicatively closed sub8et- D, is contained in a maxi-
mal order. In particulark’ < G, is maximal compact iff’ = R for a maximal
order R, C D(Q,).
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(3) O, is a maximal order inD(Q,), in particular a maximal compact subring;
the maximal orders oP(Q,) are all conjugate;M,(Z,) is a maximal order of
Md(@p)-

(4) For almost allp we haveD(Q,) ~ M,;(Q,). We then havér, ~ GL,;(Q,) can fix
an isomorphisny,,: GG, — GL4(Q,) such thatp, (O, ) = GL4(Z,).

(5) We haveD,, = &£ Z,u,. In particular z;(g) € Z, for everyg € OX.

Following claim (3) we fix the maximal compact subgrougs = O, of G,,. The first
part of claim (4) is thab splits at almost all places. We I&} denote the set of finite places
wereD doesnot split.

2.1.3. Division algebras of prime degreeWe now make the assumption tHatQ is
a division algebra and that its degréis a prime and at least If K/Q is a field extension,
thenD(K) is a central simplg-algebra, hence a matrix algebra over a central division
H/K. We then have

d* = dimg D(K) = dimy D(K) - dimg H.

As d is prime andlimy D(K') anddimx H are both squares, there are two possibilities. If
H =D(K) (i.e.D(K) is also a division algebra), we say tfiatamifiesover . Otherwise
we haveH = K, that isD splits overK.

If D ramifies aty € |Q| thenG3is compact. Sinc® itself and Hamilton’s quaternions
H are the unique central division algebras oRee= Q.,, we see thab can ramify atoo
only if d = 2, which does not hold by assumption. Denotiig= G, this amounts to
saying thalG ~ GL4(R).

2.2. The Real Group

We conform to the notation ofLp).

We are considering the group ~ GL,(R), obtained a®(R)* whereD/Q is a divi-
sion algebra of prime degree, splitat We choose the Cartan involutiég) = {}' g~
for G, and letK' = O4(R) be the©-fixed maximal compact subgroug,~ R* the center
of G. LetS = Z\G/ K be the symmetric space, wiih; € S the point with stabilizex Z.
We fix aG-invariant metric onS. To normalize it, we observe that the tangent space at the
pointz, € S is identified withp /3 (see below), and we endow it with the Killing form:

Letg = Lie(G) ~ My(R), and let)(X') = — X" denote the differential b, giving the
Cartan decompositiog = ¢ @ p with ¢ = Lie(K) (the anti-symmetric matrices) apdhe
symmetric matrices. The pairifd,Y) = Tr(XY")—1 Tr(X) Tr(Y) is Ad G-equivariant
and positive semi-definite (positive definite gg = [g, g, the subalgebra of matrices of
trace(). Its isotropic subspace is precisely the center(”) = Zi (), whereZ is the
connected component of the center (in general we would Xaleebe the split component
of the torusZ; (R)). We fix a maximal abelian subalgebra” p, the subalgebra of diagonal
matrices isomorphic t&?.
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We denote byuc the complexificatiorn @k C; we shall occasionally write for a
for emphasis in some contexts. We denotexbyresp. a;.) the real dual (resp. the com-
plex dual) ofa; again, we shall occasionally writg, for a*. Forv < af, we define
Re(v),Im(v) € aj; to be the real and imaginary parts:gfrespectively.

Fora € a*setg, ={X €g|VH ca:ad(H)X =a(H)X},

Afa:g) = {a € a"\ {0} [ go # {0}}
and call the latter the (restricted)ots of g w.r.t. a. The subalgebrg, is ¢ invariant,
and hencay, = (go N p) & (go N £). By the maximality ofa in p, we must then have
go = a & m wherem = Zy(a) (herem = {0}). We haveA(a:g) = {w;;} where
«;;(H) = H; — Hj;. The root subspaces agg = R - £,

The Killing form also induces a natural pairifg -) on a* w.r.t. whichA(a:g) C a*
is a root system. The associated Weyl group, generated by the root reflectjondl
be denotedV (a:g). s;; acts onR? by exchanging théth andjth co-ordinate, so that
Wi(a:g) ~ Sy. This group is also canonically isomorphic to the analytic Weyl groups
Na(A)/Za(A) and Nk (A)/Zk(A), where a set of representatives is given by the permu-
tation matrices. The fixed-point set of ary is a hyperplane im*, called awall. The
connected components of the complement of the union of the walls are cones, called the
(open)Weyl chambersA subsetll C A(a: g) will be called asystem of simple roo(by
abuse of notation a “simple system”) if every root can be uniquely expressed as an integral
combination of elements dil with either all coefficients non-negative or all coefficients
non-positive. For a simple systelh the open con€’y = {v € a* | Va € 11 : (v,a) > 0}
is an open Weyl chamber, and the mdp— Cf; is a 1-1 correspondence between sim-
ple systems and chambers. The Weyl group acts simply transitively on the chambers and
simple systems. The closure of an open chamber will be called a closed chamber. The
action of W (a: g) ona* extends in the complex-linear way to an actionagnpreserving
ia* C af, and we call an element € af. regularif it is fixed by now € W(a:g). We use
p =732 a-0(dimgs)a € a* to denote half the sum of the positive (restricted) roots.

Fixing the simple systenil = {ei,m}f;f we get a notion of positivity. Fon =
Ba>0da (Strictly upper-triangular matrices) amd= ©n we haveg = n® a & m ¢ n and
(lIwasawa decompositiog)= n® a @ . By means of the Iwasawa decomposition, we may
uniquely write everyX € g inthe formX = X, + X, + X;. We sometimes also write
Hy(X) for X,,.

Let IV, A be the subgroups @f corresponding to the subalgebras: C g respectively
(upper-triangular unipotent matrices and diagonal matrices with positive entries, respec-
tively), and letM = Zx(a) (diagonal matrices with entries fat1}). ThenA is a maximal
split torus inG, andm = Lie(M), though M is not necessarily connected. Moreover
Py = NAM is a minimal parabolic subgroup 6f, with the mapVN x A x M — P, being
a diffeomorphism. The majy x A x K — G is a (surjective) diffeomorphism (lwasawa
decomposition), so fay € G there exists a uniqul(g) € a suchthay = nexp(Hy(g))k
for somen € N, k € K. The mapH, : G — a is continuous; restricted td it is the
inverse of the exponential map.

i#j<d



2.3. THE ADELIC GROUP AND ITS QUOTIENTS, COMPONENTS 16

Let gc = g ®r C denote the complexification gf. It is a complex semi-simple Lie
algebra. Let: denote theomplex-lineaextension of) to gc. It is nota Cartan involution
of gc. We fix a maximal abelian subalgelrac m and sey = a® b. Thenhe = h C C
gc is a Cartan subalgebra, with the associated root systéym: g¢) satisfyingA(a: g) =
{ala}acarme:g0) \ {0} Moreover, we can find a system of simple robits C A(bc: gc)
and a system of simple roofs C A(a: g) such that the positive roots w.fl.are precisely
the nonzero restrictions of the positive roots wlit. We fix such a compatible pair of
simple systems, and Igt, denote half the sum of the rootsd(h¢ : g¢), positive w.r.t.Ilc.

Let Fy C A(be: gc) consist of the roots that restrict Gon a, F,” C F, those positive
w.rt. Ilc. Letn,, = @QGFJ(g@)a, ny = @QGFJ(gC),a. Thenme = ny; P be & ny, and
dgc :nC@nM@hC@ﬁM@ﬁc.

Forv € aX, set||v]|* = (Re(v), Re(r)) + (Im(v), Im(v)) (with the inner products taken
in ag).

If [c is a complex Lie algebra, then we denotelbc) its universal enveloping algebra,
and by3(l¢) its center. In particular we s&t= 3(gc).

2.3. The Adelic group and its quotients, Components

Let G(A¢) denote the subgroup of the Cartesian proqngp consisting of those se-
quencesy such thatg, € K, for almost allp. Declaringk = [], K, (in the product
topology) to be an open compact subgrougGgf\;) makesG(A;) into a totally discon-
nected locally compact topological group. Finally, we&¢t\) = G, - G(Ay). Thisis a
locally compact group. This construction is callegkatricted direct producand denoted:

G(A) =G - H/(Gp’ Kp).
p
Forg € G(A) (or g € G(Ay)) we denotey, (resp.g,) its components at specific places.

REMARK 2.3.1. In the alternate one can defii¢A) as theA-points of the variety
vp(g) - xo(g) = 1, with the topology as a subset Af° ! (in both senses). This shows that
the group obtained by the restricted direct product procedure above is independent of the
choice of the maximal orde®.

LEMMA 2.3.2. Let K¢ be an open compact subgroup@fA¢). Then there exists a
finite setR; of finite places and an open compact subgrdip, < [] G, such that
Ky = Kpg, X HMR1 K.

PROOF A set of basic neighbourhoods of the identity@{A;) is given by the sets
of the form[], U, whereU, C G, are open and/, = K, for almost allp. Since K
is open we conclude that there exists a finite Betof finite places such thaif[pw1 K,
is contained ink;. For anyp ¢ R, the projection mags(A¢) — G, is continuous and
the image ofK; under this map is a compact subgroup containing the maximal compact
subgroupk),. It follows that K is an open compact subgroupfof, ., G, x Hp¢31 K,
which contains the second factor. Itis hence obviously of the g x [] .z, K, for a
subgroupKr, < HpeR1 Gp. This subgroup equals the imagelof under a quotient map
and in particular is compact and open. O

pERY
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Letting R = Ry U Ry we setKp = Kg, X HMRO\R1 K, sothatKy = K x Hp¢R K.
In that case we have for evepy ¢ R an isomorphismp,: G, — GL4(Q,) such that
P(Kp) = GL4(Zy).

FACT 2.3.3. LetG be a linear algebraic group. We identify(Q) with its image in the
Cartesian produc{ ], o G under the diagonal embedding, and It < G(A¢) be an
open compact subgroup.

(1) G(Q) liesinG(A). Itis discrete in the adelic topology 6f(A).
(2) (finiteness of class number) The spate= G(Q)\G(A)/K; has finitely many
connected components.

In certain cases we can say more about the space described in claim (2):

FACT 2.3.4. Returning to our previous notation, |& be the group of invertible ele-
ments of a division algebra defined ov@rG* the group of elements of norim Then:
(1) The quotientG(Q) Zs(A)\G(A) is compact.
(2) G(Q) is dense inG'(A¢). Equivalently (see below};! (Q)\G'(A)/K} is con-
nected for any open compakt < G'(Ay).

DEFINITION 2.3.5. Acomponenbf X is aG-orbit X = ZG for somei € X.

SinceG is not connected the ‘components’ we have just defined do not coincide with
the topological connected componentsXof These are closely related concepts though:

LEMMA 2.3.6. X is the disjoint union of its components, of which there is a finite
number. Furthermore, leX be a component oX'. Then:

(1) X is a union of connected componentsiaf
(2) There exists a discrete subgrolip< G such thatX ~ I'\G.
(38) X, = Z\X is compact. HencEZ/Z is a co-compact lattice i6:24 = G/ Z.

PROOF As K; is open inG(A;), the quotientG(A¢)/K; is discrete. The space of

components
X/G=GQN\G(A)/G - K = GQ\G(Ar) /K

is a quotient of this and hence discrete as well. By the second claim of the previous Lemma
it has finitely many connected components, i.e. it is finite. Now every compoxidat
closed and open i (being the inverse image under the quotient map of a poift af),
that is a union of connected components. Since the components are closed antl &pen,
their disjoint union.

Now let X be a component ak, and letg; € G(A¢) be a representative for the class
of X in G(Q)\G(A;)/K;. We can then set:

I' = {%o | v € G(Q): (7p)p<oo € ngfgf_l} .

We first verify that this is a discrete subgroup @f For this letU C G be a relatively
compact open neighbourhood of the identity. THén= U x ¢;K;g; ' is a reIativeJy
compact open neighbourhood of the identityi(A ), and it follows thal' NU ~ G(Q)NU

is finite.
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To see thal'\G ~ X we start with the surjective map: G — X given byy(g..) =
G(Q)googr Kt. By definition we haver(g..) = ¢(g.,) iff there existy € G(Q), ke € K
such thatyg..gikr = googr- At the finite places this reads = gikrg; ', at the infinite
placevg., = g., and we conclude that(g..) = ¢(g.,) iff there existsy € I' such that
V9 = Gh. Sincel is closed inG this means our map induces a bijective continuous
mapl'\G — X. Itis open since the map — G(A)/K: given byg.. — goog:K; iS Open
(the spacés(A¢)/ K is discrete).

Finally we note thatX, is a closed subset of, = Z\X. It thus suffices to ver-
ify the compactness of the latter space. A direct computation shaysQ)\ Z¢(A) =
Z* x [1,Z, whereZ™ is the connected component &f It follows that X, / [I,Z; =
G(Q)Ze(A)\G(A)/K;. Infact, forp ¢ R, we haveZs C O = K, while the fact that
Kpg, < Gp, is open implies that is contains a subgroup of finite indeﬂggR1 Zy. We
conclude thatX; is a finite cover of the compact spaGéQ) Zs (A)\G(A) /K. O

LEMMA 2.3.7. Let Kt < G(A¢) be an open compact subgroup.

(1) Assumer(Ky) = [, Z,;. ThenG(Q)\G(A¢)/ K¢ reduces to a single point.

(2) For any maximal orde©), the maximal compact subgroupy = [[, O, satisfies
the above condition. The same holds for the intersection of two such subgroups,
in which case we say thdt; is associated to an “Eichler order”.

PROOF. For the first part, let; € G(A¢). We then haver(g¢) = pr’“pup e A for
somek, € Z (almost all of which are zero) ang, € Z.

By a Eichler's Theorem (se&1, Prop. XI-3-3] and note that oud is R-split) there
existsy € G(Q) such thatr = vp(y) =[], p~*». Moreover, for any the numberp*» is
p-integral, so thatptru, Zy. By assumption there exists € K; such thatp(k;) =
I, (rp’fpup)fl. It follows that the element; = ~g¢k; of G(A¢) hasvp, ((h),)) = 1 at
every primep, i.e. h; € G'(A;). Now sinceG'(A;) is a topological subgroup @& (Ay),

K}! = K; N G'(A;) is an open subgroup there. By part (2) of Fact 2.3.4 we can thus find
v € G'(Q) andk} € K} such thaty'k! = h¢. We thus have:

1= V/k?; = vgckr = gr

as desired, where equivalence is read in the double coset G@OEG(Ay)/ K;.

The second part follows immediately from part (1) of Fact 2.1.3K{f K are both
associated to maximal orde® (' it suffices to show thatp, (K, N K]) = Z) at every
place separately. At every plagevhereD ramifiesD, has a unique maximal ordét,.

We then have), = K, = R and are in the same situation as before. At a place where
p splits we use the isomorphism wihL,(Q,) and the computation (up to conjugation) in
Lemma 5.1.16 of the joint stabilizer of two vertices in the associated building to obtain an
explicit form (up to conjugation) foK), N K. One sees that the intersection must contain a
conjugate of the subgroufpliag(u, 1,...,1) | u € ZX } of GL4(Q,) and hence an element
with reduced normu for anyu € Z;. In this casek; N K; is the open compact subgroup
associated to the ordér N O’, which in the casé = 2 is the class of orders constructed

in [8, pp. 48-55]. 0J
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We henceforth assume thaf satisfies the condition of the Lemma, so that we can
identify X and its single componeti. The quotient"\G/K is then a locally symmetric
space of non-positive curvature (this appellation is sometimes reservég fer Z\Y).
We also remark that (unlik&’) the symmetric spac€'/ K is always connected. Hengé
andY are connected manifolds even wh&nisn't.

We normalize the Haar measuréson Xz, dk on K anddy onYy to have total mass
1 (heredy is the pushforward ofixz under the the projection fronX; to Y, given by
averaging w.r.tdk).

For any unitary character € Z consider the space of functions X — C such that
Y(zz) = w(z)Y(z) forall z € Z,x € X. Sincew is unitary the map: — [¢(z)|” is
Z-invariant, and hence a function on the compact spege We let L?( X, w) denote the
space of the functiong as above such thq‘iXZ lip(z)|* de < co. We also letL?(Y,w)
be the subspace consisting &finvariant functions. We note thdt*( X, w) is a unitary
representation oy under right translation and that asGarepresentatior.?(X) is the
direct integral of thel?(X, w).

2.4. Thep-adic groups and Hecke operators

For a primep ¢ R, we haveG, ~ GL4(Q,), K, ~ GL4(Z,). Let’H, denote the
convolution algebra of the bic,-invariant functions of compact support 6f). It is com-
mutative, and generated by the elemefsts,, K, with a, € A,, the subgroup of diagonal
matrices oiGL,(Q,) (see Fact 5.1.15).

By assumption we can think of functions éhas functions oriz(Q)\G(A) which are
invariant by K; on the right. For almost all primes(except forp € R;), K, is a direct
factor of Ky and hence ip ¢ R = Ry U Ry, H, acts on the space of functions &hby
convolution on the right. Moreover, the actions’f and, for p # p’ commute, and
they both commute with the right regular action(ot= G ..

We call an operatof} on functions ofX associated to an elemehte H, a Hecke
operator, and think of it as arising from a discrete foliation of the manif&lavhere the leaf
of G(Q)googs Ks is given by{G(Q)googfprf}xpeap: each leaf is of the fornt,\G,/ K,
for some (generically trivial) subgroui, < G, and the actiondfj, on f: X — Cis given
by restrictingf to each leaf and convolving on the right with This action is analyzed in
detail in Chapter 5, where the control of subgroufjscausing the Hecke correspondence
to returnis achieved using the results of Chapter 4.

Together the Hecke operators at all plape¢ R generate the (commutativelecke
algebra™ g). This is the algebra we have in mind when we apply Theorem 1.3.2.

DEFINITION 2.4.1. We calk) € L?(X,w) aHecke eigenfunctioif it is a joint eigen-
function of the Hecke algebrd ).



CHAPTER 3

The Micro-Local Lift

3.1. Introduction and motivation

Let ¢ € L*(Y,w) be normalized as well as an eigenfunction3of The aim of the
present section is to construct a distributignon X that lifts the measurg,, onY, and
establish some basic propertiegof We will of course take) = 1,,, and the correspond-
ing distribution will be the distribution:,, discussed in the proof of Theorem 1.3.2. The
functionsy,, will then be chosen so that the measurgg«)|>dz approximate,; finally,
both |4, (x)|* and,, will becomeA-invariant as: — cc.

We begin by fixing notation and providing some motivation for the relatively formal
definitions that follow.

Settingy(z) = ¢(xK) for anyz € X, we can think ofy> as a function in?(X, w).

By the uniqueness of spherical functiods3[ Th. 4.3 & 4.5],+ generates an irreducible
sphericalG-subrepresentation df*(X). As discussed in Section 3.2.1 below, we can then
find v € af such that this representation is isomorphic to a principal series representation
7, (in particular,m, is unitarizable). We will assume for the rest of this section fhdt/) =

0, i.e.m, istemperedand that is regular. This will eventually be the only case of interest

to us in view of the non-degeneracy assumption (Definition 3.3.8). In this case the induced
representationiV, I,,) (living on a space of functions oR defined below, including the
constant functiony) is irreducible and isomorphic ta,.

It follows that there is a uniqu&-homomorphismi,, : (V,1,) — L*(X) such that
Ry (o) = . The normalization|i| > x ) = 1 now implies|| Ry (f)ll ;2x) = [1fll 22k
forany f € Vi, i.e. thatR,, is an isometry.

We now give the rough idea of the construction that follows in the language of Wolpert
and Lindenstrauss; the language we shall use later is slightly different, so the discussion
here also provides a translation. The strategy of proof is similar to theirs; in a sense, the
main difficulty is finding the “correct” definitions in higher rank. For instance, the proofs of
Wolpert and Lindenstrauss use heavily the fact fkiaypes forPSL,(R) have multiplicity
one, and the explicit action of the Lie algebra by raising and lowering operators. We shall
need a more intrinsic approach to handle the general case.

The measurg,, onY7 is defined byy — sz g(y)|¥(y)|*dy. More generally, suppose
thaty’ € L?(X) belongs to the7-subrepresentation generateddyi.e. v’ € R, (V).
Theny(z)y'(z) is Z-invariant and we can consider the (signed) measur& pgiven by:

(3.1.1) o g (x)Y (x)g(z)d.

Xz

20
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If g(x) is K-invariant, then so is the produ¢tz)g(z), and it follows that the right-hand
side of (3.1.1) depends only on the projection/6fonto R, (V)*. The spaceR, (V) is
one-dimensional, spanned by and it follows that ify’ —«» L v then the measure on X
projects to the measuyg, onY'.

The distributiony,, we shall construct will be in the spirit of (3.1.1), but withi a
“generalized vector” inR, (V). Suppose, in fact, thap},),...4.,... are an infinite
sequence of elements 8f, (V') that transform under differet -types, and suppose further
thatg € C=(Xz)k. Then, by considerinds-types, the integral, v (z)¢(z)g(z)dx
vanishes for all sufficiently largg. It follows that, if one sets)’ to be theformal sum
Z;‘il %, one can make sense of (3.1.1) by interpreting it as:

olo) = 3 | gl

In other words, ifg € C°(Xz)k, we may make sense of (3.1.1) while allowigigto
belong to the spac@,\( of “infinite formal sums ofK-types.” Our definition ofu,, will,
indeed, be of the form (3.1.1) but withl an “infinite formal sum” of this kind.

For a certain choice af’ (denotedb, in [18]), we will wish to show that (3.1.1) is “ap-
proximately a positive measure” and “approximatdiynvariant,” where both statements
become true in the large eigenvalue limit in an appropriate sense. For the “approximate
positivity,” we shall integrate (3.1.1) by parts to show that there exists another unit vector
¢" € Ry(V) such thatf, ¢ (z)¢'(2)g(x)dz =~ [, |¢"(z)[*9(x)dz, where the right-hand
side is evidently a positive measure. For the “approximatavariance,” we will construct
differential operators that annihilat@(x)m; this reduces to a purely algebraic ques-
tion of constructing elements ifi(g) that annihilate a vector in a certain tensor product
representation.

The spacé7;( is very closely linked to the duaf}. of the K-finite vectors: the conju-
gate linear isomorphisid’ : V' — V"’ (3.2.1) extends to a conjugate-linear isomorphism
T: 17;( — V.. For formal reasons, it is simpler to work withy. tham//,\(; this is the view-
point we shall take in Definition 3.3.1. To motivate this viewpoint, let us rewrite (3.1.1)
in a different fashion. Let’ € V be chosen so that’ = R,(v'), and letP be the or-
thogonal projection of.(X) onto R, (V). We may rewrite (3.1.1) — using the notations of
Definition 3.2.3 — as follows:

a(g) = (¥(x)g(2), ¥ (2)) 2 (x) = (P(¥(2)g(2)), ¥'(2)) £2(x)
(3.1.2) = (Ry' o P(¢(x)g(2)),v")v = T(v') o Ry' o P(¥(x)g(x))
Now, if g € C(Xy)k, then the quantity?,, o P(¢(z)g(x)) is K-finite, i.e. belongs to
Vk. Itfollows that, if g € C°(X )k, the last expression of (3.1.2) makes formal sense if
we replacel’(v') by any functionald € V.
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3.2. More on Real Lie Groups

3.2.1. Spherical Representations and the modéV, I,,). We recall some facts from
the representation theory of compact and reductive groups. At the end of this section we
analyze a model (the “compact picture”) for the spherical du&}.of

THEOREM3.2.1. [16, Th. 1.12]Let K be a compact topological group and I&%, be
the set of equivalence classes of irreducible finite-dimensional unitary representations of
K.

(1) (Peter-Weyl) Every € K, occurs discretely irh.2(K') with multiplicity equal to
its dimensioni(p). Moreover,L?(K) is isomorphic to the Hilbert direct sum of its
isotypical component§L*(K),} ¢ x. -

(2) Let7 : K — GL(W) be a representation ak” on the Féchet spacél’. Then
® W, is dense iV, whereW, is thep-isotypical subspace.

(3) Every irreducible representation of on a&het space is finite-dimensional and
hence unitarizable. In particulaxlf(ﬁn is the unitary dual of.

(4) For K as in Section 2.2k is countable.

Note that while 16, Th. 1.12(c-e)] are only claimed for unitary representations on
Hilbert spaces, their proofs only rely on the action of the convolution algétofé) on
representations of, and hence carry over with little modification to the more general
context needed here. The last conclusion follows from the separability(@f), which in
turn follows from the separability ok'.

NOTATION 3.2.2. Letr : K — GL(W) be as above. The algebraic direct sum
def
Wi = @,z W,
consists precisely of these € W which generate a finite-dimension&l-subrepresenta-
tion. We refer tolWy as the space ok -finite vectors. We will uséV ¥ to denote these
vectors oflV fixed by K.

DerFINITION 3.2.3. Sef = L?*(M\K), and sef’x C V to be the space ok -finite
vectors. LetC>(M\K) be the smooth subspadg;*(M\K)' the space of distributions
on M\K. Let V) (resp.V’) be the dual td/x (resp. V). Then we have natural inclu-
sionsVx C C*(M\K) C VandV}, D C*(M\K)" D V’; further, we have (Riesz
representation) a conjugate-linear isomorphism

T
(3.2.1) Ve V!

where the mafi”: V — V" is defined via the ruld(f)(9) = (9, f)v = [}« gfdk.

Fix an increasing exhaustive sequence of finite dimensifdnsiable subspaces bf;,
i.e.asequenck; C Vo, C --- C Vy C V41 C ... of subspaces such thag®,V; = Vi
and each; is a K-subrepresentation.

For® € Vj. andl < N € Z, define theN-truncation of® as the unique element
®y € Vy such thatl'(®y) — & annihilatesVy .

Finally lety, € Vi be the function that is identically.



3.2. MORE ON REAL LIE GROUPS 23

DEFINITION 3.2.4. Letu be a regular Borel measure on a spaceCall a sequence of
non-negative function$f;} € L'(u) ad-sequencatz € X if, for everyj, [ fjdu = 1,
and moreover if, for every € C(X), lim;_ [ f; - gdu = g(x).

LEMMA 3.2.5. There exists a sequentﬁéj‘}]".‘;1 C Vi such that|fj|2 is ad-sequence
on M\ K.

PROOF Let{h;}2, C C(M\K) be aj-sequence. By the Peter-Weyl theoréip is
dense inC'(M\K), so that for everyj we can choos¢; € Vi such that the difference

H\/hj(k) - f;(k)Hoo < L. Then one may tak; = ﬁ O

Secondly, we recall the construction of the spherical principal series representations
of a reductive Lie group. An irreducible representationbis sphericalif it contains a
K-fixed vector. Such a vector is necessarily unique up to scaling.

To anyv € af we associate the charactern(p) = exp(v(Hy(p)) of P, and the unitarily
induced representation witly, X)-module

(3.22) Indf x, ={f€C®G); |Vpe P,geG: f(pg) =¥ THWif(g)}.

By the Iwasawa decomposition, evefyc Imdg0 X, IS determined by its restriction t&’;
this restriction defines an element of the sp&ge Conversely, every € Vi extends
uniquely to a member dfndJGD0 Xu-

DEFINITION 3.2.6. Forv € af,, we denote by/,, Vx) the representation gf on Vy
fixed by the discussion above; we shall also [jst denote the corresponding actiongof
on C*(M\K) and ofG on V. We shall denote by/, the dual action ofy on eitherV}. or
C*(M\K)'.

Note also thap, € Vi (see Definition 3.2.3) is a spherical vector for the representation
(IIM VK)

THEOREM3.2.7. (The unitary spherical dual; references are drawn frp])

(1) For anyv € ag, Indgo X, has a unique spherical irreducible subquotient, to be
denotedr,. [Th. 8.37] Any spherical irreducible unitary representation(®fis
isomorphic tor, for somer. [Th. 8.38] We haver,, ~ r,, iff there existsw €
W (a:g) such that, = wu;.

(2) [87.1-3] If Re(r) =0 thenInd]C;'0 X IS unitarizable, with the invariant Hermitian
form given by(f, g) = fM\K f(k)g(k)dk. This representation has a unique spher-
ical summand (necessarily isomorphicitg), and we letj, : Vi — 7, denote the
orthogonal projection map. [Th. 7.2] i is regular thenlndg0 X, IS irreducible.

(3) [816.5(7) & Th. 16.6] Ifm, is unitarizable therRe(r) belongs to the convex hull
of {wp} ,cwia. gy C @°, @ cOMpact set. Moreover, there exists 1 (a: g) such
thatw? = 1 andwr = —v. In particular if Re(v) # 0, thenw # 1, and since
Im(v) is w-fixed it is not regular.

Note that the norm om, is only unique up to scaling. [Re(r) = 0 and Imv) is
regular (the main case under consideration), we chposg = 1.
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For future reference we compute the actiorg oih V- via .. First, note that the action
of K onV = L?(M\K) is given by right translation, and the actiontof g onVy is then
given by right differentiation.

Secondly, recall that it/ C R™ is open, aifferential operatoD onU is an expression
of the form>_% | £,09* ... 92, where thef; are smooth and,; > 0. If M is a smooth
n-manifold, we say amap : C>*°(M) — C*(M) is a differential operator if it is defined
by a differential operator in each coordinate chart.

LEMMA 3.2.8.Let f € Vi and letX € g. Then there exists a differential operatdry
on M\ K (depending linearly orX and independent of) such that for every € K,

(L (X)f) (k) = (v + p, Ho(Ad(k) X)) f (k) + (Dx f) (k).

PROOF Lett € R be small, and considgfi(k exp(tX)) = f(exp(t Ad(k)X) - k). We
write the lwasawa decomposition &fl(k) X € g asAd(k)X = Xu(k) + Xa(k) + Xe(k)
whereX, (k) = Ho(Ad(k)X). By the Baker-Campbell-Hausdorff formukp(t Ad(k)X)
has the formexp(t X, (k)) - exp(tXq(k)) - exp(tXe(k)) + O(£?), so that:

(L F)E) = 5 F (exp(tXa(8) - xp(tXa(8) - K)oz + 3 f (exp(tX(k)R) T -

To conclude, observe thdit— < f (exp(tXe(k))k) [,—o defines a differential operat® y
on M\ K. O

Lemma 3.2.8 will be used in the following way: gg|| — oo, the operator, (|| ||) acts
on Vy in a very simple fashiompodulocertain error terms of ordejw||~!. The simplicity
of this “rescaled” action agv| — oo will be of importance in our analysis.

3.2.2. Some Functional AnalysisWe collect here some simple functional analysis
facts that we shall have need of.

Let C>°(X ) denote the space of smooth functions of compact suppoiX orit is
endowed with the usual “direct-limit” topology: fix a sequencédwinvariant compact sets
Cy, C Cy C ... such that their interiors exhauit. Then theC>°(C;) exhaustC'> (X ).
C(C;) is endowed as usual with a family of seminorms, viz. for @hg U (gc) we define
[ fll; » = supsec, IDf|. These seminorms induce a topology on eagh(C;). We give
C(Xz) the topology of the union of'>°(C;), i.e. a map fromC°(Xz) is continuous if
and only if its restriction to eact>°(C;) is continuous.

In other words: a sequence of functions converge€'in( X ) if their supports are
all contained in a fixed compact set, and all their derivatives converge uniformly on that
compact set.

C>(Xy)is alocally convex complete space in this topology. In particular, its subspace
CX(Xz)k of K-finite vectors is dense. We denote 6%°(X ;) (resp. C(Xz)%) the
topological dual taC°(X ) (resp. the algebraic dual 10°(X,)x). Both spaces will
be endowed with the weak-* topology. We shall refer to an elemerit®{X ;) as a
distributionon X.

Let Cy(X) be the Banach space of continuous functionsX¥mecaying at infinity,
endowed with the supremum norm. L€t(X)" be the continuous dual afy(X); the
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Riesz representation theorem identifies it with the space of finite (signed) Borel measures
on X. We endowCj(X)" with the weak-* topology.

It is easy to see that>(X )k is dense inCy(X). In particular any (algebraic) linear
functional onC:°(X z) x which is bounded w.r.t. theup-norm extends to a finite signed
measure onX, with total variation equal to the norm of the functional. Moreover, if this
functional is non-negative on the non-negative members®fX ;) x then the associated
measure is a positive measure.

3.3. Representation-Theoretic Lift
3.3.1. Lifting a single (non-degenerate) eigenfunction.

DEFINITION 3.3.1. Let® € V. be an (algebraic) functional, arfde V. Let ., (f, ®)
be the functional o> (X ;) x defined by the rule:

(3.3.1) ps(f, ®)(g) = @ o R, o P(Ry(f) - )

whereg € C*(X )k, P: L*(X,w) — Ry(V) is the orthogonal projection, arfél,(f) - g
denotes pointwise multiplication of functions éh

REMARK 3.3.2. In fact, if® € C>°(M\K)' (see equation (3.2.1)) then,(f, ®) ex-
tends to an element 6f>°(X;)’, i.e. defines a distribution oN: 1, is the composite

—R, R;'P
O=(X,) DI oo (x,) L oo (M) 2

and it is easy to verify that each of these maps is continuous. This is never used in our

arguments: we use this observation only to refer to certaias “distributions”.

DEFINITION 3.3.3. Letd € Vj be the distributiony(f) = f(1), and callz o

ey (0, ) the (non-degenerate)icrolocal lift of ji,.

The rest of the section will exhibit basic formal properties of this definition. We will
establish most of the formal properties.of by restricting® to be of the forni’( f;), where
the conjugate-linear mappirgis as defined in (3.2.1). This situation will occur sufficiently
often that, for typographical ease, it will be worth making the following definition:

DEFINITION 3.3.4. Letf,, f, € V. We then setu](f1, f2) = py(f1, T(f2))-
LEMMA 3.3.5. Supposefy, fo € V. Then

(3.3.2) nb (e 5l9) = [ R @ R wlg(e)ds

Xz
and ., defines a signed measure afy, of total variation at most| f1||2(x)|| 2| 2(x)- If
fi = fa, thenf(f1, f1) is a positive measure of magig:| |2, .

PROOF (3.3.2) is aconsequence of the definition.oiThe Cauchy-Schwarz inequality
implies that|7 (1, £2)(9)] < || f1ll 20|l fallz2(x) |19l < x), whence the second conclu-
sion. The last assertion is immediate. O

In fact, it may be helpful to think of.,, as being given by a distributional extension of
the formula (3.3.2); see the discussion of Section 3.1.



3.3. REPRESENTATION-THEORETIC LIFT 26

LEMMA 3.3.6. The distributionu.,, (¢o, §) on X projects to the measuie|*dy onY'.

PROOF In view of the previous Lemma, it will suffice to show that the distribution
oy (00, 0) — ,ug(gao, ©o) on X projects ta) onY. This amounts to showing that, (g, —
T(o)) annihilates anys -invariant functiong € C>°(X,)¥. Taking into account that the
functionaldo — T'(¢o) on Vi annihilates anys<-invariant vector, the claim follows from the
definition of ;. 0

LEMMA 3.3.7. The mapuy : Vk ® Vi, — C(Xz)) is equivariant for the natural
g-actions on both sides.

ProoF This follows directly from the definition ofi,,. O

Concretely speaking, this says that forc Vi, ® € V., g € CX(Xz)k, X € gwe
have

(3.3.3) 1o (X f1,®)(g) + o (f1, XD)(g) + (f1, ®)(Xg) = 0
whereX acts onVk via I, and onV/}. via I]. In particular, if 1, fo € Vi we have
(3.3.4) MEZ(Xfl, f2)(g) + ui(fl,sz)(g) + ui(fl, f2)(Xg) =0

3.3.2. Sequences of eigenfunctions and quantum limit$n what follows we shall
consider),, € L*(Y,w,), a sequence of eigenfunctions with parameferg, - , diverging
to oo (i.e. with ||v,|| — o). Setr,, = ”nH;f‘“ld" (i.e. remove the central character part of the
parameter). Fofi, f, € Vx and® € Vi, we abbreviate.), (f1, f2) (resp. piy, (f, ®)) to

X (f1, f2) (resp.u.(f, ®)), and we abbreviate the microlocal lift,, (:= 1,(¢0,9)) tO 11y,

DEFINITION 3.3.8. (3 = (7/Z simple) We say a sequengg is non-degeneraté
every limit point of the sequenag, is regular.

We say that it iconveniently arrangedf it is non-degenerate, Re,) = 0 for all n,
the limit in lim,, ., 7,, exists, they,, are all regular, and for alf;, f, € Vi the measures
uX(f1, f2) converge inCy(X )" asn — oco. In this situation we denotém,, .., 7, by ..

The existence of non-degenerate sequences of eigenfunctions was discussed in Remark
1.3.3. This follows from strong versions of Weyl's Law ah By Theorem 3.2.7, the
non-degeneracy of a sequengg as in the Definition implies Re,,) = 0 for all large
enoughn. For fixedf;, f € Vi the total variation of the measurg$( f1, f») is bounded
independently ofi (Lemma 3.3.5); in view of the (weak-*) compactness of the unit ball in
Co(X)' it follows that this sequence of measures has a convergent subsequence. Combining
this remark with the fact thal; has a countable basis, a diagonal argument shows that
every non-degenerate sequence of eigenfunctions has a conveniently arranged subsequence.

Now suppos€ v, } is a conveniently arranged sequence andfix Vi, ® € V}., g €
C®(Xz)k. Let @y be theN-truncation of® (see Definition 3.2.3). In view of (3.3.1),
if we chooseN := N(f,,g) sufficiently large, then.,(f1,®)(g) = pl(fi,®n)(g). It
follows that the limitlim,, ... ., (f1, ®)(g) exists.
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We may consequently define,.: Vi x Vi, — C®(Xz), andul : Vi x Vg —
C*(X2)) by the rules:
poo(f, ®)(9) = lm pa(f1 @)(9), (9 € CF(X2)k)

Mgo(fl,fz) = oo (1, T(f2))

LEMMA 3.3.9. For fixed f; € Vg, the mapd — u(f1,®) is continuous as a map
Vi. — C>(Xz)%, both spaces being endowed with the weak topology.

(3.3.5)

PROOF This is an easy consequence of the definitions. 0J

It is natural to ask whether..(f1, ®) extend to an element 6f>°(X,)’, at least when
¢ € C*°(M\K)'. Indeed a uniform bound on the distributions( /1, ®) follows from
making the argument of Remark 3.3.2 quantitative. This is not needed for our choice of
(f1,®), however, when we can address this directly.

Henceforth{«,} -, will be a conveniently arranged sequence. We will show that
oo (0, 0) is positive and bounded w.r.t. tHe® norm onC°(X ) k. It hence extends to a
finite positive measure.

The key to the positivity of the limits is the following lemma (c83 Prop. 3.3], 18,

Th. 3.1]).

LEMMA 3.3.10. (Integration by parts) Le{+,, } be conveniently arranged. Then, for
any f, fi, f» € Vg we have:

(3.3.6) e fiof - fo) = ple(f - fri fo).

Here e.g.f - f» denotes pointwise multiplication of functions bh\ K.

PROOF We start by exhibiting explicit functiong for which (3.3.6) is valid.

Extend everyr € af. to g¢ via the Iwasawa decompositign= n & a & €. For any
X € gss letpy (k) = 3 (7, Ad(k) X). For fixedX, k — px (k) defines & -finite element
of L2(M\K).

By (3.3.4), for everyX, f1, f2, g, andn, we have

(3.3.7) pa (X frs f2)(9) + pin (f1, X f2)(9) + pi (f1, f2)(Xg) = 0.

Divide by ||v,|| and apply Lemma 3.2.8 (as well &4, gs9 = 0) to see:
(3.3.8) i (i - f1, f2)(9) + b (f1, i - f2)(9)
_ i (Dxfi, f)(9) + 1n (f1. Dx fo)(9) + 1 (f1, f2)(Xg)

]| ’

wherep, (k) = 1 <17n + Ad(k:)X>.

As n — oo, the right-hand side of (3.3.8) tends to zero by Lemma 3.3.5. On the
other handp, f; (considered as continuous functions &) converge uniformly tQy f;.
Another application of Lemma 3.3.5 shows that the left-hand side of (3.3.8) converges to
inl (px f1, f2)—inl (fi, px-f2). Sincepx = pyx this shows that (3.3.6) holds with= px.

Now let ¥ ¢ C(M\K) be theC-subalgebra generated by the and the constant
function 1. Clearly (3.3.6) holds for allf € F. This subalgebra id{-stable since
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px (kk1) = paag)x (k) and henceF NV, c F forall p € K. ShowingF is dense in
L*(M\K) suffices to conclude the = V.

We will prove the stronger assertion thatis dense inC(M\K) using the Stone-
Weierstrass theorem. Note thiate F, andF is closed under complex conjugation since
px = Dx. It therefore suffices to show thaf separates the points @f/\ K. To this
end, letk;, ko € K be such thapx (k1) = px (ko) for all X € g. Then(v,,, Ad(k;)X) =
Voo, Ad(kq) X ) forall X € g, i.e.(Ad(ky) 0o —Ad(ks) '0s, X) = Oforall X € g. This
implies thatAd(k; ') 7, = Ad(ks)'7s; by the non-degeneracy assumptidhy; (7.,) =
Zk(A) = M,soMk; = Mk, i.e.k; andk, represent the same point df\ K. O

Lemma 3.3.10 shows easily that, (o, d) extends to a positive measure. Indeed,
choosingf; as in Lemma 3.2.5, we see that

(3.3.9) Loo (0, 0) = jli_{lgo 1l (o, | 1517) = Jli_{go 1o (fi: 15).

Here we have invoked Lemma 3.3.9 for the first equality. It is clearhalf;, f;) defines

a positive measure oN; thus .. (o, d), initially defined as an (algebraic) functional on
C(Xz)k, extends to a positive measure &n To obtain the slightly stronger conclusion
implicit in (2) of Theorem 1.3.2, we will analyze this argument more closely.

COROLLARY 3.3.11. Notations as in Lemma 3.3.10, there exist a constay, ; and
a seminorm| - || on C2°(X ) such that

(3.3.20) o (f1, f - f2)(9) = pin (F - frs f2)(9)] < Cripous 91l [P0 = 2l + Nl 7']

PROOF We keep track of the error term in the proof of of Lemma 3.3.10.

Fix a basis{X,} for g = gss@® Z,, and define a seminorm afi>*(X ) by ||g|| =
1 oo x5y + 325 1 Xig]| 2= (x ) - With this seminorm, (3.3.10) holds fdr, f, € Vi andf =
px. This follows from (3.3.8), utilizing Lemma 3.3.5 and the fact that —p,, || Lo (k) <
Hﬂoo - ﬁn”

Next suppose, fo, f, f' € Vi anda,a’ € C. Then, if (3.3.10) is valid fof fi, fo, f)
and (fi, fo, f'), it is also valid for(fi, fo,af + o' f"). Further, if (3.3.10) is valid for
(fi, '~ fo, f) and for(f f1, fo, ), then itis also valid fof f1, fa, f - ).

Consider now the set of € Vi for which (3.3.10) holds for allf;, f, € Vik. The
remarks above show that this is a subalgebr&pthat contains eachy. The Corollary
then follows from the equality = L?(M\ K)x established in the Lemma. O

REMARK 3.3.12. Itis possible to obtain a bound of the fath 1, ;2. [lg||||v.| ", with
the constant uniformly bounded if thig are uniformly bounded away from the walls. This
result can be used to avoid passing to a subsequence in Theorem 1.3.2 or the following
Proposition; this is unnecessary for our applications, however.

PrROPOSITION3.3.13. (Positivity and equivariance: (2) and (4) of Theorem 1.3.2).
Let {¢,} be non:degenerate. After replaciqg,,} by an appropriate subsequence,
there exist functiong,, on X with the following properties:
(1) Define the measure, via the rules,(g) = [y g(x)|vn(z)|?dz. Then, for each
g € CZ(Xz)k we haveim, .o (0n(g) — 1n(g)) = 0.
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(2) Let E C Endg(C*(Xz)) be aC-subalgebra of endomorphisms 6f°(X),
commuting with th&>-action. Note that each € E induces an endomorphism
of C*(Y'). Assume in addition that,, is an eigenfunction fo>. Then we may
choose,, so that each), is an eigenfunction foE with the same eigenvalues as

V.

PrROOF Without loss of generality we may assume tHat,} are conveniently ar-
ranged.

Let {fj};’il C Vi be the sequence of functions provided by Lemma 3.2.5, so that
T(|f;*) approximate®. The main idea is, as in (3.3.9), to approximaie= (o, 9)
usingye,. (f;, f;)-

For anyg € C°(Xz)x we have:

|1 (9) = 1 (fi: F)(9)] < |10, 0)(9) — a(w00. 1 £517)(9)]
(3.3.11) + a0, [ £52)(9) = 1 (f, £7)(9)] -

Corollary (3.3.11) provides a seminofifrj| on C>°(X ,) and a constant’; such that
| (00, 1fi*)(9) = ta(F5, £)(9)] < Cillgll - (17 = Pooll + Iwall '] -
Choose a sequence of integéys}°° ; such thatj,, — oo and:
G = [1m = el + [all ] = 0
We now estimate the other term on the right-hand side of (3.3.11). Chod'siagV(g)
large enough so that, (o, 0)(g) = 1n (0, 0n)(g), we have
|1 (20, 0)(9) = pa0, 151 (@)] < 1513 = | p2anier 191l -

As j — oo (in particular, ifj = j,), |f;]% — 0~ in Vi, so this term tends to zero. It
follows that

(33.12) lim pa(g) = s (f3s £3,)(9)] = 0.
Settingy,, = Ry, (f;,), we deduce that
3313) i (o)~ [ 1Patoyte) =0
Xz

holds for everyy € C°(X ). In particular, we obtain (1) of the Proposition.

To obtain the equivariance property note that the representatjde irreducible as a
(g, K)-module. By [L6, Corollary 8.11], there exists, € U(g) such that/,, (u,)vo = f;,-
Thust, = u,v,. Now everye € E commutes with the righG-action; in particular,
eu, = upe. It follows that, transforms under the same characteEds),, . O

3.4. Cartan invariance of quantum limits

In this section we show that a non-degenerate quantum Jigiis invariant under
the action ofA < G. This invariance follows from differential equations satisfied by the
intermediate distributiong,,. The construction of these differential equations is a purely
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algebraic problem: construct elements in th§c)-annihilator ofgy ® 6 € Vi ® Vi,
where thel/ (gc)-action is byl, ® 1.

Ultimately, these differential equations are derived from the fact that eaeh3 =
3(gc) acts by a scalar on the representatibh, /,,, ). To motivate the method and provide
an example, we first work out the simplest case, tha&Sif,(R), in detail. In this case the
resulting operator is due to Zelditch.

This section is written without reference to the central character —assume it to be trivial.
Allowing the central character to vary would amount to writifi@) = 3(gss) ® 3(Z,) and
only working with the first part.

3.4.1. Example ofG = PSLy(R). SetG = PSLy(R), I" < G a lattice, andA the sub-
group of diagonal matrices. Lé{ (explicitly given below) be the infinitesimal generator
of A, thought of first as a differential operator acting &n= I'\G via the differential of
the regular representation. {f/,,} is a conveniently arranged sequence of eigenfunctions
on '\G/K, andp, the corresponding distributions (Definition 3.3.3), we will exhibit a
second-order differential operatdrsuch that for aly € C°(X )k,

(3.4.1) o ((H — i)g) =0,

Tn

wherer,, ~ |\,|'/2. Since theu,(Jg) are bounded (they convergeiig (J¢)), we will con-
clude thatu.,(Hg) = 0, in other words that., is A-invariant. This operator in equation
(3.4.1) is given in B6]. Its discovery was motivated by the proof (via Egorov’s theorem)
of the invariance of the usual microlocal lift under the geodesic flow. We show here how it
arises naturally in the representation-theoretic approach.

By Lemma 3.3.7, it will suffice to find an operator annihilating the elemgn § €
Vk ® Vi, whereU (gc) acts vial, ® I,.

LetH = ( L 4 ),X+ = ( 0 (1) ),X_ = ( (1) 0 ) be the standard generators
of &.£,, with the commutation relation$/, X, | = £2X, [X;, X_| = H. The roots w.r.t.
the maximal split torua = R- H are given byt-o(H) = +£2. We also setV’ = X, — X,
sothafR-W = ¢. Letting-+a be the positive rooty = R-X,, we havep(H) = sa(H) = 1.
Setexp a = A as in the introduction.

The Casimir elemenf’ € 3(G£,C) is given by4dC = H* +2X, X_ + 2X_X,. For
the parameter € ia* given byv(H) = 2ir (r € R), C acts onr, with the eigenvalue
A= —i — r?. The Weyl element acts by mapping— —v. OnS = G/K with the
metric normalized to have constant curvature C reduces to the hyperbolic Laplacian.
In particular, every eigenfunction € L*(T'\G/K) with eigenvalue\ < —411 generates a
unitary principal series subrepresentation. Definition 3.3.3 associatestdistribution
/M[)((PO, 5) on F\G

As in Definition 3.2.6, we have an actiadip of G onV and ofg on V. Note that
forg € NA, f € Vi, (L(g)f) (1) = f(g) = @M@ f(1). Sinced(f) = f(1) and
the pairing betweefvx and V. is G-invariant, it follows that forX € a @ n, I}(X)§ =
— (v + p, Hy(X)) 6.
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Suppressingd, from now on this means thaf-(f®d) = (X f)@0—(v + p, Hy(X)) f®
0. Extendr + p trivially on n to obtain a functional on @ n. Then

(3.4.2) (X + (v+p)(X) (f®6) = (Xf) @3

Now sincea normalizesh andv + p is trivial onn, the mapX — X + (v + p) (X) isa Lie
algebra homomorphism® n — a ® n, and hence extends to an algebra homomorphism
Tytp: Ulac @ ng) — Ulac @ ne). (3.4.2) shows that, for € U(ac @ ne),

(3.4.3) Tusp(w) - (f®0) = (uf) ®4

In view of (3.4.3) any operatai € U(ac @ n¢) annihilatingy, gives rise to an operator
annihilatingyy ® 4.

The natural starting point is the eigenvalue equatifi+1+4r2)p, = 0. Of course(”
is not an element df (nc ®ac). Fortunately, it “nearly” is: there exists & € U(nc®ac)
such that”' — C" annihilatesp,.

In detail, we use the commutation relations and the factthat= X, — IV to write
4C = H* — 2H + 4X? — 4X,W. Sinceg, is spherical, it follows thatl’¢, = 0. Thus

(3.4.4) (H* —2H +4X2 + 1+ 4%) 0o =0

Since(v + p)(H) = 2ir + 1, we conclude from (3.4.3) that:
(H+2ir+1)*=2(H+2ir+1)+4X5 +1+4r*) - o ® 6 = 0.

Collecting terms in powers of we see that this may be written as:

((2H)(2ir) + (H* +4X2)) oo @6 =0

SettingJ = HQZ?Xi and dividing by4:r we see that the operatﬁf+% annihilatesp, ® 4,

and so also the distributiom,. One then deduces th&-invariance ofu,, as discussed in

the start of this section.

Notice that the terms involving?® in (3.4.4) canceled. This is a general feature which
will be of importance.

3.4.2. The general proof.We now generalize these steps in order. Notations being as
in Sections 2.2,3.2 and in Definition 3.3.3, we first compute the actiéh®f: © ac © ne)
oné (Lemma 3.4.1) and then am ® 6 (Corollary 3.4.2). Secondly we find an appropriate
form for the elements of(gc) (Corollary 3.4.5), which gives us the exact differential
equation (3.4.6). We then show that the elements we constructed annihilatarg (up to
scaling) of an appropriate forfd + ﬁ (Lemma 3.4.6), and “take the limit as— oo”
(Corollary 3.4.7) to see that,, is invariant under a sub-torus df

A final step (not so apparent in tlRSL,(R) case) is to verify that we have constructed
enoughdifferential operators to obtain invariance under the full split torus (Lemma 3.4.8).
In fact, even in the rank-case one needs to verify that th&™ part is non-zero.

Given\ € af, we extend it to a linear magpc @ ac @ ng — C. Sincemc @ nc is an
ideal of this Lie algebra) is a Lie algebra homomorphism; thus it extends to an algebra
homomorphism\: U(m¢ @ ac ®nc) — C. We denote by, the translation automorphism
of U(mc@acdne) given by X — X +A(X) onme@acdne. Similarly, giveny € b, we
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definer, : U(hc) — U(hc). We shall writelU (gc)=? for the elements of/ (gc) of degree
< d, and similarly for other enveloping algebras &he- 3(gc) (e.9.35¢ = 3N U(gc)=9).

Letv € af. Lety, : 3 — C be the infinitesimal character corresponding fqthat
is, the scalar by whicf3 acts in(/,, Vk).) Recall thatp, denotes the half-sum of positive
roots for(he: ge), p the half-sum for(a: g).

LEMMA 34.1.For X em@adn, [, (X)) =—(vr+p,X)0.
ProoE This follows from the definitions. O

COROLLARY 3.4.2. For anyu € U(m¢ @ ac @ n¢) and f € Vi,

I @ L(Tusp(u) - (f ®0) = (L(u)f) ® 0.
PrRooF This follows from the previous Lemma. O

REMARK 3.4.3. Denote byD;(G/K) the ring of G-invariant differential operators
on S = G/K. There is an evident homomorphisii(gc)X — Dg(G/K) with kernel
U(ge)® NeU(ge), see 12, 2.6] or [5, 9.2]. We recall that “projection t&/(ac)” under
the Poincare-Birkhoff-Witt isomorphisiti (gc) = U(ne) ® U(ac) @ U(tc) descends (af-
ter composing with an appropriate translationlofuc)) to an isomorphism oD (G/K)
with U (ac )" (. We shall need some very slightly refined information about this decom-
position. There is an evident m&p— Dq(G/K) and it will suffice for our purpose to
understand the decomposition on the image @fc). (Although we do not need this, the
map from3 — Dq(G/K) is in most cases nearly surjective; in all cases the quotient field
of the image coincides with the quotient field®f,(G/K), c.f. [13, 3.16].)

DEFINITION. Letpr : U(gec) — U(hc) be the projection corresponding to the de-
compositionU (gc) = U(bc) @ [(nc @ np)U(gc) + Ulge) (ne @ nyy)] (arising from the
decompositiorgc = ne @ ny & he P ne @ nyy by the Poincaré-Birkhoff-Witt Theorem).

LEMMA 3.4.4. For z € 3= we have
2 = pr(2) € Ulne)U(ac) =20 (k).

PROOF. It suffices to show that — pr(z) € U(nc)U(gc)=?2U (¢c), sincege = nc &
ac D tc.

Let B(nc), B(ng), B(ny) andB(ny,) be bases fong, ng, ny, andny,, respectively,
consisting ofyc-eigenvectors. LeB(ac) andB(bc) be bases fou: andbc, respectively.

By Poincaré-Birkhoff-Witt, one may uniquely expressas a linear combination of
terms of the form:

D=X,...X,Y1.. Y, A ... ABy...B,X,...XxY;...Y,

whereX, & B(‘(‘l(c), Y. € B(nM), A, € B(Cl(c), B, € B(b@),y* € B(ﬁ@) andV* € B(ﬁM)
Thenz — pr(z) consists of the sum of all tern3 for whichn + m + k + 1 # 0. We show
that each such term satisfi®sc U (nc)U (gc)=?2U (k).

In view of the fact that — pr(z) commutes withuc, one has: = 0 iff £ = 0. Further,
if n =k = 0, then the fact that — pr(z) commutes withoc impliesm = 0 iff [ = 0. Also
onehasi+m+t+r+k+1 <d.
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We now proceed in a case-by-case basis, using either the inchugianbc © ny; =
me C E¢, or the observation that foX € e we havede X € ne, while X + 0cX € ¢ (it
is fc-stable!).

(1) £ =1 = 0isimpossible, for this would force = m = 0.

(2) k>1andl > 1. Thenn > 1sothatX;... X, € U(nc),Y:...Y; € U(t), and
mt+t+r+k<d-—2.

(3) k=0andl > 1. Thenn = 0 andm > 1, sot < d — 2. Since[a, m] = 0 we may
commute thed-terms past th& -terms, so thab is the product of thel-terms (at
mostd — 2 of them) andy; ...Y,,B; ... B,Y,...Y, € U(t).

(4) k>1andl =0. Thenn > 1. Sets =Y, ... Y, A1... A4B1... B, X1... Xs1
sothatD = X; ... X, -s- X;. Sincem +t+r+ (k—1)<d—-1-n<d-2,
we haves € U(gc)=¢"2. Then (recalbc is the complex-linear extension of the
Cartan involutior? to gc),

(3.4.5) D=X,.. X0sXs = X1... X5 (Xp— 6c(X))
+ Xi... Xne(c(yk)s
+ Xi... Xn(sec(yk) — Gc(yk)s)

From the observation above, the first two terms on the right clearly belong to
U(ne)U(gc)="2U(kc). Moreover,[s,0c(Xy)] € U(ge)<?? (the general fact
that [p, q] € U(gc)%*%~! wheneverp € U(gc)S%, ¢ € U(gc)=% follows by
induction on the degrees from the formula, c|] = alb, ¢| + [a, ¢]b). Thus the
third term of (3.4.5) belongs t6 (nc)U (g )=¢~2U (¢¢) also.

O

COROLLARY 3.4.5. Letz € 3=% Then there exists = b(z) € U(nc)U(ac)=¢"? such
thatz — pr(z) + b(z) € U(gc) - tc.

Sincel, (¢¢) annihilatespy andz-py = x..(2)po, We havel, (x, (z)—pr(z)+b(z))-@o =
0. In view of Corollary 3.4.2inf} we obtain:

(3.4.6) L, ® 1, (T Pr(2) — Tuapb(2) — X0 (2)) (0 ® 6) = 0

In what follows, we shall freely identify the algebfa(hc)"be:9c) with the Weyl-
invariant polynomial functions ofy..

GivenP € U(hc)"he:e) we denote byP’: h% — b its differential. In other words,
we identify P with a polynomial function orh, andP’ denotes the derivative of this
function; it takes values in the cotangent spacéfwhich is canonically identified at
every point withhc.

We shall use the notatiobi (gc)[ac]=" to denote polynomials of degree r on aj,
valued in the vector spadé(gc). Note that givenJ € U(gc)[ac]s" andv € af we can
speak of the “value of atv.” We denote it byJ/(~) and it belongs td/(gc).
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LEMMA 3.4.6. Let P € U(hc)Vhe:9) have degree< d. SetH = H’;"'% € bhe. Then
there exists/ € U(gc)[ac)=¢~2 such that
L eI <H+LV)> Cpo @6 =0.

d—1
g

(As defined in Section 2.2y|| denotes the norm of € af w.r.t. the Killing form.)

PROOF The mapypc: 3 — U(he)"e:ee) given byyyc(z) = 7, pr(z) is an iso-
morphism of algebras, the Harish-Chandra homomorphism. With the above identification,
the infinitesimal character afl/x, I,) corresponds to “evaluation at+ p — py,” i.e. for
P € U(he)Vhe:go):

(3.4.7) Xo(Vae(P)) = P(v + pa — py)

(See L6, Prop 8.22]; w.r.t. the maximal torug: C m¢, the infinitesimal character of the
trivial representation ofic is (the Weyl-group orbit ofp — py).

GivenP € U(hc)"he: ) of degreed, we setz = 5,4 (P) in (3.4.6), writingb(P)
for the elemenb(z). Note that: € Z(gc)=?, as the Harish-Chandra homomorphism “pre-
serves degree” (se8,[7.4.5(c)]), and henc®P) € U (nc)U (ac)<?—2.

Combining (3.4.6) and (3.4.7), ® ¢ is then annihilated by the operator

(3.4.8) (Tvtp-py P = P + pa — py) — Turpb(P)) 0o @ 6 = 0
Letxz = (x1,...,2,),y = (y1,...,yn). If @ polynomialp € C[z] has degreel,

p(z+y) —p(y) = P'(v)(z) + q(z, y) whereq € (C[z]) [y] has degree at most— 2in y,
and the derivativg’(y) is understood to act as a linear functionalon
Applying this top = P,y = v + p — p, we see that there exists € U(gc)[ac]<>

with deg(J) < d —2and
(3.4.9) Tuotp—py P — Pv+p—pp) = P(v+p-— py) + J1(v)

Now b(P) € U(ng) - U(ac)=4"2%, so the maps — 7,,,b(P) can be regarded as an
element/y € U(gc)[ac]=¢~2. Similarly v — P'(v + p — py) — P'(v) defines an element
J3 € U(ge)lac]>*2.

Combining these remarks with (3.4.8) and (3.4.9), we see that

(P'(v) + J(v) + Jo(v) + J5(v))po @ 0 = 0
SetJ = J, + J, + Js and divide by||v||*"" to conclude. O

COROLLARY 3.4.7.LetP € U(hc)"be:9), Notations being as in Definition 3.3.8 and
Lemma 3.3.9, suppoge,, } is conveniently arranged. Then, (¢o, §) is P'(Vs )-invariant.

PROOF It suffices to verify this for? homogeneous, say of degréde Combining
Lemma 3.4.6 and Lemma 3.3.7, and using the homogeneiB; afe see that there exists
J € U(gc)|ac]s%? so that

(P’(ﬁn) + —Hi:ﬁZL) *fin(po ®0) =0
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Here (P’ + ...) acts onu,(po ® §) according to the natural action &f(gc) on
C>®(Xz)y. Now fix g € C°(X) k. Letu — u' be the uniqué-linear anti-involution of
U(gc) such thatX* = — X for X € gc € U(gc). Then we have for each

- J (v,
(3.4.10) fin (00 ® 6) ((7’ () — B (Hd_)1> 9) =0
Note that, as: varies, the quantit;(P’(ﬁn) — Hit(llydn*)1> g remains in a fixed finite di-

mensional subspace 6f°(X ). Further, it converges in that subspacé™o., )g.
With these remarks in mind, we can pass to the limit— oo in (3.4.10) to obtain
Loo(p0 ® 0)(P'(vx)g) = 0, i.e. P’ (v ) annihilates:., as required. O

It remains to show that the subspace
(3.4.11) S={P'(s) | P € U(bC)W(hctgc)} C be

containsac. By the Corollary this will show that annihilates any limit measure, or that
this measure isl-invariant.

LEMMA 3.4.8. LetW, C W(hc:gc) be the stabilizer of,, € a, and defineS as in
(3.4.11). Therb = h(VCVO. In particular, if 7., is regular, thenS containsac.

PROOF This can be seen either from the fact thas the image of the map on cotan-
gent spaces induced by the quotient hap— bhi./Wy, or more explicitly: first construct
many elements i/ (hc)"(bc:9¢) by averaging ovelV (he: gc), and then directly compute
derivatives to obtain the claimed equality.

W, is generated by the reflections W (h¢: gc) fixing 7. In the case where,,
is regular as an element i}, the corresponding roots must be trivial on allagf. In
particular, any element d¥/, fixes all ofac. O

COROLLARY 3.4.9. Let notations be as in Proposition 3.3.13. Then any weak-* limit
0~ Of the measures,, is A-invariant.

PROOF. After passing to an appropriate subsequence, we may assurgethas con-
veniently arranged. Proposition 3.3.13, (1), shows thatg) = 1o (v0,0)(g) Wwhenever
g € C*(Xz)k. Corollary 3.4.7 and Lemma 3.4.8, together with the fact &t X ) i is
dense inCy(X), show tha, is A-invariant. O



CHAPTER 4

The Method of Hecke Translates I: Tubular Neighbourhood,
Translates, and Diophantine Geometry

4.1. Overview

In the previous chapter we have seen that a Maass form cannot be too concentrated —
its associated measure can be approximately lifted to a measure which is approximately
A-invariant (in the non-degenerate case). This chapter and the next one are devoted to
showing a similar conclusion for Hecke eigenforms. We hence fix a unitary Hecke character
w € Z and a normalized Hecke eigenfunctipre L?(X,w), and letu denote the measure
po(f) = [y, [ 10 dz on X ;. We will of course take) to be one of the functions,, of
Theorem 1.3.2. As before, will denote any of the quotient majgs —» X — X .

In Section 4.2 we will describe certain relatively compact open Bgt€',¢) C G to
be called “tubular neighbourhoods”, depending on a paramgieeir “width” , which will
tend to zero. We will also use the term for sets of the fai (C,e) C X, wherex € X .

Using the isomorphisniX; = I'Z\G ~ G(Q)Z\G x G(Ay)/ K¢, any pairg,, € G and
gt € G(Ay) gives rise to a relatively compact open subset

900 Ba(C, €) gt B {ZG(Q)goobgr K | b € Ba(C€)} C X,

which we will call aHecke translatef the tubular neighbourhoadB, (C, ¢) of x = ZT'g.
Writing g¢ = k¢ for somey € T, k; € Ky, we see thay.,B,(C,¢) = 2'B,(C, €) where

7' = ZT (73 g-)- In other words, a Hecke translate of a tubular neighbourhood is again a
tubular neighbourhood of the same type.

In the next chapter we will analyze the behaviour/adn a large number of such trans-
lates to bound the measurgs(zB,(C,€)) and show they must decay as a powere of
(“positive entropy for the action af’). We would like to choose a disjoint set of translates,
and hence we need to understand the intersection pattern of such a set. The main result of
this chapter (Theorem 4.4.4 of Section 4.4) is the first step in that direction, showing that
under certain conditions ol C G(Ay) there exists a propép-subalgebra of our division
algebra which controls the intersection pattern of the Hecke trandlafésC', €)g}, -

Since we assumB to be of prime degreé, this proper subalgebra will then be commuta-
tive, i.e. a number field of dimensiahcontained inD(Q).

The key idea is the analysis in section 4.3 of the polynomial nature of the condition
“the subalgebra dD(Q) generated by the subdétC D(Q) is proper”.

For a very concrete version the ideas of this chapter (in thectasg) the see Lemmata
3.1, 3.2 and 3.3 of]].

36
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4.2. Algebra in tubular neighbourhoods

Leta € A\ Z. We then set, C n be the Lie subalgebra spanned by the root spaces
n, associated to roots such thatu(a) > 0. This is the unipotent radical of a parabolic
subalgebra associated to that set of roots. The Levi factof,i$, = Z;(a), whereA, =
Z(MyA.) = Naa)=o Ker(a) is its center. We then sef, = n,,, the unipotent radical of the
opposite parabolic subgroup.

For anye > 0 letn{ = {X € n, | | X] < €} (note thatn = 6n¢), and setN,(¢) =
expns, N,(€) = ON,(e) = expn. For any relatively compact symmetric neighbourhood
of the identityC' ¢ A, M, and everye > 0, we setB,(C,¢) = N,(e) - C - N,(¢) C G.

We callC' ¢ G aneighbourhoof C if C is neighbourhood of every € C (topological
closure).

DEFINITION 4.2.1. We call a set of the form,(C, ¢) atubular neighbourhooaf the
pieceC C A,M,.

Thinking of e as small C' will be fixed), the elements dB,(C, ¢) are very close to lying
onA,M,. SinceA, M, is a subgroup, one expects that a set of the fBytC, ¢) B, (C’, ¢')
also consists of elements close to a neighbourhood of the identity /of, .

LEMMA 4.2.2. (c.f.[3, Lemma 3.2] For any C, C’, any relatively compact symmetric
neighbourhood€” ¢ C resp. CC’ ¢ C, and anye, ¢ small enough w.r.t. the choice of
C,C'", C we have:

B.(C,e)™' € B(C, 0¢(e))
resp.
Bo(C,€)B,(C",€) C B,(C,Oc,cr(e +¢)).

PROOF This is a direct computation. We only prove the first assertion.

Since the adjoint action is differentiable am{C, 1) is a relatively compact subset of
G, there exists a constant: such that|Ad(m)X|| < r¢ || X|[foranym € B(C,1) and
X € g. Secondly, for any (vector-space) direct sum decomposgiea ®;V; the map
(X;)i — [],exp X; is a local diffeomorphism. Thus there exists’ > 0 such that if
X1, X, Y € gare all of norms § then there existX’ € g and(Y},Ys,Y3) € n, @ m, &
n, ~ g such that| X'|| <" (|| X41|| + || Xz2l]), [|Yi]] < 7 ||Y]] andexp X' = exp X exp X,
andexpY = expY)expYsexpYs (the existence ofX’ follows from the smoothness of
the multiplication operation in the co-ordinate systexp : g — G, the existence o¥;
from the equivalence of that co-ordinate system with the one induced from the direct sum
decomposition). We also observe that'if C G is any relatively compact subset, afig ©
(1 is a neighbourhood then fersmall enough we haw€; exp {X € g | || X|| < €} C Cs.

Assume thatce < 1, rce < 6, r'ree < 9. As the setsi, n¢ are symmetric, so are
N, (¢) and N, (e), so for the first assertion it suffices to show that i nmn € B,(C, ¢)
thennmn € B,(C,Oc(e)). For this writen = exp X, 72 = exp Y with || X, || V|| < ¢ and
write n’ = m~'nm so that:

nmn = mn'n = mn'nin’"'n’.
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We next note that' = exp(Ad(m™")X) € B(C,1) since||Ad(m)X| < rc||X]| < 1.

Sincen'nin’~! = exp(Ad(n/)Y) we concludeg|Ad(n')Y|| < 7o ||Y|| < ree. We can thus
write exp(Ad(n')Y) = exp(Y1) exp(Y2) exp(Ys) with Y; € n,, Y5 € m, andY; € n, and
|Yi]| < r'ree. It follows that:

nmi = exp(Ad(m)Y3) (m exp(Y3)) (exp(Y3) exp(Ad(m) X))

Finally, choosing: small enough will insure that exp(Y;) € C, while ||[Ad(m)Y,|| <
r'rZe andexp(Y3) exp(Ad(m)X) = exp X’ for someX’ € n, such that| X'|| < (1 +
r)ree. 0

The next Lemma formalizes the notion that i, (C, ¢) are “tubular neighbourhoods”
of the pieces:C, uniformly over compacta it

LEMMA 4.2.3.LetQ2,, C G be compact. Then there exists a constant0 (depending
on Q.,, C) such that for every., € Q. and small enough > 0, if g € 7., B,(C, ¢)x}
then there existg., € 1,,Cr! C oA Mur ! With |z;(g) — 7i(g)| < ce for every:.

PROOF We know thaty = x,,ngnz! with g € C, n € N,(¢) andn € N,(e). Now
setg., = Tgrs and consider the maps: n, x n, x G — R given by

(X, X, 20) = @i (exp (Ad(2o0) X)) goo exp (Ad(200) X)) -

Being the composition of smooth maps this is one as well; in particular it is continu-
ously differentiable on a relatively compact open neighbourhoosf, of n! x Q.. We
can hence find: > 0 such that forX € nl, X € al |t;(X, X, 24) — £:(0,0,25)| <
cmax {[|X||, || X||} . Since we havg,, = (0,0,2.) andg = (X, X,z.) for some
X eng, X € n, we have the desired result. O

4.3. Diophantine Geometry of Division Algebras

We will show that if/ C ID(Q) are close to a propék-subalgebraD, C D(R) and
have small denominators, they generate a pr@psubalgebra ob of dimension at most
dimg Dg. Along the way we will make extensive use the co-ordinatesn D introduced
as Notation 2.1.1.

LEMMA 4.3.1. Let
Veo(K) = {z = (2, € D(K)"

whereSpyz is the K-subspace oD(K) = D(Q) ® K spanned by:. ThenV, ((K) =
Nyer {p = 0} whereF is a finite family of homogeneous polynomials in the co-ordinates
of thez®, with coefficients i) and degrees bounded as a functioniof

PROOF. We need to verify that the statement “the rank of¢hai? matrix M/ is at most
r” is equivalent to the joint vanishing of some polynomials in the entrie&/oindeed,M
having rank< r is equivalent to the vanishing of the determinant of every 1) x (r+ 1)
minor of M, and the coefficients of the polynomials are in fadt O
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LEMMA 4.3.2. For eachl < k < d? and any fieldk extendingQ, let
Vi (K) = {g e D(K)ﬂ dimg Kz] < k} ,

where K'[z] is the K-subalgebra ofD(K) = D(Q) ® K generated by:. ThenV, is an
algebraic variety defined ovép, when defined in terms of the co-ordinates of the elements
of z in the basis. Moreover, it is defined by a finite set of homogeneous polynomials of
a-priori bounded degrees.

PROOF. Forz € D(K)% let W,(x) denote the subspace®f K') spanned by all prod-
ucts of length at mostin the elements™® . . .., z(®). This is a non-decreasing sequence of
subspace of thé*-dimensionalk” vector spac®(K). Hence there must existla< ¢t < d?
such thafiV,,; = W,. This means that the subsp&dg, spanned by products of thé?,
is closed under left and right multiplication by them. In other woid§, = K|zx], the
subalgebra generated by the Since thelV; cannot increase further we conclude that
Ws = Klz] in all cases. Now, the set of products of at m@sof the z is an element

of (D(K ))27*0 *\which depends polynomially on (fix an ordering). Since the previous
Lemma showed that’ LS g is defined by homogeneous polynomial equations, we are
done. Note that the “structure constanig’;, enter into the coefficients of these polynomi-
als. O

DEFINITION 4.3.3. Letr € Q. We define itslenominatord(z) andheighth(z) by:
d(z) = H pur(@),

pup(z)<0
h(m) — H p‘vp(x”'
p<oo

For a sequence € Q" we setd(z) = ged {d(z;)}.

LEMMA 4.3.4. (Properties of denominators and heights) ket’ € Q.
(1) d(z2’) < d(x)d(2’) andd(z + 2’) < d(x)d(a’).
(2) h(za') < h(z)h(z'). If z € Q* thenh(z™1) = h(x).
(3) LetP € Q[z] be a multivariate polynomial in variables. Then there exiét, > 0
and an integet » such that for allx € Q":

d(P(z)) < Cpd(z)™”
ProoE Direct calculation and induction. O

DEFINITION 4.3.5. Forz, € Q, we setd,(z,) = 1if z, € Z,, d,(z,) = p~vr@)
otherwise and,,(x,) = pl» ). If & € Ar we setd(x) = [T, dp(,), h(z) = [T, hp(ay).

LEMMA 4.3.6.d: Ay — Z is uniformly continuous in the adelic topology; Our defini-
tions are compatible with the standard embeddiigs— A; andQ — Ay.

PROOF. Letx € Ay, 2" € [],Z,. Thend(z +2') = d(z): at places where is integral,
so isz + 2/. At places wherer is not, we havey,(x + z’') = v,(x) by the ultrametric
behaviour ofv,. The second assertion is obvious. O



4.4. INTERSECTIONS OF HECKE TRANSLATES 40

We now extend the notion of denominator to element& of
DEFINITION 4.3.7. Fory € D(Q)* setd(y) = gcd{d(mi('y))}(.ii . As above we

=1
extend this notion to map$,: G, — Z andd: G(A¢) — Z. Forg € G(A¢) we will also

write hy,(g,) = hy(vp(gp)) andh(g) = Hp hp(gp) = h(vn(g)).

COROLLARY 4.3.8.d(gg") < d(g)d(g') andh(g~") = h(g) for anyg € G(A¢). The
mapd: G(A¢) — Zis continuous.

PROOF We haver;(gg') = >, aijrr;(g9)zr(g') with all thea;;, € Z. Itis also clear
that the map is locally constant. O

The continuity of the denominator map implies, in particular, its boundedness on the
compact subgroufx r, and we will assume that(k) < ¢, foranyk € Kg. If p ¢ R and
k, € K, and by Fact 2.1.3(4) we have(k,) € Z, forall 1 < i < d*> and hencel,(k,) = 1.
In fact, if g, € D(Q,) thenz;(g,k,) andz;( pgp) are all linear combinations with integral
coefficients of ther;(g,). This meansl,(k,g,), d,(gk,) < dp(gp). Multiplying by & !
(also an element ak,) we get:

LEMMA 4.3.9.Letp ¢ R, k, € K, andg, € G,. Thend,(g,k,) = d,(kp9,) = dp(gp)-
If g € G(A¢), k € Kyandk, = 1forp € Rthend(kg) d(gk) = d(g).

4.4. Intersections of Hecke Translates

Leta € A\ Z,C C A,M,. LetQ,, C G be compact such that(2,,) = X, and
choose a neighbourhodd ¢ A,M, so that for small enough, Ba(C,€)B,(C,e)7t is
contained inB = B,(C, O(¢)) as in Lemma 4.2.2. We will also shortéh= B,(C, ¢).

Fixing somer € X, we are ready to analyze intersections of Hecke translate#of
Writing © = ' Zx, for somez, € Q, letg, ¢ € G(A¢) be such that,Bg Nz, Bg' is
nonempty. This entails the existenceof G(Q), z. € Z, k € K andb, b’ € B such that

4.4.1) ZooToobg = b 'k
( ¥ g g

holds as an equality of adéles, wheres embedded diagonally iG(A). We will say that
suchy cause an intersectiort the infinite place this reads: .0 = b’ Or:

(4.4.2) Voo = T b} € oo BB 2! C 2o Bxl,

where the last inclusion follows from the choice@f Now lemma 4.2.3 shows that is
O(e)-close tor, A, M,z2! (independently of; or ¢'!). Recalling thatA, M, is contained
in a proper subalgebra @f(R), we see that these are very close to satisfying the poly-
nomial equations we have just constructed, except for the annoyance of thezfactor
is O(e/z4)-close to an element of the subalgebra, &ngd might be very small. Lemma
4.4.3 addresses this problem.

Noting that the set$3 only decrease with, we also see that (assuming< 1) if
~ causes an intersection there exisis € R* such thatyz,, belongs to the relatively
compact set:

(4.4.3) Qoo Ba(C,0(1)0 € G
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GivenS C G(A¢), we denotel (a, z, B, S) the set ofy € G(Q) that cause an inter-
section for translates of,. B by someyg, ¢’ € S, whereyz,, lies inz,, Bx!.

DEFINITION 4.4.1. LetT" > 0. We will say thatS C G(A;) is T-boundedif every
g € S satisfies:
(1) d(g),d(g™") < e
(2) h(vp(g)) < e T (wherevy: G(A;) — Ay is the reduced norm);
(3) (9p)per € Kr-

LEMMA 4.4.2. LetS C G(A¢) beT-bounded, and let., € Qu, 7y € I(a, 7o, B, S).
Thend(v), [vp(7)],, < € 2T where the implied constant depends only on the choice of
co-ordinates and on the compact subgradkip

PROOFR By definition we havey # ¢’ € S andk € K; such thaty = ¢’kg~! holds as
an equality of finite adéles. We now use this place-by-place. Projectifig te HpeR Gp,
we haveggr, g € Kr and hencey € Ky under the diagonal embedding. It follows that
[1,crdp(7) is uniformly bounded by the numberwe fixed above. Ifp ¢ R we use
Corollary 4.3.8 and Lemma 4.3.9 to get:

dp(7p) < dp(gg/akp)dp(ggl) = dp(ﬂ;)dp(ggl)-
Multiplying over all primes we conclude:
d(y) < e,

Next, by the product formula we have, (v)[,, = [ [, [vp(7,) |;1. The absolute value of the
reduced norm is a positive multiplicative quasi-character. In particular it is the comngtant
any compact subgroup such As. Also, we have defined the height so tm;(gp*l)\p <
h,(g,). It follows again that:

10l < T halg)halgp) < hlg)h(g)) < ™.

O

LEMMA 4.4.3. There exists a constant > 0 (depending orQOO,C*)~ such that for
everyzr,, € (., small enoughe > 0, S C G(A;) andy € I(a,z,B,S) there ex-
ist 2o, € RX, With |zo0] > [v(7)|27? @and goe € 20eCr3! C Z0oA.M,zz! such that

17i(goo) — 2ooi(7)| < ce for everyl <i < d?.

PROOF. Lety € I(a, 2+, B, S), diag(zs) € Z such thaty diag(z..) € 2., Bz (note
thatz; (v diag(z«)) = zeowi(y) by definition). Assuming, as we may, thak 1, we have
observed above that:,, must belong to a specific compact subseGofThe continuity
of the mapdet : G — R* shows thatlet(y diag(z)) is uniformly bounded below. As
v(y) = det(y) when on the right we embedin D(R), anddet(diag(z..)) = 2% we are
done.
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O

THEOREM 4.4.4. (c.f. [3, Lemma 3.3] There existsI’ > 0 such that, given & -
boundedS and a pointz,, € Q. we can find a number field® C D(Q) of dimen-
siond such thatl (a, 2+, B, S) ¢ F* C G(Q), whenevek is small enough. Moreover,
there exist{v’(j)}j:1 C 0O, each of height at mog2(¢~"") for some knowr”, such that

F=Q(y,...,y®).

PROOF. Choose{y(ﬂ‘)}i1 C I(a, 2., B, S) which have the sam@-span as all of

I(a, 7, B, S), and letD’ denote theQ-subalgebra ob generated by thigy) }, necessar-
ily a division algebra. It suffices to show that this is a proper subalgelia sihce in that
casedimg D'(Q) will be a proper divisor oflimg D(Q) = d?. With d assumed prime, the
possibilities arelimg D'(Q) = 1 whereD'(Q) = Q anddimg D'(Q) = d, whereD'(Q)
must be monogenic and hence commutative, i.e. a number field.

By Lemma 4.4.2 we have(y7)) < €27 for all j. Applying Lemma 4.4.3 as well we
can find for each

gV € 1,02} C wooAgMazt C Qoo AgM Q!

andzY) ¢ Zs(R) such thang) > €27/4 gand such that for each< i < d? we have:

|2:(9Y) — 202V D)] < e
Now letr = dimg A,M,, and Iet{fm}%:1 be a set of polynomials with integer coefficients

Y d?
definingV,, each homogeneous of degreg in the z). That{géé)} € V,(R) (they
=1

generate afR-subalgebra of at most that dimension!) can be writtef),a {géﬁ?} ] =0.
J
Since we can uniformly bound the gradientfQf in a ce-neighbourhood of the relatively

d2

compact se(QmBa(é, O(l))Q—1> for ¢ small enough, we have:

o0

[fn ({2 )] <e,
and hence:
[f ({(7@})] < 72T,
Now since the coefficients gf,, are integers, the denominator ff ({%@} ) is at most
J

the h,,-th power of the maximal denominator of an()), i.e. at most—27. The
crucial observation is then that ff, ({yéé)} > #£ 0, itis then at least®"~". Choosingl’
J

SO that for a"ﬂ”b
T < h
l 1 m>
(4)

we can make sure that fesmall enough we will havé,, ({%o }) = 0 for all m, i.e. that
dimD' <.
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Finally, since[F : Q] = d, we can assume w.l.g. tha{lty(j)}jzl generateF, and the
same will hold if we replace ) with /) = d(y"))yU) € ©. Now the discriminant of/ is
at most that of the characteristic polynomial of the automorphism +'z of D(Q). Since
the discriminant of a polynomial is a polynomial expression in its coefficients, and since in
our case these coefficients are polynomials inatf{e’), which are bounded by the height
of 4/. From this one can recover an expong&has in the statement of the Theorem. [

REMARK 4.4.5. (1) The discriminant af as above is als@(e~""), since it is at
most the product of the discriminants of thé’).
(2) We have used the observation that evergausing an intersection must satisfy
Yoo € Qo Ba(C,0(1))QZ}, and the latter is a compact set independert of



CHAPTER 5

The Method of Hecke Translates II: Geometry and Harmonic Analysis
on the Building

As discussed in the introduction, this method was initiated2by [L§. Our analysis
stems from the very concrete Lemmata 3.3 and 3.48Jof
The following is the second main ingredient of the main theorem:

THEOREM5.0.1. Leta € A\ Z. Then there exists > 0 such that for every Hecke
Eigenfunction) € L?(X,w) and every relatively compact neighbourhood of the identity
C<M,,

oy (2B, (Cle)) <, €
holds fore small enough and any € X ;. In particular, the implied constant is indepen-
dent of f.

In the previous chapter we saw that givefid@oundedS C G(Ay), intersections be-
tween sets of the type,.Bg andz,,Bg' for g,¢' € S could occur only ifygK; = ¢'K;
for somevy € F*, whereF' — D(Q) is a number field of degre¢ and bounded dis-
criminant. The proof hinges on choosing.éhat will on the one hand be small enough to
(almost) fail to admit such intersections, while on the other be large enough tahayB)
bounded by a small multiple 9f _ 11, (zBg). The resulting disjointness of the translates
implies that the latter sum is bounded hyhence thaf., (xB) is small. The proof will be
broken up in several stages, alternating geometrical considerations and harmonic analysis
estimates.

We first analyze the intersection pattern at a single place, in other words the action
of the torusF* on the quotientz,/K,. We will do this by embedding the discrete set
G,/ K, in a geometric structure, tHsuilding of G,. In Section 5.1 we give a summary
of the properties of the building and use its geometry to construct a stpset G,, of
translates for which we understand the (local) intersection pattern. In Section 5.2 we then
bound}_, o 1 (200bg,)|? from below by a not-too-small multiple df)(z..b)|* for any
Too € (o @andb € B. We use there bounds toward the Ramanujan conjecture due to
Luo-Rudnick-Sarnak.

The next step is to combine the information from many places. Section 5.3 shows that
by taking the union of th&, over many places we still have no intersections, allowing us
to complete the proof of Theorem 5.0.1 in Section 5.4 .

5.1. The buildings of GL,, and PGL,,.

Let p be a finite rational primey the p-adic valuation onQ, with completion@Q,,
valuation ringZ, and maximal ideap = pZ, < Z,. The residue fieldZ,/p ~ F, is

44
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then finite, and we will denote its cardinalify We choose a uniformizer € p \ p? (e.g.
@ = p) and normalize the absolute value @p so thatw| = ¢!,

REMARK 5.1.1. The distinction betweenand g appears silly. It amounts to distin-
guishing between a finite cardinal and the associated integer, thought of as an object of
arithmetic. However, the discussion below would remain unchanggglwas replaced by
a field complete w.r.t. a discrete valuati@), by its valuation ringD, andp by the maximal
ideal of O. In that case reagifor the cardinality of the residue field for its characteristic.

The buildings (defined below) are locally finite exactly whgis a finite cardinal.

NOTATION 5.1.2. For this Section (5.1) and the next only, we drop the subspiipE
use elsewhere, writing = GL,,(Q,), K = GL,,(Z,). ThusA will denote the subgroup of
invertible diagonal matrices and = Z; ~ Q) the center, i.e. the subgroup of non-zero
scalar matrices.

DEFINITION 5.1.3. LetB’ = PGL,(Q,)/PGL,(Z,), B” = B® x Z. We letG act on
B via the quotienPGL,(Q,), onB° by:

g - (x,n) = (g, n +v(det(g))) .

REMARK 5.1.4. One can identifg:/ K with the space of,-lattices inQ7, B° with the
space of homothety classes of lattices.

Noting thatdet(k) € O foranyk € K, forz = gK € G/K the integerv(det g)
is independent of the choice of representatgve z. We will denote itc(z). Then the
mapy: G/K — B° given byp(i) = (iZ, ¢(#)) is aG-equivariant embedding. However,
it is not surjective: forz € G/K andz € Q) thought of as an element ¢f we have
c(27) = nv(z) + ¢(¥). Hence, to each € B° we can associate a residue class Z/nZ
so that the image af is precisely{(z,t) | x € B°,t € a,}.

DEFINITION 5.1.5. Call a sequenqe:i}fzo C B° anorientedd-simplexif there exist
representative lattices; € x; (also letA; 1 = pAg) such thatA; D A;; forall 0 <
i < d. Denote byB? the set ofd-simplexes (forgetting the orientation for the moment).
n-dimensional simplexes are calledambers

FACT5.1.6. B = {B?} _ is a chamber complex:

(1) Itis a simplicial complex, i.e. the intersection of two simplexes is again a simplex.
(2) Every simplex is contained in a chamber.

Moreover, the action on° is simplicial.

DEFINITION 5.1.7. The complex3 is called thesimplicial building of PGL,,(Q,).
EndowingZ with its standardl -dimensional simplicial complex structure, the simplicial
complexB = B x Z (whose set of vertices is precisdhy) is called the (poly9implicial
building of GL,,(Q,). The elements oB° and B° will be called theverticesof the respec-
tive buildings. In particular, we will thing of the cosets@f K as vertices of.

Now letz, € B° be the vertex stabilized b K (i.e. the identity coset), and let C
B° be the orbitAz,. Identifying A ~ (Q})", we haveStab,(zo) = Z - (ZX)" (with the

P
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center acting diagonally). We then identifi§ with A/ Stab(zo) ~ Z"/Z(1,...,1). The
vertex corresponding to+ 7Z(1, ..., 1) is the homothety class of the lattice generated by
{w"e;};i_, where{e; };_, is the standard basis Qf.

FACT 5.1.8. The subcomplex,, C B consisting of those simplexes supported4gris
a chamber subcomplex; for every two simple&gsA, € B there existg; € G such that
gAl, gAQ S ./40.

We have{g € G | g4y = Ao} = Ng(A), andNg(A) = W x A whereW < K is the
subgroup of permutation matrices (henceforth calledwWey! groupof G w.r.t. A).

DEFINITION 5.1.9. A subcomplex4 of the formg.A, for someg € G is called an
apartmentof 5. We have just seen that any two simplexes are contained in an apartment.
In particular, any two points, y of the geometric realizatioj| lie in the geometric real-
ization|.4| of an apartmen#.

In order to give a canonical metric @) we start with the positive semidefinite bilinear

form
n 1 n n
(% Q) = ; UiV; — ﬁ (; Uz) <; Uz‘)
on R". lts isotropic subspace is one-dimensional and spanned by the véctor, 1).
In particular, this pairing descends to a positive-definite bilinear forlRoMm (1, ..., 1).

This defines a norm and hence a metric on this space.

FACT 5.1.10. The identification of the vertices of the standard apartment with the quo-
tientZ" /Z(1,...,1) extends uniquely to a piecewise-linear isomorphism of the geometric
realization.Ay| andR"/R(1,...,1).

Pulling back the norm we have defined gives a metrid.dg. We have remarked
before that the elements 6f that preserved, are generated by, (A) = W A. SinceW
acts by permuting the co-ordinates, ahdy affine translations, the metric we have defined
is Ng(A)-invariant.

FACT 5.1.11. This metric extends uniquely toGinvariant metricd(-,-) on |B|, in
particular on the set of vertice8°. |B| is a simply connected complete CAT(0) metric
space. The geometric realization of an apartment is a (flat) geodesic subspace.

The standard metric o/ extends to a metric on its realizati®as a simplicial com-
plex. We extend our metrié (with the same notation) t#?‘ ~ |B|] x R by taking the
Euclidean productd ((z, s), (y,t)) = d>(x,y) + |s — t|?).

DEFINITION 5.1.12. We call the metric spa¢g3| , d) together with the isometric'-

action thebuildingof PGL,,(Q,), the metric spacé‘[g“ ,d) thebuilding of G. Both spaces
are simply connected complete CAT(0) spaces.

FACT 5.1.13.Let (X, d) be a CAT(0) metric space. Then:

(1) (X, d) is uniquely geodesic. We will uge y| to denote the unique geodesic seg-
ment between, y.
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(2) LetY C X be convex#{,y € Y = [z,y] C Y) and closed. Then for any € X
the functiony — d(x,y) onY is strictly convex and has a unique minimum, say
Wy(l').

(3) The mapr — 7y () is a retraction ofX to Y. It does not increase distances.

COROLLARY 5.1.14.Letxz,y € |B| satisfypr 4, (z) = prj4,(y) = zo. Then we have
{a€eAlax=y} CANKZ.

PROOF Since the (isometric!) action afon |5| preserves$A,|, and since the orthogo-
nal projection operatgsr is defined via the metric, we haye, 4 (az) = apr) 4, () for all
x € |B|,a € A. In particular, ifax = y we haveazy = xg, i.e.a € Stabg(zg) = KZ. O

Finally, we introduce a co-ordinate system of sorts(anin terms of the setdt =
{diag(z™, - ,@™) |0=r; <1y <--- <1, } C A. Itis easy to see that™z, C A is
a set of representatives for the orbitslst From this one gets:

FACT 5.1.15. (Cartan decomposition) Let,y € B° be vertices. Then there exists a
uniquea € A* such for someg € G we havegr = xg, gy = axq. In particular (“ KAK
decomposition”), for any; € B° there exists a unique € AT and someé: € Stabg (o) =
K such thatky = ax.

We calla therelative positiorof y w.r.t. z (in that order!). Clearly this is &-equivariant
notion. It is also clear that the distanéér, y) only depends on the relative position of
andy.

LEMMA 5.1.16.Letr € A" and letN(z,r) be the set of vertices of relative position
r to z¢. Then
#N(l’o,ﬁ) ~ q26(£)7

asymptotically ag — oo wherer is fixed. Here5(r) = — > (25 — i) r.

PROOF The K AK decomposition showV(xg,r) = {kazo | k € K} wherea =
diag(w?®). Now it suffices to compute the index 8faby(azg) in K. A direct compu-
tation shows that

Stabg (axg) ={k € K |Vi,j:v(ki;) >ri—1;}.
Sincev(k;;) > 0 for all 7, j, the condition only has meaning for- j. We also letNV = r,,
and setky = {k € K | k= 1,(p")}, the kernel of the quotient ma@: GL,(Z,) —
GL,(Z/pNZ). By the choice ofN we see thap~" | p" for all i > j, and hence that
Ky C K,. SettingK, = Q(K,), G = GL,(Z/p"Z) and lettingB < G denote the
subgroup of upper-triangular matrices, we then have:
| _#G
“  #BIK,: B]
Next, letU < G be the subgroup of lower-triangular unipotent matrices Jiet< G
denote the subgroup of permutation matrices, and/set U N K,. We will show that

#N(xg,r) =[K: K,] = [(_}:
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#U, < [K,: B] < #W - #U,, and hence that:
#G
#B ' #Ug
It now suffices to compute the orders of the finite groGps3, U, . Sincel, is the set of
g € G such thag;; = &;; fori < j andg,; € p"~"Z/pNZ fori > j, we have
(ri—r N\(n=1)/2 _o5(p
#U NHp z J) p ) p 26(7)_
1>]

It is also clear that forV fixed andp — oo (recall that/NV only depends om), we have
#G ~ (p™)" and

#N(xo,i) ~

— n n(n— n(n+1)/2
#B = o(p™)" - (pN)r V2 (pN) D

It remains to estlmat{nj( ] Since bott/,, B are subgroups ok, we havel/, B C
K,. Standard linear algebra (Gaussian elimination) shows that any eleménha$ at
most a unique representation in the foimwhereu € U, b € B. This shows thatU, <
[K B} On the other side, we will use Gaussian elimination shib®, B = K, : Start
with &£ € K,. If r, > r;, we must havé:;; € Z; (every other entry in the first column is
inpZy). If ry = ry--- = r, then the top-lefts x s minor of k must be invertible for the
same reason (all entries below it are divisibleghyand we thus can permute the figsows
to ensure the pivots of the image of this minoiGi.,,(Z/p" Z) are the diagonal elements.
Moreover, the permuted matrix is still i,. Multiplying on the right by an element a8
(the set of upper-triangular matricesAf) we can now assume that the figstows ofk are
the firsts standard unit vectors. Next, we assume, = - - - = r,,;. Permuting these rows
(an operation which essentially commutes with what we have done so far), we can assume
that the pivots for the x ¢ minor on the diagonal at positiory+ 1, ..., s + t has its pivots
on the diagonal, and continue the elimination by induction. O

LEMMA 5.1.17.Letx € N(zo,¢,) (We think of,, as a representative of a coset modulu
Z(1,...,1)). Then eitheg# (N (x) N.AG) > 2 0f pry4,((7) = o.

PROOF We may assume ¢ Ay, zp = pri4,(z) # xo. Being strictly convex, the
functiony — d(x,y) is strictly decreasing on the geodesic segmieptzo|. Letz, €
A € A, be a chamber such thaty, z] = |A| N [z, 20] has positive length. Le#d be an
apartment containing the simplexasand{xzo, z}. Thenz,z € | Al andpr,, () # o,
sincez € |A,| is closer tar.

Without loss of generality we can identify the verticesofith Z" /7 as before, with
xo = 0, A, being the standard simplex with vertices= an ; €, andz = ¢, for some
k (there are all the neighbours with the correct relative position). The assumptions on the
existence ot amount to saying that — z, has a positive projection an, — x, for some
1 <4 < n (otherwiser — zy, would have non-positive projection on the direction x,
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contradictingd(z, z) < d(x,x()). But the inner product is:

1
e D& =e—
j>n—i

wheree = 0 if £ < n — i, e = 1 otherwise. To make this positive, we must have 1, i.e.
k > n —i. But thenz is in fact a neighbour of, € A c AS.

Conversely, ifr is a neighbour of two vertices o4, then (since all edges i' have
the same length) the projection:ofo | Ay| is closer tar than any of them, and in particular
cannot be a vertex. O

LEMMA 5.1.18.Letx € N(xo,¢,) be suchthapr 4 (z) = zoandletr’ € N(z, —¢,).
Thenpr 4, (z') = zo.

PROOF Assumexr’ # xg, zg = pr|A0‘(JJ) =% x9. As before letry € A be a simplex
containing an initial segment, z| of [z, 29| and letA be an apartment containiny and
{z,2'}. As before we can choose co-ordinates such that {z;}'" andz = ¢, (the
last by the proof of the previous lemma). We then have- ¢, — ¢, for somek, and the
assumptionr’ # x, amount to assuming # 1. We now show that, is the point of|A|
nearest tar’ by computing the inner products’ — z,, z; — o) and showing they are all
non-positive. Indeed, withdepending on, k£ as in the previous lemma, we have:

<§1 — e, i) = —€ < 0.
O

We now setS; = {3:1 € N(xo,a) | prMol(xl) = :co}. Continuing outward we set
N, = N(z1,—e,) \ {zo} for z; € 5.

LEMMA 5.1.19.The unionSy = U,,es, N, IS disjoint. S; and S, are disjoint.

PROOF The second assertion is immediate (the elementS; adnd S,clearly have
different relative positions te,). For the first, letr; € Sy, 25 € N,,, and letz’ € S; be
distinct fromz;. Let.A be an apartment containing the simplexes, =1} and{z/, z5}.
We can choose the co-ordinates in such a wayithat ¢, 2| = e,, andz, = e, — ¢, for
somek # 1. Assumingk # 2, the distance squared betwegnandz, is:

1
(e —e—ene—e—g)=9-—,

while the squared distance between adjoining vertices is easily seen to-jgeln the case
k = 2 the squared distanceis— . O

COROLLARY 5.1.20.LetS = S;U Sy, letx,y € S, and leta € A satisfyax = y. Then
a€e KZ.

LEMMA 5.1.21.#5; ~ ¢" %, #S5 ~ ¢*"~ 1.

PROOF By Lemma 5.1.16, we havg N (x,¢,), #N(z, —¢,) ~ ¢"! for any vertex
x. Since#N,, = #N(x1,—e¢,) — 1 for anyz; € S; and since these are all disjoint,
we see that#S, ~ ¢"'#S; and that it suffices to showN (xg,e,) — #51 < ¢ 2.
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SinceN(zo, ¢,) \ 51 consists of those elements df(x, ¢,,) that are also neighbours of
another vertex afd,, its cardinality is at most the size of the link.of in A, times a bound
for the number of2-simplexes inB? containing a fixedl-simplex. Fixing a neighbour
r € Lk"(z¢) is equivalent to giving a latticeA, < A < A,. In this language we need to
enumerate lattice§’ of indexp in A, containingA. Reducing mogA, this is equivalent to
enumerating the subspacesdijfof codimensioni containing a fixed non-trivial subspace.
Dualizing, we need to bound the numberledimensional subspacesBf contained in a
fixed proper subspace, a number which is easily verified to b€ whend < n — 1 is
the dimension of the subspace.

Since the structure of the apartme#y is independent of;, the size of the link is
uniformly bounded (in fact byn — 1) - n!) and we are done. O

DEFINITION 5.1.22. LetS; = {(z,1) | z € Si}, So = {(2/,0) | 2’ € Sy}, S = S1US,.

PROPOSITIONS.1.23. (transversals)S ¢ B° is contained in thes-orbit of (¢, 0), i.e.
in the image of7/ K. Moreover it does not intersect th&-orbit of (z(,0) and ifa € A
carriesz € Stoy € Sthena € K.

PROOF The first assertion is clear by construction. The second assertion follows from
noting that everyr € S SatisfieSpr‘A‘(x) = xy While everyz’ € Az, is fixed by this
projection, and that, ¢ S. For the last claim assuméz, ¢) = (y,J) with ¢, € {0,1}.
Fromaz = y we conclude: = kz for somek € K, z € Z. Fromu(deta) + ¢ = 6 we
conclude thatv(det(z))| < 1, and since it is a multiple of we must have(det(z)) = 0.

This actually impliess € K and we are done. O

5.2. Hecke eigenfunctions — the local contribution

We keep here the notation of the previous section. However, we agsymé& and
identify G, ~ GL4(Q,) with D*(Q,). Lety € L*(X,w) be our Hecke eigenfunction.
To anyzx,, € G, we have associated itsHecke orbit{G(Q)xoongf}gpeGP C X. This
is isomorphic to a quotient,/ K, and by assumption the restrictignof ¢ to this orbit
is a Hecke eigenfunction ofi,/ K,,. The following Proposition can best be described by
saying f cannot be too concentrated on apartmentd:(1f) is large, thenf must also be
large on the transversal which lies away from the apartment. It demonstration relies on
a bound toward the Generalized Ramanujan Conjecture, the proof of which is reproduced
below.

FACT 5.2.1. There exist®$ > 0 such that the Hecke eigenvalueconsidered below
satisfies:

(5.2.1) A < (#S1)7 - g2

PROPOSITIONS.2.2. (“part of the tree” method) Letf be obtained as above. Then

SO > q# FOP.

zes
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PROOF LetL, = 3 . s f(), Lo = > ;5 f(Z). There existh = \s(e,, 1) depend-
ing only on f and the relative positiofe,,, 1) such that for each € S; we have:

Z f(CB/,O)—i-f([L‘O,O>:A'f(fﬂ,l).

' ENy
Summing overS; and using the disjointness of the union definygve have:

Therefore, at least one of the following holds:

#51
S

|La| > #50|f(1)]

Squaring, and using Cauchy-Schwartz, we get one of:

S IEP > % )

|L1| >

5365'1

S @l > B
i€S,

Using Lemma 5.1.21 and the bound (5.2.1) complete the proof. O

Digression: proof of the estimate 5.2.1.0ur eigenfunction) € L?(X,w) generates
an subrepresentation C L*(G(Q)\G(A),w) of G(A). Sincev is invariant under right
translations by the maximal compact subgrdtp, there must exist an irreducibteC 7
containing a non-zerd -invariant vector. It is easy to see that aRy-invariant vector
in 7 must have the same eigenvaluev.r.t. the Hecke operator under considerationas
and we may thus switch to the case wherés a K ,-spherical vector in an irreducible
subrepresentation C L*(G(Q)\G(A),w).

The component, of this representation at the plagés then a spherical representation
of G, ~ GL4(Q,) and hence isomorphic to the spherical constituent of the representation
of GL4(Q,) induced from the characteliag(as, ..., aq) — [, |aj|zj+”/d of A, (where
teRand)_; u; = 0).

The eigenvalue\ is (up to normalization) the eigenvalue of the convolution operator
Tp(1n(z0.e,)) @Cting on the spherical vector of, wherel v, . ) iS the characteristic func-
tion of the subset),c n (4. )2 K, Of G,,. This can be computed explicitly in terms of the
parameterg;:

THEOREM5.2.3. (the Satake Isomorphism; sg&6]) To the convolution operator as-
sociated to the characteristic function éfa K with a € A it is possible to associate
a permutation-invariant polynomiaP(z4, ..., z,) such that its eigenvalue acting on the
spherical function ofr, is given byP (g1 +it/d ... gratit/d) I q = diag(q™,. .., q")
with0 < r <--. < ry, a monomial of maximal degree i is Hj x?
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In our case we get a symmetric polynomiabf degreel in d variables such that
A= P(g", ..., ¢")q"

for all choices of{ 11, } , . Since there is a unique such polynomial up to rescaling, we have:
Ap =g (Y ")
j

We evaluate the constanby considering the special case- 0, ;; = digl —j, Wherer, is
the trivial representation. In that caggthe restriction ofy to an orbitG,/K,,) is constant

and we have the explicit evaluation = #N (z, e;) ~ ¢%~*. We conclude that ag— oo
c= #N(x07§d) ~ %

Z]‘ q%_]’

As #S, ~ ¢¢! this means:

Mg ~ (#51)"?

unj )
J

We now obtain a bound on the parameteysn three steps.
First, we construct an automorphic representatiofzbf(A) which also hasr, as its
local component a:

THEOREM5.2.4. (Arthur-Clozel; sed?2]) Letw be an automorphic representation on
D*(A). Then there exists an automorphic representafibon GL,;(A) in the discrete
spectrum such that for every finite placavhereD splits we haver, ~ II,,.

Secondly, we argue that in the case wheis primell is in fact acuspidalrepresen-
tation: the classification of the residual spectrum due to Moeglin-Waldsp@gjeniplies
that for d prime the discrete non-cuspidal spectrumf,;(A) consists ofl-dimensional
representationdl is not a character sines, isn't.

Thirdly, the cuspidality implies a bound on the spectral parametdrs of 7,

THEOREM 5.2.5. (Luo-Rudnick-Sarnak; sg@1]) Let IT be a cuspidal automorphic
representation ofzL,(A). At every places wherell, is unramified, let it be the unitary

spherical constituent of the representation induced from the chardcietas, . . ., aq) —
[T, la;|"*"*/% of A, (wheret € R and}"; u; = 0). Then
1 1
Rui| < = — :
Rl <5 -
This gives|\| < (#Sl)% . ¢z~ where§ = d2_1+1 We also note that our estimate ©f

above shows that the implied constant is independeat of

5.3. Split Tori

From here on we return to the usual notatiots= G(R) ~ GL,(R) etc. In order
to apply the Diophantine results of the previous chapter, we need t© fix A, M, and
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s C G as in the beginning of Section 4.4. We retain the notatiBns B,(C, ¢) and B
as defined there.

We first estimate the denominator of an elemen&6A;) in terms of the geometry of
the building. Recall that for eagh¢ R we fixed an algebra isomorphism,: D(Q,) —
M,(Q,) such thatp,(O,) = M4(Z,), and letT(Q,) C G(Q,) be the inverse image under
¢ of the torus of diagonal matrice$, < GL,(Q,). Pulling back the Cartan decomposition
(Fact 5.1.15) we see that for evegy € G, there exists a unique, € A} and some
kp, ky € OF = K, suchthay, = k,p, ' (a,)k;,. If a, has co-ordinates = (r; < --- <r,)
we write' 7,(g,) = max{—ry,7,}. Necessarily a non-negative number, we call it the
radiusof g,. It is immediate that,(g, ") = r(g,).

LEMMA 5.3.1.d,(g,) < p™*'), hence alsal, (g, ") < p»(¥r).

PROOF. Leta, be defined as above, and tet Zqr,(q,) be the scalar matrix™" so
thatza, € Mq(Z,). Sincep, is an algebra homomorphism, we conclude #dtg, € O,,
and hence that;(g,) € p"Z, for all i. O

Now letT be as in Theorem 4.4.4. For each prim¢ R, let S, denote all elements of
G, of radius at most such thath,(g,) < p (we setS, = 0 if p € R) also identify every
h € S, with the elemeny € G(A;) such thaty, = h andg, = 1 for all primesp’ # p.
Finally, givene > 0 let:
SE = Ungengp C G(Af)
This family of sets ig'-bounded by construction. It follows that fesmall enough, we can
associate to each € £ a commuting subse{ty(j)};l:1 C O, of discriminants bounded by

O(e~™"), such that every € G(Q) causing an intersection farB3 w.r.t. Hecke translation
by S. lies in the subalgebr& = Q (vV,...,+?) c D(Q), which is isomorphic to a
number field also to be denotdd Given this data we leE = Z[y(V, ... y@]denote
the subring of® generated by the), and letD = O(¢~%"") denote the product of their
discriminants, a multiple of the discriminantfof SinceO is aZ-algebra of finite type all
its elements are integral over. In particular we havéy C O and hence the discriminant
of F' dividesD. Reflecting this we set

Rp =RU{p|p|D}, P.={p<e™}\Rp.

LetTr C G be the (maximall)-torus such thal' »(Q) = F*. We will be interested in
the Q,-points of this torus, a subtorus 6f,. ClearlyTr(Q,) = (F ®q Q,)* C D(Q,)*.
As is well-known,F' ®q Q, ~ @, I, where the direct sum is over the placesrolying
overp. We thus have:

(Faq @) ~ ] 7.
vlp

We now assume ¢ Rp. Then everyw € |F| lying abovep is unramified, and hence
p is still a uniformizer ofF, so thatF* = QxOy; . In fact, i = Q) F,}, whereF, =

IThis definition is independent of the choice of isomorphispbut we shall not need this fact.
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{z € F, | Nj'(z) = 1} C OF,. We thus have:

TF(@;D)2 HQ; X HFvl
vlp lp

SettingT3(Q,) = L, Q;, T#(Q,) = [I,, F, we note that these are tii@,-points,
respectively, of the maximal split and anisotrofdg-subtori of T. In other words, we

have just written our torus as an almost-direct product of its split and anisotropic parts.

LEMMA 5.3.2. (torus orbit contained in an apartment) Assumet Rp. Then there
existk, € K, for whichk 'T®(Q,)k, C T(Q,). In addition, T?(Q,) C K,, so that
TF(QP) - ka(Qp)Kp-

PROOF We first note that sinc® is a freeZ-module of finite rank, every element of
O is integral overZ. In particular, the elements of the ring C F (defined above) are
algebraic integers of. Since theyY) generatel’, we see thaf? is an order ofF, and its
discriminant dividesD. Sincep does not divideD this implies that¥ is dense IOy, for
any placev € |F| lying abovep. For the remainder of this proefwill denote such a place,
and sums or products will be over the set of places dfing abovep.

The proof thatF' is dense in®, F, can be extended to show th&at® Z, is dense in
®,OF, and hence that

©,0p, = E®7Z, C O,.

Restricting our attention to the invertible elements we conclude that

Q) ¢ [[ 0%, € K,

In order to diagonalize the split part we let € F' ® Q, denote the idempotent given
by the identity element of’, under the isomorphism df ® Q, with &, F,,. Since

T?(Qp) = {Zavxv |a, € @;} 5

v

it suffices to simultaneously diagonalize the }. Sincex, € Op,, the previous discussion
shows thate, € O,. Applying the isomorphisnyp, it now suffices to show that a family
{z,} of commuting idempotents ip(O,) = M,(Z,) can be diagonalized by an element
of GL4(Z,). Equivalently we need to find a minimal generating set of the standard lattice
A =®Zye; C Qg which consists of joint eigenvectors of the.

For each choice of eigenvalues € {0,1}, we setP(¢) = [[,(—1)*(z, — &,) €
M,(Z,). Since thex, commute, this is a collection of commuting idempotents as well.
Furthermore, it is easy to check that. P(¢) = [], (v + (1 — z,)) = 1. This way we
obtain a direct sum decomposition= @®_.A, whereA, = P(¢)A. Itis clear that eacth,
is a torsion-freeZ,-module consisting of those elements A for which z,t = ¢,t for
everywv. In particular, we can chooseZg-basis for each of them. Combining these bases
we obtain the desired basis far and hence an element 6fL,(Z,) conjugating the(z, }
to diagonal — 1 matrices. O
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For each prime € P. now fix k, as in the lemma and léf be the transversal con-
structed in Definition 5.1.22. The first claim of Proposition 5.1.23 assures us we can choose
a set of representatives € GL;(Q,) such thaf g;(x,0)} = S.

COROLLARY 5.3.3. LetS, = {kyp, " (g:)k, '} 5 Then:

(1) S, C S,. In other words, every, € S, is of radius at most and height at most
p-

(2) We haveS, C S, \ Tr(Q,)K,.

(3) Forz #y € S,andg € Tp(Q,) gz = y impliesg € k'K, k, = K.

(4) For everyz,, € G we have

1
Z |¢(eroogp)|2 > F |¢<er00)’2~

gpESp

PROOF. (1) The elements of are of relative positions, and—e, + ¢, to the identity
coset, respectively. Their pull-backs &pyl are thus of radius and reduced norm of abso-
lute value eithep or 1. Since multiplication by an element &f, on the left or right does
not change the radius or the height of an elemeidt,gfthe same holds for the elements of
Sp.

(2) and (3) follow directly from the corresponding claims of Proposition 5.1.23 via the
Lemma. Part (4) follows from 5.2.2. O

Again constructing our set of translates place-by-place, we set:

Se=|J S,
p

2§6_T

LEMMA 5.3.4. (intersections only occur place-by-place) L.etause an intersection
for Hecke translates of ., B by S.. Then there exists a primesuch thaty, € K, for all

P # p.

PrROOF Recall the basic observation from the previous chaptergif € S, are distinct
and~ causes an intersection betweepBg andz., B¢’ then (the finite part of equation
(4.4.2)):

vegKg
Letg € Sp, g € Sp. If p” # p,p' thenforg,., g, € Ky SOy € Ky If p=p’ we
are done. In the cage # p thep’-component ofj, is an elemeny,, € K,,. We then read
off v, € g, K. Sincey € Tr(Q,) this meansgy, € Tr(Q,)K,, which contradicts the
construction ofS,, as interpreted in the first part of Corollary 5.3.3. O

The main geometric property of our construction is now clear:

PROPOSITIONS.3.5. There exists finite subsétC I" such that fore small enough, the
set ofy € G(Q) that cause intersections fdtr.. By}, (7 € (2 fixed) is contained in
I. In particular, any point of the uniom.. B |JUges. 2 Bg C X is contained in at most
|I| of the translates forming the union.
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PROOF Recalling the observation leading to equation (4.4.3), we set
Q= {g € Gl ||det(g)| =1 ATz ER* 1 g2 € QmBa(C’,O(l))Q;}}.

Forg € @ and:z, as in the definition, we havglet(z.)| = |det(gz~)| belonging to
a compact subset &*. It follows that @) is relatively compact, and we will see that
I =T N Q works as claimed.

Lety € F* = Tr(Q) cause an intersection betweep Bg andz ., Bg'. By the Lemma
we haveg, ¢’ € S, for somep, so thaty,, € K, for all p" # p. At the placep itself the
second claim of Corollary 5.3.3 now gives € K, sothaty € K;,i.e.y € KiNG(Q) =T.

Next,y € Kiimplies|v(v)[,, =11, lv(7,)| " = 1 sothat|det()| = 1 andy € Q.

Finally, lety € xBg with g € S,. Then, ify € z,, B¢’ for some othey’ € S, we
must havey’ € S, and somey € I causing that intersection. As usual we write this in the
form:

Yo gpKp = géaKp-
In particular, the cosey, K, € G,/K, can be recovered from andg. Now sinces,
was chosen to be a system of representatives for a set of such cosets, it follog/aghat
uniquely determined by, so that there can be at mao$t suchg'. O

5.4. The proof of theorem 5.0.1

In summary, we fixed an open compact subgréijp< G(A¢), an element € A\ Z,

a compact fundamental domdin, C G, and relatively compact neighbourho6dC'
M,A,.

Then, fore > 0 small enough, we have found in order a number figldith discrim-
inant boundD controlling the intersections, a set of primBsavoiding ramification, and
finally a set of Hecke translates satisfying both geometric and spectral properties. We
now show that for any central characteunramified atR, Hecke eigenfunctiog and any
x € Xz, uy(xB) decays polynomially witfa.

ProoF Choose some,., € (1 projecting toxr € X, and letl, g, denote the
characteristic function of the translatg, B¢ C X, Proposition 5.3.5 can be interpreted
to read:

D Leng(y) < |1
gESe

Multiplying by |@Z)(y)]2 and integrating ovek ; we conclude:

> mu(reeBg) < 1]
gESe
Recall the construction df. asU,cp..S,. Changing the order of summation and inte-

gration, we obtain:

S i (m Bg) = / S o) dm(d)

gESY gESY
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Wheredm is the Haar measure oK ,. We now apply part (4) of Corollary 5.3.3 and

conclude

> olanBo) >~ [ ) am(t) = —gpslab).

Summing ovep € P. we get:

Since

while

> (s Bg) > (Z %) piy (2 B).

gESe pEP.
1 1 1
Z — = Zﬂ—FlogD <L loge 7,
PERD p PER p
Z 1 S T/
1-6 ?
p2§67T p

the latter expression also bounds the asymptoticgzg)efpe p~ 1. We thus have:

1y (2B, (C, €)) < €793,

We remark that the implicit constant indeed only depends,@m properties ob and
K such that the sek of ramified places and the structure constanfs, and finally on
the choices of)., C. The exponenty = 7'§/3, furthermore, only depends on the degree
d of the division algebra (sinc& depends on that and on the dimensior: d? of the
subalgebra spanned By, A,). O
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