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Abstract

We report progress on the equidistribution problem of automorphic forms on locally
symmetric spaces. First, generalizing work of Zelditch-Wolpert we construct a represen-
tation theoretic analog of the micro-local lift, showing that (under a technical condition of
non-degeneracy) every weak-* limit of the generalized Wigner measures associated to a
sequence of Maass forms with divergent spectral parameters on a locally symmetric space
Γ\G/K can be lifted to a measure on the homogeneous spaceΓ\G which is invariant by
a maximal split torusA in G. Secondly, we consider the case whereG ' PGLd(R) and
Γ < G is a lattice associated to a division algebra overQ of prime degreed. When the
measures are associated to Hecke-Maass eigenforms, we generalize the work of Bourgain-
Lindenstrauss to show that every non-triviala ∈ A acts with positive entropy on each
ergodic component of the lifted measure. Applying recent measure rigidity results of
Einsiedler-Katok we find that the limit measure must be the Haar measure onΓ\G. In par-
ticular we prove that a non-degenerate sequence of Hecke-Maass forms becomes equidis-
tributed inΓ\G/K in the semiclassical limit.

These results arise from joint work with Akshay Venkatesh of the Courant Institute of
Mathematical Sciences.
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CHAPTER 1

Introduction

1.1. General starting point: the semi-classical limit on Riemannian manifolds

Let Y be a compact Riemannian manifold, with the associated Laplace operator∆ and
Riemannian measuredρ. An important problem of harmonic analysis (or mathematical
physics) onY is understanding the asymptotic behaviour of eigenfunctions of∆ in the
large eigenvalue limit. The equidistribution problem asks whether for an eigenfunctionψ

with a large eigenvalueλ, |ψ(x)| is approximately constant onY . This can be approached
“pointwise” and “on average” (bounding‖ψ‖L∞(Y ) and‖ψ‖Lp(Y ) in terms ofλ, respec-
tively), or “weakly”: asking whether as|λ| → ∞, the probability measures defined by
dµ̄ψ(y) = |ψ(y)|2 dρ(y) converge in the weak-* sense to the “uniform” measuredρ

vol(Y )
.

For example, Sogge [29] derivesLp bounds for2 ≤ p ≤ ∞, and in the special case of
Hecke eigenfunctions on hyperbolic surfaces, Iwaniec and Sarnak [15] gave a non-trivial
L∞ bound. Here we will consider the weak-* equidistribution problem for a special class
of manifolds and eigenfunctions.

A general approach to the weak-* equidistribution problem was found by Šnirel′man
[28]. To an eigenfunctionψ he associates a distributionµψ on the unit cotangent bundle
S∗Y projecting toµ̄ψ on Y . Generalizing the “Wigner function” formalism of statisti-
cal physics (see, e.g. [11, pp. 58–59] or the original account [32]), this construction (the
“microlocal lift”) proceeds using the theory of pseudo-differential operators and has the
property that, for any sequence{ψn}∞n=1 ⊂ L2(Y ) with eigenvaluesλn tending to infinity,
any weak-* limit of theµn = µψn is a probability measure on the unit tangent bundleS∗Y ,
invariant under the geodesic flow. Since any weak-* limit of theµn projects to a weak-*
limit of the µ̄n, it suffices to understand these limits; Liouville’s measuredλ onS∗Y plays
here the role of the Riemannian measure onY .

This construction has a natural interpretation from the point of view of semi-classical
physics. The geodesic flow onY describes the motion of a free particle (“billiard ball”).
S∗Y is (essentially) thephase spaceof this system, i.e. the state space of the motion. In
this setting one calls a functiong ∈ C∞(S∗Y ) an observable. The state space of the
quantum-mechanical billiard isL2(Y ), with the infinitesimal generator of time evolution
−∆. “Observables” here are bounded self-adjoint operatorsB : L2(Y ) → L2(Y ). Decom-
posing a stateψ ∈ L2(Y ) w.r.t. the spectral measure ofB gives a probability measure on
the spectrum ofB (which is the set of possible “outcomes” of the measurement). The ex-
pectation value of the “measuringB while the system is in the stateψ” is then given by the
matrix element〈Bψ,ψ〉. In the particular case whereB is a0th-order pseudo-differential

1



1.1. GENERAL STARTING POINT: THE SEMI-CLASSICAL LIMIT ON RIEMANNIAN MANIFOLDS 2

operator with symbolg ∈ C∞(S∗Y ), we think ofB as a “quantization” ofg, and any such
aB will be denotedOp(g).

We can now describe Šnirel′man construction: it is given byµψ(g) = 〈Op(g)ψ, ψ〉.
This indeed liftsµ̄ψ, since forg ∈ C∞(Y ) we can takeOp(g) to be multiplication byg. If
ψ is taken to be an eigenfunction then, asymptotically, this construction does not depend
on the choice of “quantization scheme,” that is to say, on the choice of the assignment
g 7→ Op(g). Indeed, ifB1, B2 have the same symbol of order0, and−∆ψ = λψ (i.e. “ψ
is an eigenstate of energyλ”) then one has〈(B1 −B2)ψ, ψ〉 = O(λ−1/2).

On a philosophical level we expect our quantum-mechanical description to approach
the classical one at the limit of large energies. We will not formalize this idea (the “corre-
spondence principle”), but depend on it for motivating our main question, whether ergodic
properties of the classical system persist in the semi-classical limit of the “quantized” ver-
sion:

PROBLEM 1.1.1. (Quantum Ergodicity) Let{ψn}∞n=1 ⊂ L2(Y ) be an orthonormal basis
consisting of eigenfunctions of the Laplacian.

(1) What measures occur as weak-* limits of the{µ̄n}? In particular, when does

µ̄n
wk-*−−−→
n→∞

dρ hold?

(2) What measures occur as weak-* limits of the{µn}? In particular, when does

µn
wk-*−−−→
n→∞

dλ hold?

DEFINITION 1.1.2. Call a measureµ on S∗Y a (microlocal)quantum limitif it is a
weak-* limit of a sequence of distributionsµψn associated, via the microlocal lift, to a
sequence of eigenfunctionsψn with |λn| → ∞.

In this language, the main problem is classifying the quantum limits of the classical
system, perhaps showing that the Liouville measure is the unique quantum limit. As for-
malized by Zelditch [35] (for surfaces of constant negative curvature) and Colin de Verdière
[4] (for generalY ), the best general result known is still:

THEOREM 1.1.3. (Šnirel′man-Zelditch-Colin de Verdière) LetY be a compact mani-
fold, {ψn}∞n=1 ⊂ L2(Y ) an orthonormal basis of eigenfunctions of∆, ordered by increas-
ing eigenvalue. Then:

(1) 1
N

∑N
n=1 µn

wk-*−−−→
N→∞

dλ holds with no further assumptions.

(2) Under the additional assumption that the geodesic flow onS∗Y is ergodic, there

exists a subsequence{nk}∞k=1 of density1 s.t.µnk
wk-*−−−→
k→∞

dλ.

COROLLARY. For this subsequence,̄µnk
wk-*−−−→
k→∞

dρ.

It was proved by Hopf [14] that the geodesic flow on a manifold of contant negative curva-
ture is ergodic. This was generalized to the case of non-constant negative sectional curva-
ture by Anosov [1]. In that situation Rudnick and Sarnak [25] conjecture a simple situation:
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CONJECTURE1.1.4. (Quantum unique ergodicity) LetY be a compact manifold of
strictly negative sectional curvature. Then:

(1) (QUE onY ) Theµ̄n converge weak-* to the Riemannian measure onY .
(2) (QUE onS∗Y ) dλ is the unique quantum limit onY .

We remark that [25] also give an example of a hyperbolic3-manifoldY , a pointP ∈ Y ,
and a sequence of eigenfunctionsψn with eigenvaluesλn, such that|ψn(P )| � λ

1/4−ε
n . The

pointP is a fixed point of many Hecke operators, and behaves in a similar fashion to the
poles of a surface of revolution. This remarkable phenomenon does not seem to contradict
Conjecture 1.1.4. The scarcity of such points and their higher-dimensional analogues will
play an important role in the analysis of Chapters 4 and 5.

One difficulty associated with this problem is that of multiplicity of the spectrum. For a
negatively curved manifoldY , it is believed that the multiplicities of the Laplacian∆ acting
onL2(Y ) are quite small, i.e. theλ-eigenspace has dimension�ε λ

ε. This question seems
extremely difficult even forSL2(Z)\H, and no better bound is known than the general
O(λ1/2/ log(λ)), valid for all negatively curved manifolds. The freedom associated with
high degeneracy might allow the construction of “scarred” eigenfunctions which become
concentrated on singular subsets ofY .

However, even lacking information on the multiplicities, it transpires that in many nat-
ural instances we have adistinguished basisfor L2(Y ). In that context, it is then natural
to ask whether Conjecture 1.1.4 can be resolved with respect to this distinguished basis.
Since it is believed that the∆-multiplicities are small, this modification is, philosophi-
cally, not too far from the original question. However, it is in many natural cases far more
tractable. The main example is that ofcongruencequotients of symmetric spaces, where
the distinguished basis is that of Hecke eigenforms. This is discussed further below, after
introducing the important work on surfaces of constant negative curvature.

1.2. Hyperbolic surfaces and automorphic forms

The quantum unique ergodicity question for hyperbolic surfaces has been intensely
investigated over the last two decades. We recall some important results.

Zelditch’s work [34, 36] on the case of compact surfacesY of constant negative cur-
vature provided a representation-theoretic alternative to the original construction of the
microlocal lift via the theory of pseudo-differential operators. It is well-known that the
universal cover of such a surfaceY is the upper half-planeH ' PSL2(R)/SO2(R), so
Y = Γ\H for a uniform latticeΓ < G = PSL2(R). Then theSO2(R) ' S1 bun-
dle X = Γ\PSL2(R) � Y is isomorphic to the unit cotangent bundle ofY . In this
parametrization, the geodesic flow onS∗Y is given by the action of the maximal split torus

A =

{(
et/2

e−t/2

)}
onX from the right. Zelditch’s explicit microlocal lift starts with

the observation that an eigenfunctionψn (considered as aK-invariant function onX) can
be thought of as the spherical vectorϕ(n)

0 in an irreducibleG-subrepresentation ofL2(X).
He then constructs another (“generalized”) vector in this subrepresentation, a distribution
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δ(n), and shows that the distribution given byµψn(g) = δ(n)(gϕ
(n)
0 ) for g ∈ C∞

c (X) agrees
(up to terms which decay as theλn grow) with the microlocal lift. He then observes that
the distributionµψn is exactly annihilated by a differential operator of the formH + J

rn

whereH is the infinitesimal generator of the geodesic flow,J a certain (fixed) second-
order differential operator, andλn = −1

4
− r2

n. It is then clear that any weak-* limit taken
as|λn| → ∞ will be annihilated (in the sense of distributions) by the differential operator
H, or in other words be invariant under the geodesic flow. Wolpert [33] made Zelditch’s
approach self-contained by showing that the limits are positive measures without using
pseudo-differential calculus. One advantage of this approach is that it is based entirely on
the right action ofPSL2(R) onX, and in particular respects structures onX that commute
with this action.

WhenΓ < PSL2(R) is a so-calledcongruencelattice, there are additional operators
acting on functions onX = Γ\PSL2(R): for each primep (except for a finite set of “ram-
ified primes” depending onΓ) there exists an operatorTp : L2(X) → L2(X) commuting
with the right action ofPSL2(R). It arises from aPSL2(R)-equivariant foliation ofX into
p + 1-regular graphs (the “Hecke Foliation”; almost all the leafs are trees), andTp is the
graph Laplacian operator on each leaf. In particularTp also acts on functions onY and
commutes with∆. These are theHecke operators, and they all commute. The joint eigen-
functions of all theTp and∆ are called Hecke-Maass forms. They encode considerable
arithmetic information and are central objects of study in analytic number theory. They are
the prototypical examples of the more general automorphic forms considered below, and
will form our distinguished basis.

Much more results are known on the quantum chaos problem for Hecke-Maass forms.
One example is the Iwaniec-Sarnak result mentioned above. Of interest to us, a quantum
limit µ∞ arising from micro-local lifts of these eigenfunctions is called anarithmetic quan-
tum limit. The arithmetic quantum chaos problem (posed in general below generality) is
the classification of such limits.

The study of arithmetic quantum limits started with the seminal result of Rudnick and
Sarnak [25], that a weak-* limitµ̄∞ coming fromµ̄ψn attached to Hecke-Maass eigenforms
cannot be supported on a finite union of closed geodesics. One way to think of this result
is as stating that arithmetic quantum limits cannot be too singular, due to the behaviour of
Hecke eigenfunctions along the Hecke foliation: if a Hecke eigenfunction is too large on
a piece of the geodesic, it must also be somewhat large at translates of this piece by the
Hecke foliation. A clever choice of the primep (depending on the closed geodesics under
consideration) assured that the translates were all disjoint, and a contradiction was obtained
to the fact that̄µn(Y ) = 1.

Using many places at once, Bourgain and Lindenstrauss [3] obtained a significantly
stronger result: they showed that theµ∞-measure of anε-neighbourhood of a piece of a
geodesic must decay at least as fast asε2/9. In the language of ergodic theory, they have
shown that anya ∈ A acts on every ergodic component of an arithmetic quantum limitµ∞
with positive entropy.
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Building on this result, Lindenstrauss [19] proved a theorem classifyingA-invariant
measures onX satisfying the positive entropy property as well as a “recurrence” property
easily satisfied by arithmetic quantum limits: such measures must be proportional to the
Haar measuredx. This (almost) answered the arithmetic QUE problem for congruence
surfaces:

THEOREM 1.2.1. (Lindenstrauss) LetY = Γ\H be a congruence quotient of the hy-
perbolic plane, and letµ∞ be an arithmetic quantum limit onX = Γ\PSL2(R) ' S∗Y .
Thenµ∞ = c · dx for somec ∈ [0, 1]. If Γ is co-compact (ie arising from a quaternion
algebra) thenc = 1.

The main theorem of this thesis is a generalization of this theorem to division algebras
of degree greater than2. As the basic strategy of the proof remains the same, we shall
record it here:

(1) Start with a sequence of Hecke-Maass forms{ψn}∞n=1 ⊂ L2(Y ) and their associ-
ated measures{µ̄n}, converging to a limit measurēµ∞.

(2) Passing to a subsequence, lift them to measuresµn on the bundleX � Y con-
verging to a limitµ∞ which is invariant under a subgroupA < PSL2(R). The lift
is constructed in way which respects the Hecke-eigenform condition.

(3) Using the Hecke correspondence, show that an arithmetic limitµ∞ cannot be too
singular, in that it must have positive entropy w.r.t. the action of elementsa ∈ A.

(4) Apply a measure-rigidity theorem to show thatµ∞ ∝ µHaar.

We should remark that the special case of congruence surfaces can also be attacked from
a different direction. A beautiful formula of Watson [30] relates the triple-product integral
µ̄n(ψm) to a special value of an L-function attached toψn × ψ̄n × ψm. Equidistribution
of the µ̄n would follow from fast enough decay of this special value, which in turn would
follow from an appropriate Generalized Riemann Hypothesis. The rate of decay obtained
this way from the GRH is best possible (that was shown in [22]). Moreover, conditioned on
the GRH the formula permits an evaluation of the normalization ofµ∞ in the non-compact
case (the “escape-of-mass” problem) givingµ̄∞(Y ) = 1 in that case as well. In fact, to
show thatc = 1 it suffices to give a sub-convex bound in the eigenvalue aspect for the
Rankin-SelbergL-functionL(1

2
, ψn × ψ̄n).

1.3. Quantum unique ergodicity on locally symmetric spaces

Lindenstrauss’s clear exposition [18] of the Zelditch-Wolpert microlocal lift actually
considers the case ofY = Γ\ (H× · · · ×H) for an irreducible latticeΓ in PSL2(R) ×
· · ·×PSL2(R). The natural candidates forψn there are not eigenfunctions of the Laplacian
alone, but rather of all the “partial” Laplacians associated to each factor separately. Set now
G = PSL2(R)h,K = SO2(R)h,X = Γ\G, Y = Γ\G/K, and take∆i to be the Laplacian
operator associated with theith factor (so thatC [∆1, . . . ,∆h] is the ring ofK-bi-invariant
differential operators onG). Assume that∆iψn +λn,iψn = 0, wherelimn→∞ λn,i = ∞ for
each1 ≤ i ≤ h separately. Generalizing the Zelditch-Wolpert construction, Lindenstrauss

obtains distributionsδ(n)ϕ
(n)
0 onX, projecting toµ̄ψnonY , and so that every weak-* limit
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of these (a “quantum limit”) is a finite positive measure invariant under the action of the
full maximal split torusAh.

It is important to note that the lift is to the bundleX � Y which is not the unit
cotangent bundle ofY , in fact much smaller: it is3h-dimensional whereasS∗Y would be
4h−1-dimensional. Moreover, the limits obtained are invariant by a much larger subgroup
(of dimensionh) rather than the1-dimensional geodesic flow ofS∗Y . The last fact is
not entirely surprising, in that we have assumed thatψn are eigenfunctions of a family of
h independent commuting differential operators. This phenomenon will repeat with our
general representation-theoretic lift below.

Following the construction, Lindenstrauss proposes the following version of QUE, also
due to Sarnak:

PROBLEM 1.3.1. (QUE on locally symmetric spaces) LetG be a connected semi-simple
Lie group with finite center. LetK be a maximal compact subgroup ofG, Γ < G a lattice,
X = Γ\G, Y = Γ\G/K. Let {ψn}∞n=1 ⊂ L2(Y ) be a sequence of normalized eigenfunc-
tions of the ring ofG-invariant differential operators onG/K, with the eigenvalues w.r.t.
the Casimir operator tending to∞ in absolute value. Is it true that̄µψn converge weak-* to
the normalized projection of the Haar measure toY ?

We remark that a central character should certainly play no role in this problem, and it
is possible to consider instead the case whereG is a reductive group, andψn ∈ L2(Y, ωn)

is a sequence of eigenfunctions which transform under unitary central charactersωn ∈ Ẑ

whereZ is the center ofG. The measures̄µψn are then probability measures onYZ = Z\Y ,
since|ψn(y)|2 is Z-invariant. We take this point of view from now on. We therefore also
will use the notationXZ = Z\X.

Chapter 3 is devoted to showing the first result of this thesis (Theorem 1.3.2 below): the
construction of the microlocal lift in this setting. We will impose a mild non-degeneracy
condition on the sequence of eigenfunctions (see Section 3.3.2; the assumption essentially
amounts to asking that all eigenvalues tend to infinity, at the same rate for operators of the
same order.)

With K andG as in Problem 1.3.1, letA be as in the Iwasawa decompositionG =

NAK, i.e. A = exp(a) wherea is a maximal abelian subspace ofp. (Full definitions
are given in Section 2.2). ForG = GLn(R) andK = On(R), one may takeA to be the
subgroup of diagonal matrices with positive entries. Letπ : XZ → YZ be the projection.
We denote bydx theG-invariant probability measures onXZ , and bydy the projection of
this measure toYZ .

The content of the Theorem that follows amounts, roughly, to a “G-equivariant mi-
crolocal lift” on Y . While our definitions have been specific toGLn(R), the proof will not
make any use of this fact. The theorem holds for any reductive group, with appropriate
generalization of the non-degeneracy assumption.
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THEOREM 1.3.2. Let ψn ⊂ L2(Y, ωn) be a non-degenerate sequence of normalized
eigenfunctions, whose eigenvalues approach∞. Then, after replacingψn by an appropri-
ate subsequence, there exist functionsψ̃n ∈ L2(X,ωn) and distributionsµn onXZ such
that:

(1) The projection ofµn to YZ coincides with̄µn, i.e.π∗µn = µ̄n.
(2) Letσn be the measure|ψ̃n(x)|2dx onXZ . Then, for everyg ∈ C∞

c (XZ), we have
limn→∞(σn(g)− µn(g)) = 0.

(3) Every weak-* limitσ∞ of the measuresσn (necessarily a positive measure of mass
≤ 1) isA-invariant.

(4) (Equivariance). LetE ⊂ EndG(C∞(XZ)) be aC-subalgebra of bounded endo-
morphisms ofC∞(XZ), commuting with theG-action. Noting that eache ∈ E

induces an endomorphism ofC∞(Y ), suppose thatψn is an eigenfunction forE
(i.e.Eψn ⊂ Cψn). Then we may choosẽψn so thatψ̃n is an eigenfunction forE
with the same eigenvalues asψn, i.e. for all e ∈ E there existsλe ∈ C such that
eψn = λeψn, eψ̃n = λeψ̃n.

We first remark that the distributionsµn (resp. the measuresσn) generalize the con-
structions of Zelditch (resp. Wolpert). Although, in view of (2), they carry roughly equiv-
alent information, it is convenient to work with both simultaneously: the distributionsµn
are canonically defined and easier to manipulate algebraically, whereas the measuresσn
are patently positive and are central to the arguments of Chapter 5.

PROOF. In Section 3.3.1 we define the distributionsµn. (In the language of Definition
3.3.3, we takeµn = µψn(ϕ0, δ)).

Claim (1) is established in Lemma 3.3.6.
In Section 3.3.2 we introduce the non-degeneracy condition. Proposition 3.3.13 defines

ψ̃n and establishes the claims (2) and (4). (Observe that this Proposition establishes (2)
only forK-finite test functionsg. Since the extension to generalg is not necessary for any
of our applications, we omit the proof.)

Finally, in section 3.4 we establish claim (3) (Corollary 3.4.9) by finding enough dif-
ferential operators annihilatingµn. �

REMARK 1.3.3.

(1) It is important to verify that non-degenerate sequences of eigenfunctions exist. We
mostly consider here the case compact quotientsXZ , for which [7, 6] show that a
positive proportion of the unramified spectrum lies in every open subcone of the
Weyl chamber (for definitions see Theorem 3.2.7 and the discussion in Section
3.1). A similar statement for finite-volumearithmeticquotientsY should follow
from the recent techniques of [20]. Earlier, [23, Thm. 5.3] has treated the case of
SL3(Z)\SL3(R)/SO3(R).

(2) We shall use the phrasenon-degenerate quantum limitto denote any weak-* limit
of σn, where notations are as in Theorem 1.3.2. Note that ifσ∞ is such a limit,
then claim (2) of the Theorem shows that there exists a subsequence(nk) of the
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integers such thatσ∞(g) = limnk→∞ µnk(g) for all g ∈ C∞
c (XZ). Depending on

the context, we shall therefore use the notationσ∞ or µ∞ for a non-degenerate
quantum limit.

(3) It is not necessary to pass to a subsequence in Theorem 1.3.2. See Remark 3.3.12.
(4) It is likely that theA-invariance aspect of Theorem 1.3.2 could be established by

standard microlocal methods; however, the equivariance property does not follow
readily from these methods and is absolutely crucial for our application. For us
the invariance arises from the action of the ring of invariant differential operators,
which is a polynomial algebra inr generators wherer = dimA.

(5) The measuresµn all are invariant by the compact groupM = ZK(a). In fact,
Theorem 1.3.2 should strictly be interpreted as lifting measures toXZ/M rather
thanXZ .

(6) Theorem 1.3.2 admits a natural geometric interpretation. Informally, the bundle
X/M → Y may be regarded as a bundle parameterizing maximal flats inY , and
theA-action onX/M corresponds to “translation along flats.” We refer to [27,
Sec. 5.3] for a further discussion of this point.

The existence of the microlocal lift already places a restriction on the possible weak-*
limits of the measures{µ̄n} on YZ . For example, theA-invariance ofµ∞ shows that the
support of any weak-* limit measurēµ∞ must be a union of maximal flats.

More importantly, Theorem 1.3.2 allows us to pose a new version of the problem:

PROBLEM 1.3.4. (QUE on homogeneous spaces) In the setting of Problem 1.3.1, is the
G-invariant measure onXZ the unique non-degenerate quantum limit?

REMARK 1.3.5. When formulating Conjecture 1.1.4, Rudnick and Sarnak could rely
on part (2) of Theorem 1.1.3 to guarantee that the conjectured unique limit is, in fact, a
quantum limit. As the geodesic flow on the locally symmetric spaces we consider is also
ergodic, this argument extends to the context of Problem 1.3.1 (at least whenY is compact).
While our work on the arithmetic case outlined in the next section implies (in certain special
cases) the analogous fact for Problem 1.3.4, it is likely that a direct proof is possible. This
is especially so in the compact quotient case, when the main problem is of technical nature:
showing that most of the spectrum is non-degenerate in our sense. This should follow from
the results of [7].

1.4. Arithmetic QUE in the higher-rank case

The main result of this thesis is the resolution of Problem 1.3.4 for certain higher rank
symmetric spaces, in the context ofarithmeticquantum limits. We first recall their defini-
tion and significance.

As in the special case of congruence quotients of the hyperbolic plane, the situation
of having (something close to) a distinguished basis occurs forY = Γ\G/K andΓ ⊂ G

a congruence lattice. For almost all primesp there exists a commutative algebraHp of
operators acting onL2(X) arising from a discrete foliation. These operators commute
with each other and with theG-invariant differential operators. This distinguished basis
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is obtained by simultaneously diagonalizing the action of the Hecke operators. Precise
definitions of the foliation and the Hecke operators in the case under consideration are given
in Section 2.3; in any case, we refer to quantum limits arising via the lift from subsequences
of Hecke-Maass forms asarithmetic quantum limits. A special case of Problem 1.3.4 is
then:

CONJECTURE1.4.1. (Arithmetic QUE) Letψn ∈ L2(Y, ωn) be a (non-degenerate ?)
sequence of Hecke-Maass eigenforms. Isdy the unique weak-* limit of thēµn? Is the
G-invariant measure onXZ the unique (non-degenerate ?) arithmetic quantum limit?

In Chapters 4 and 5 we study the properties of arithmetic quantum limits in the case
whereΓ arises from the multiplicative group of a division algebra of prime degreed over
Q. The cased = 2 is the theorem of Lindenstrauss discussed above.

For brevity, we state the result in the language of automorphic forms; in particular,A is
the ring of adéles ofQ. Detailed discussion of the construction may be found in Chapter 2.

Let D/Q be a division algebra of prime degreed, and letG = D× be the associated
general linear group. Assume thatG is split at∞, ie thatG = G(R) ' GLd(R). Let
Kf be an open compact subgroup ofG(Af) such thatX = G(Q)\G(A)/Kf contains a
singleG-orbit. Then there exists a discrete subgroupΓ < G(R) such thatX = Γ\G, and
Section 2.3 develops a Hecke algebraH(R) acting on functions onX via Hecke operators
at almost all primes. There exists an abundance of open compact subgroupsKf satisfying
the condition above. For example, quotients ofG by congruence subgroups associated to
Eichler orders are of this type (see Lemma 2.3.7 for details).

The subgroupΓ projects to a co-compact lattice inG/Z ' PGLd(R) whereZ is the
center ofG. As in the previous section we letXZ = ZΓ\G denote the resulting compact
homogeneous space ofPGLd(R),A denote the maximal split torus of diagonal matrices in
G, andωn denote unitary characters ofZ.

The second result of this thesis is:

THEOREM 1.4.2. Let ψ̃n ∈ L2(X,ωn) be a sequence ofH(R) eigenforms onX such
that the associated probability measuresσn on XZ converge weak-* to anA-invariant
probability measureσ∞. Then everya ∈ A \ Z acts on everyA-ergodic component ofσ∞
with positive entropy.

PROOF. This is essentially a rephrasing of Theorem 5.0.1, where the uniformity of the
estimate means it carries over to weak-* limits. By that theorem we find anη > 0 such
that for any fixedC ⊂ MaAa as defined in Section 4.2 and small enoughε we have for
all x ∈ XZ thatσ∞(xB(C, ε)) � εη. For a proof that this bound implies thata acts with
positive entropy see [17, Sec. 8]. While written for the case of quaternion algebras (d = 2),
that discussion readily generalizes to our situation by modifying its “Step 2” to account for
the action ofa on the Lie algebra – compare our Section 4.2 and the definitions at the start
of [17, Sec. 7]. �
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REMARK 1.4.3. The statement of Theorem 5.0.1 gives a direct bound on singular be-
haviour of theσn. Its proof follows the ideas of Rudnick-Sarnak and Bourgain-Linden-
strauss: translating the setxB(C, ε), which is anε-neighbourhood of a pieceC of a “gen-
eralized geodesic” (Levi subgroup) by the Hecke correspondence at many places we show
that it must have smallσn-measure.

1.5. The Main Theorem

Following the strategy proposed above, we now state and prove the main result of this
thesis:

THEOREM 1.5.1. Let YZ ' Γ\PGLd(R)/SOd(R) be a compact locally symmetric
space, where the latticeΓ is associated to an Eichler order in a division algebra of the
prime degreed overQ, split overR. Let{ψn}∞n=1 ⊂ L2(YZ) be a non-degenerate sequence
of Maass forms which are also eigenforms of the Hecke algebraH(R) of Section 2.3. Then
the associated probability measuresµ̄n converge weak-* to the normalized Haar measure
on Y , as their liftsµn converge weak-* to the normalized Haar measuredx on XZ =

Γ\PGLd(R).
In other words, then the normalized Haar measure is the unique non-degenerate arith-

metic quantum limit in this case.

PROOF. In fact, the proof generalizes to the case whereψn ∈ L2(Y, ωn) for central
charactersωn. The cased = 2 is Lindenstrauss’s Theorem quoted as Theorem 1.2.1 above,
and we will thus assumed ≥ 3. Passing to a subsequence, letψn ∈ L2(Y, ωn) be a non-
degenerate sequence of Hecke-Maass forms onY such that̄µn → µ̄∞ weakly. Passing to
a subsequence, let̃ψn andσn be as in Theorem 1.3.2 such thatσn → σ∞ weakly andσ∞
lifts µ̄∞. Thenσ∞ is a non-degenerate arithmetic quantum limit onXZ . By Theorem 1.4.2,
σ∞ is anA-invariant probability measure onXZ such that everya ∈ A \ Z acts on every
A-ergodic component ofσ∞ with positive entropy. Then [9, Th. 4.1(iv)] shows thatσ∞ has
a unique ergodic component,µHaar. �

REMARK 1.5.2.

(1) The assumption thatΓ is associated to an Eichler order is of technical nature. The
result certainly holds for Hecke eigenfunctions on an adelic double-coset space
X̃ = G(Q)\G(A)/Kf whereG is the group of invertible elements of aQ-division
algebra which isR-split. In general, however, such a space is a disjoint union of
several components of the formX = Γ\G whereΓ is a congruence subgroup, and
we would like to consider eigenfunctions on the components themselves. It is not
clear, whoever, whether we can form a sufficiently large explicit Hecke algebra
acting on such a component. For this one is interested in the set of primesp such
that each leaf of thep-Hecke foliation (defined in Section 2.3) is contained in a
single componentX of X̃.

(2) In all likelihood it is possible to obtain a version of Theorem 1.3.2 for degen-
erate sequences as well. The resulting quantum limitsµ∞ would be invariant
under subtoriA1 < A depending on the degeneracy of the limit parameterν̃∞.
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A measure rigidity theorem generalizing [19], requiring only invariance under a
one-parameter subgroup, positive entropy and recurrence would then allow us to
drop the non-degeneracy assumption and resolve the AQUE problem for division
algebras of prime degreed ≥ 3.

(3) We expect the techniques developed for the proof of Theorem 1.5.1 will generalize
at least to some other locally symmetric spaces, the case ofD being the simplest;
but there are considerable obstacles to obtaining a theorem foranyarithmetic lo-
cally symmetric space at present. For a generalG, the results of Chapter 4 can
be generalized to show that the intersections will be controlled by a properQ-
subgroup. However, this subgroup can be quite large, making the analysis on the
building much more difficult even whenG(Qp) ' GLd(Qp). Moving from the
building ofGLd to buildings of other types might present difficulties of its own.

(4) It is also possible to prove results for the case whereG is split, i.e. isomorphic to
GLd over Q. The proof is essentially the same except that the measure rigidity
results of [10] are used instead. Since in that case the quotient is not compact
this does not address the escape-of-mass question. Somewhat surprisingly, how-
ever, the normalization of the measure is already controlled by the degenerate
Eisenstein series. Hence a sub-convexity result for the Rankin-SelbergL-function
would control the escape as in the case ofGL2.



CHAPTER 2

Notation and Fundamentals

We define here standard notation and recall basic facts about division algebras over the
rationals and the real, p-adic and adelic Lie groups associated to them.

2.1. Division Algebras

2.1.1. Central simple algebras and their general linear groups.LetK be an infinite
field,D(K)/K a finite-dimensional central simpleK-algebra, i.e. aK-algebra with no two-

sided ideals and centerK. Then for any fieldL/K, D(L)
def
= D(K)⊗KL is a central simple

L-algebra of the same dimension. It is easy to see ([31, Prop. IX-1-2]) that such an algebra
must be of the formD(K) ' Mn(H) whereH is a central division algebra overK. In
particular,dimK D(K) = n2 dimK H.

By the Cayley-Hamilton theorem, every element ofD(L) is algebraic overL. In partic-
ular, if L/K is algebraically closed thenL is the unique division algebra overL, and hence
D(L) 'Md(L) for somed ≥ 1. We then have:

dimK D(K) = dimL D(L) = d2.

In particular, the numberd only depends onD(K) and is called thedegreeof D(K). It also
follows that the dimension of every central simpleK-algebra is a square. An fieldL/K for
whichD(L) 'Md(L) is said tosplit D(K). Alternatively, we say thatD(K) splits overL.

Fixing a linear basis{ui}d
2

i=1 ⊂ D(K), we note that it is also a basis overL of D(L) for

anyL/K. We can then write anyx ∈ D(L) uniquely in the form
∑d2

i=1 xiui. Working in
this co-ordinate system(x, y) 7→ (x · y)i is then a bilinear mapKd2 ×Kd2 → K and hence
there existaijk ∈ K such that(

d2∑
j=1

xjuj

)(
d2∑
k=1

ykuk

)
=

d2∑
i=1

(
d2∑

j,k=1

aijkxiyj

)
ui.

NOTATION 2.1.1. We will use the notation{xi}d
2

i=1 to denote the co-ordinates of any

x ∈ D(L) w.r.t. our basis,{xi(g)}d
2

i=1 for the co-ordinates ofg ∈ D×(L).

We remark that anL-automorphism ofMn(L) is given by a change of basis, i.e. by
conjugation by an element ofGLn(L). It follows that ifA is anL-algebra isomorphic to
Mn(L) then the pullback of the mapdet : Mn(L) → L toA is well-defined independently
of the choice of isomorphism.

12
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FACT 2.1.2. [31, Prop. XI-2-6]

(1) There exists a mapνD(K) : D(K) → K such that for anyL/K whereD splits we
havedet�D(K)= νD(K).

(2) There exists a polynomialνD ∈ K[x1, . . . , xd2 ] of degreed depending on the
choice of basis such thatνD(L)(x) = νD(x1, . . . , xd2) for anyL/K (not neces-
sarily split) and anyx ∈ D(L). HereνD(L) : D(L) → L is the map constructed in
the first part.

(3) The mapsνD(K) andνD are both known as thereduced norm.

Passing to a split extension shows that for anyL/K, x ∈ D(L) is invertible iff νD(x) 6=
0, in which case it is possible to compute the co-ordinates ofx−1 by polynomial functions

of its co-ordinates{xi} andνD(x)−1. We now identifyG def
= D× with the set of solutions

to νD(x1, . . . , xd2) · x0 = 1 in d2 + 1-dimensional affine space. Since the multiplication
operation inD is also polynomial in the co-ordinates (andνD(xx′) = νD(x)νD(x′)) this
makesG into a linear algebraic group defined overK, with the mapsxi : G → A1 all
algebraic and defined overK. We will thus supplement our previous notation by using
x0(g) ∈ L× to denote the inverse of the reduced norm ofg ∈ D×(L).

The center ofG is precisely the invertible elements of the center ofD, i.e. the invertible
elements of the ground field, and we setGad = G/ZG. We also setG1 = {g | νD(g) = 1}.
This is a Zariski-closed subgroup.

If K̄ is an algebraic closure ofK then we haveD(K̄) ' Md(K̄). It is then clear that
G(K̄) ' GLd(K̄), Gad(K̄) ' PGLd(K̄) andG1(K̄) ' SLd(K̄). In particular, the last
isomorphism shows thatG1 is simply connected as an algebraic group.

2.1.2. Algebras over local and global fields.LetDp be a central simple algebra over
the fieldQp. An order Op ⊂ Dp is a finitely-generatedZp-subalgebra which spansDp.
Equivalently, it is a compact openZp-subalgebra.

Now let D be a central simple algebra overQ. An order is a finitely-generatedZ-
subalgebraO ⊂ D(Q) which contains a basis forD(Q) over Q. An order ismaximalif
it is not properly contained in another order. These exist (e.g. by Zorn’s Lemma) and we
choose a maximal orderO ⊂ D(Q). It is a torsion-free abelian group of rankd2. We can
thus fix aZ-basis{ui}d

2

i=1 ⊂ O once and for all. The structure coefficientsaijk with respect
to this basis then all lie inZ.

For a placev ∈ |Q|, the local fieldQv is an extension ofQ and we setDv = D(Qv) =

D(Q) ⊗Q Qv andGv = G(Qv) = D×
v . In particular we denoteG = G∞. We say thatD

splits atv ∈ |Q| if it splits overQv.

FACT 2.1.3. (for proofs, see[31]) For a finite primep of Q letOp denote the (topologi-
cal) closure ofO in D(Qp).

(1) νDp(D
×
p ) = Q×

p and henceνDp(O×
p ) = Z×

p .
(2) relatively compact multiplicatively closed subsetT ⊂ Dp is contained in a maxi-

mal order. In particularK < Gp is maximal compact iffK = R×
p for a maximal

orderRp ⊂ D(Qp).
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(3) Op is a maximal order inD(Qp), in particular a maximal compact subring;
the maximal orders ofD(Qp) are all conjugate;Md(Zp) is a maximal order of
Md(Qp).

(4) For almost allp we haveD(Qp) 'Md(Qp). We then haveGp ' GLd(Qp) can fix
an isomorphismϕp : Gp → GLd(Qp) such thatϕp(O×

p ) = GLd(Zp).

(5) We haveOp = ⊕d2

i=1Zpui. In particularxi(g) ∈ Zp for everyg ∈ O×
p .

Following claim (3) we fix the maximal compact subgroupsKp = O×
p of Gp. The first

part of claim (4) is thatD splits at almost all places. We letR0 denote the set of finite places
wereD doesnot split.

2.1.3. Division algebras of prime degree.We now make the assumption thatD/Q is
a division algebra and that its degreed is a prime and at least3. If K/Q is a field extension,
thenD(K) is a central simpleK-algebra, hence a matrix algebra over a central division
H/K. We then have

d2 = dimK D(K) = dimH D(K) · dimK H.

As d is prime anddimH D(K) anddimK H are both squares, there are two possibilities. If
H = D(K) (i.e.D(K) is also a division algebra), we say thatD ramifiesoverK. Otherwise
we haveH = K, that isD splits overK.

If D ramifies atv ∈ |Q| thenGad
v is compact. SinceR itself and Hamilton’s quaternions

H are the unique central division algebras overR = Q∞, we see thatD can ramify at∞
only if d = 2, which does not hold by assumption. DenotingG = G∞, this amounts to
saying thatG ' GLd(R).

2.2. The Real Group

We conform to the notation of [16].
We are considering the groupG ' GLd(R), obtained asD(R)× whereD/Q is a divi-

sion algebra of prime degree, split at∞. We choose the Cartan involutionΘ(g) = {}t g−1

for G, and letK = Od(R) be theΘ-fixed maximal compact subgroup,Z ' R× the center
ofG. LetS = Z\G/K be the symmetric space, withxK ∈ S the point with stabilizerKZ.
We fix aG-invariant metric onS. To normalize it, we observe that the tangent space at the
pointxK ∈ S is identified withp/z (see below), and we endow it with the Killing form:

Let g = Lie(G) 'Md(R), and letθ(X) = −X t denote the differential ofΘ, giving the
Cartan decompositiong = k⊕ p with k = Lie(K) (the anti-symmetric matrices) andp the
symmetric matrices. The pairing〈X,Y 〉 = Tr(XY t)− 1

d
Tr(X) Tr(Y ) isAdG-equivariant

and positive semi-definite (positive definite ongss = [g, g], the subalgebra of matrices of
trace0). Its isotropic subspace is precisely the centerLie(Z) = ZLie(G), whereZ is the
connected component of the center (in general we would takeZ to be the split component
of the torusZG(R)). We fix a maximal abelian subalgebraa ⊂ p, the subalgebra of diagonal
matrices isomorphic toRd.
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We denote byaC the complexificationa ⊗R C; we shall occasionally writeaR for a

for emphasis in some contexts. We denote bya∗ (resp. a∗C) the real dual (resp. the com-
plex dual) ofa; again, we shall occasionally writea∗R for a∗. For ν ∈ a∗C, we define
Re(ν), Im(ν) ∈ a∗R to be the real and imaginary parts ofν, respectively.

Forα ∈ a∗ setgα = {X ∈ g | ∀H ∈ a : ad(H)X = α(H)X},

∆(a : g) = {α ∈ a∗ \ {0} | gα 6= {0}}

and call the latter the (restricted)roots of g w.r.t. a. The subalgebrag0 is θ invariant,
and henceg0 = (g0 ∩ p) ⊕ (g0 ∩ k). By the maximality ofa in p, we must then have
g0 = a ⊕ m wherem = Zk(a) (herem = {0}). We have∆(a : g) = {αij}i6=j≤d where
αij(H) = Hii −Hjj. The root subspaces aregij = R · Eij.

The Killing form also induces a natural pairing〈·, ·〉 on a∗ w.r.t. which∆(a : g) ⊂ a∗

is a root system. The associated Weyl group, generated by the root reflectionssα, will
be denotedW (a : g). sij acts onRd by exchanging theith andjth co-ordinate, so that
W (a : g) ' Sd. This group is also canonically isomorphic to the analytic Weyl groups
NG(A)/ZG(A) andNK(A)/ZK(A), where a set of representatives is given by the permu-
tation matrices. The fixed-point set of anysα is a hyperplane ina∗, called awall. The
connected components of the complement of the union of the walls are cones, called the
(open)Weyl chambers. A subsetΠ ⊂ ∆(a : g) will be called asystem of simple roots(by
abuse of notation a “simple system”) if every root can be uniquely expressed as an integral
combination of elements ofΠ with either all coefficients non-negative or all coefficients
non-positive. For a simple systemΠ, the open coneCΠ = {ν ∈ a∗ | ∀α ∈ Π : 〈ν, α〉 > 0}
is an open Weyl chamber, and the mapΠ 7→ CΠ is a 1-1 correspondence between sim-
ple systems and chambers. The Weyl group acts simply transitively on the chambers and
simple systems. The closure of an open chamber will be called a closed chamber. The
action ofW (a : g) on a∗ extends in the complex-linear way to an action ona∗C preserving
ia∗ ⊂ a∗C, and we call an elementν ∈ a∗C regular if it is fixed by now ∈ W (a : g). We use
ρ = 1

2

∑
α>0(dim gα)α ∈ a∗ to denote half the sum of the positive (restricted) roots.

Fixing the simple systemΠ = {ei,i+1}d−1
i=1 we get a notion of positivity. Forn =

⊕α>0gα (strictly upper-triangular matrices) and̄n = Θn we haveg = n ⊕ a ⊕ m ⊕ n̄ and
(Iwasawa decomposition)g = n⊕a⊕ k. By means of the Iwasawa decomposition, we may
uniquely write everyX ∈ g in the formX = Xn + Xa + Xk. We sometimes also write
H0(X) for Xa.

LetN ,A be the subgroups ofG corresponding to the subalgebrasn, a ⊂ g respectively
(upper-triangular unipotent matrices and diagonal matrices with positive entries, respec-
tively), and letM = ZK(a) (diagonal matrices with entries in{±1}). ThenA is a maximal
split torus inG, andm = Lie(M), thoughM is not necessarily connected. Moreover
P0 = NAM is a minimal parabolic subgroup ofG, with the mapN ×A×M → P0 being
a diffeomorphism. The mapN × A ×K → G is a (surjective) diffeomorphism (Iwasawa
decomposition), so forg ∈ G there exists a uniqueH0(g) ∈ a such thatg = n exp(H0(g))k

for somen ∈ N , k ∈ K. The mapH0 : G → a is continuous; restricted toA it is the
inverse of the exponential map.
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Let gC = g ⊗R C denote the complexification ofg. It is a complex semi-simple Lie
algebra. LetθC denote thecomplex-linearextension ofθ to gC. It is nota Cartan involution
of gC. We fix a maximal abelian subalgebrab ⊂ m and seth = a⊕ b. ThenhC = h⊗C ⊂
gC is a Cartan subalgebra, with the associated root system∆(hC : gC) satisfying∆(a : g) =

{α�a}α∈∆(hC : gC) \ {0}. Moreover, we can find a system of simple rootsΠC ⊂ ∆(hC : gC)

and a system of simple rootsΠ ⊂ ∆(a : g) such that the positive roots w.r.t.Π are precisely
the nonzero restrictions of the positive roots w.r.t.ΠC. We fix such a compatible pair of
simple systems, and letρh denote half the sum of the roots in∆(hC : gC), positive w.r.t.ΠC.

Let F0 ⊂ ∆(hC : gC) consist of the roots that restrict to0 ona, F+
0 ⊂ F0 those positive

w.r.t. ΠC. Let nM = ⊕α∈F+
0
(gC)α, n̄M = ⊕α∈F+

0
(gC)−α. ThenmC = nM ⊕ bC ⊕ n̄M and

gC = nC ⊕ nM ⊕ hC ⊕ n̄M ⊕ n̄C.
Forν ∈ a∗C, set‖ν‖2 = 〈Re(ν),Re(ν)〉+〈Im(ν), Im(ν)〉 (with the inner products taken

in a∗R).
If lC is a complex Lie algebra, then we denote byU(lC) its universal enveloping algebra,

and byZ(lC) its center. In particular we setZ = Z(gC).

2.3. The Adelic group and its quotients, Components

Let G(Af) denote the subgroup of the Cartesian product
∏

pGp consisting of those se-
quencesg such thatgp ∈ Kp for almost allp. DeclaringK =

∏
pKp (in the product

topology) to be an open compact subgroup ofG(Af) makesG(Af) into a totally discon-
nected locally compact topological group. Finally, we setG(A) = G∞ · G(Af). This is a
locally compact group. This construction is called arestricted direct productand denoted:

G(A) = G∞ ·
∏
p

′(Gp, Kp).

Forg ∈ G(A) (or g ∈ G(Af)) we denotegv (resp.gp) its components at specific places.

REMARK 2.3.1. In the alternate one can defineG(A) as theA-points of the variety
νD(g) · x0(g) = 1, with the topology as a subset ofAd2+1 (in both senses). This shows that
the group obtained by the restricted direct product procedure above is independent of the
choice of the maximal orderO.

LEMMA 2.3.2. Let Kf be an open compact subgroup ofG(Af). Then there exists a
finite setR1 of finite places and an open compact subgroupKR1 <

∏
p∈R1

Gp such that
Kf = KR1 ×

∏
p/∈R1

Kp.

PROOF. A set of basic neighbourhoods of the identity inG(Af) is given by the sets
of the form

∏
p Up whereUp ⊂ Gp are open andUp = Kp for almost allp. SinceKf

is open we conclude that there exists a finite setR1 of finite places such that
∏

p/∈R1
Kp

is contained inKf . For anyp /∈ R1 the projection mapG(Af) → Gp is continuous and
the image ofKf under this map is a compact subgroup containing the maximal compact
subgroupKp. It follows thatKf is an open compact subgroup of

∏
p∈R1

Gp ×
∏

p/∈R1
Kp

which contains the second factor. It is hence obviously of the formKR1 ×
∏

p/∈R1
Kp for a

subgroupKR1 <
∏

p∈R1
Gp. This subgroup equals the image ofKf under a quotient map

and in particular is compact and open. �
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LettingR = R0 ∪R1 we setKR = KR1 ×
∏

p∈R0\R1
Kp so thatKf = KR ×

∏
p/∈RKp.

In that case we have for everyp /∈ R an isomorphismϕp : Gp → GLd(Qp) such that
ϕ(Kp) = GLd(Zp).

FACT 2.3.3. LetG be a linear algebraic group. We identifyG(Q) with its image in the
Cartesian product

∏
v∈|Q|Gv under the diagonal embedding, and letKf < G(Af) be an

open compact subgroup.

(1) G(Q) lies inG(A). It is discrete in the adelic topology ofG(A).
(2) (finiteness of class number) The spaceX̃ = G(Q)\G(A)/Kf has finitely many

connected components.

In certain cases we can say more about the space described in claim (2):

FACT 2.3.4. Returning to our previous notation, letG be the group of invertible ele-
ments of a division algebra defined overQ, G1 the group of elements of norm1. Then:

(1) The quotientG(Q)ZG(A)\G(A) is compact.
(2) G1(Q) is dense inG1(Af). Equivalently (see below),G1(Q)\G1(A)/K1

f is con-
nected for any open compactKf < G1(Af).

DEFINITION 2.3.5. Acomponentof X̃ is aG-orbitX = x̃G for somex̃ ∈ X̃.

SinceG is not connected the ‘components’ we have just defined do not coincide with
the topological connected components ofX̃. These are closely related concepts though:

LEMMA 2.3.6. X̃ is the disjoint union of its components, of which there is a finite
number. Furthermore, letX be a component of̃X. Then:

(1) X is a union of connected components ofX̃.
(2) There exists a discrete subgroupΓ < G such thatX ' Γ\G.
(3) XZ = Z\X is compact. HenceΓZ/Z is a co-compact lattice inGad = G/Z.

PROOF. As Kf is open inG(Af), the quotientG(Af)/Kf is discrete. The space of
components

X̃/G = G(Q)\G(A)/G ·Kf = G(Q)\G(Af)/Kf

is a quotient of this and hence discrete as well. By the second claim of the previous Lemma
it has finitely many connected components, i.e. it is finite. Now every componentX is
closed and open iñX (being the inverse image under the quotient map of a point ofX̃/G),
that is a union of connected components. Since the components are closed and open,X̃ is
their disjoint union.

Now letX be a component of̃X, and letgf ∈ G(Af) be a representative for the class
of X in G(Q)\G(Af)/Kf . We can then set:

Γ =
{
γ∞ | γ ∈ G(Q) : (γp)p<∞ ∈ gfKfg

−1
f

}
.

We first verify that this is a discrete subgroup ofG. For this letU ⊂ G be a relatively
compact open neighbourhood of the identity. ThenŨ = U × gfKfg

−1
f is a relatively

compact open neighbourhood of the identity inG(A), and it follows thatΓ∩U ' G(Q)∩Ũ
is finite.
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To see thatΓ\G ' X we start with the surjective mapϕ : G → X given byϕ(g∞) =

G(Q)g∞gfKf . By definition we haveϕ(g∞) = ϕ(g′∞) iff there existγ ∈ G(Q), kf ∈ Kf

such thatγg∞gfkf = g∞gf . At the finite places this readsγ = gfkfg
−1
f , at the infinite

placeγg∞ = g′∞ and we conclude thatϕ(g∞) = ϕ(g′∞) iff there existsγ ∈ Γ such that
γg∞ = g′∞. SinceΓ is closed inG this means our mapϕ induces a bijective continuous
mapΓ\G → X. It is open since the mapG → G(A)/Kf given byg∞ 7→ g∞gfKf is open
(the spaceG(Af)/Kf is discrete).

Finally we note thatXZ is a closed subset of̃XZ = Z\X̃. It thus suffices to ver-
ify the compactness of the latter space. A direct computation shows:ZG(Q)\ZG(A) =

Z+ ×
∏

p Z×
p whereZ+ is the connected component ofZ. It follows thatX̃Z/

∏
p Z×

p =

G(Q)ZG(A)\G(A)/Kf . In fact, forp /∈ R1 we haveZ×
p ⊂ O×

p = Kp while the fact that
KR1 < GR1 is open implies that is contains a subgroup of finite index of

∏
p∈R1

Z×
p . We

conclude thatX̃Z is a finite cover of the compact spaceG(Q)ZG(A)\G(A)/Kf . �

LEMMA 2.3.7. LetKf < G(Af) be an open compact subgroup.

(1) AssumeνD(Kf) =
∏

p Z×
p . ThenG(Q)\G(Af)/Kf reduces to a single point.

(2) For any maximal orderO, the maximal compact subgroupKf =
∏

pO×
p satisfies

the above condition. The same holds for the intersection of two such subgroups,
in which case we say thatKf is associated to an “Eichler order”.

PROOF. For the first part, letgf ∈ G(Af). We then haveνD(gf) =
∏

p p
kpup ∈ A×

f for
somekp ∈ Z (almost all of which are zero) andup ∈ Z×

p .
By a Eichler’s Theorem (see [31, Prop. XI-3-3] and note that ourD is R-split) there

existsγ ∈ G(Q) such thatr = νD(γ) =
∏

p p
−kp . Moreover, for anyp the numberrpkp is

p-integral, so thatrpkpup ∈ Z×
p . By assumption there existskf ∈ Kf such thatνD(kf) =∏

p

(
rpkpup

)−1
. It follows that the elementhf = γgfkf of G(Af) hasνDp((hf)p)) = 1 at

every primep, i.e.hf ∈ G1(Af). Now sinceG1(Af) is a topological subgroup ofG1(Af),
K1

f = Kf ∩ G1(Af) is an open subgroup there. By part (2) of Fact 2.3.4 we can thus find
γ′ ∈ G1(Q) andk′f ∈ K1

f such thatγ1k1
f = hf . We thus have:

1 ≡ γ
′
k
′

f ≡ γgfkf ≡ gf

as desired, where equivalence is read in the double coset spaceG(Q)\G(Af)/Kf .
The second part follows immediately from part (1) of Fact 2.1.3. IfKf , K

′
f are both

associated to maximal ordersO,O′ it suffices to show thatνDp(Kp ∩ K ′
p) = Z×

p at every
place separately. At every placep whereD ramifiesDp has a unique maximal orderRp.
We then haveKp = K ′

p = R×
p and are in the same situation as before. At a place where

p splits we use the isomorphism withGLd(Qp) and the computation (up to conjugation) in
Lemma 5.1.16 of the joint stabilizer of two vertices in the associated building to obtain an
explicit form (up to conjugation) forKp∩K ′

p. One sees that the intersection must contain a
conjugate of the subgroup

{
diag(u, 1, . . . , 1) | u ∈ Z×

p

}
of GLd(Qp) and hence an element

with reduced normu for anyu ∈ Z×
p . In this caseKf ∩K ′

f is the open compact subgroup
associated to the orderO ∩ O′, which in the cased = 2 is the class of orders constructed
in [8, pp. 48–55]. �
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We henceforth assume thatKf satisfies the condition of the Lemma, so that we can
identify X̃ and its single componentX. The quotientY \G/K is then a locally symmetric
space of non-positive curvature (this appellation is sometimes reserved forYZ = Z\Y ).
We also remark that (unlikeG) the symmetric spaceG/K is always connected. HenceY
andYZ are connected manifolds even whenX isn’t.

We normalize the Haar measuresdx onXZ , dk onK anddy onYZ to have total mass
1 (heredy is the pushforward ofdx under the the projection fromXZ to YZ given by
averaging w.r.t.dk).

For any unitary characterω ∈ Ẑ consider the space of functionsψ : X → C such that
ψ(xz) = ω(z)ψ(x) for all z ∈ Z, x ∈ X. Sinceω is unitary the mapx 7→ |ψ(x)|2 is
Z-invariant, and hence a function on the compact spaceXZ . We letL2(X,ω) denote the
space of the functionsψ as above such that

∫
XZ
|ψ(x)|2 dx < ∞. We also letL2(Y, ω)

be the subspace consisting ofK-invariant functions. We note thatL2(X,ω) is a unitary
representation ofG under right translation and that as aG-representationL2(X) is the
direct integral of theL2(X,ω).

2.4. Thep-adic groups and Hecke operators

For a primep /∈ R0 we haveGp ' GLd(Qp), Kp ' GLd(Zp). Let Hp denote the
convolution algebra of the bi-Kp-invariant functions of compact support onGp. It is com-
mutative, and generated by the elementsKpapKp with ap ∈ Ap, the subgroup of diagonal
matrices ofGLd(Qp) (see Fact 5.1.15).

By assumption we can think of functions onX as functions onG(Q)\G(A) which are
invariant byKf on the right. For almost all primesp (except forp ∈ R1), Kp is a direct
factor ofKf and hence ifp /∈ R = R0 ∪ R1, Hp acts on the space of functions onX by
convolution on the right. Moreover, the actions ofHp andHp′ for p 6= p′ commute, and
they both commute with the right regular action ofG = G∞.

We call an operatorTh on functions ofX associated to an elementh ∈ Hp a Hecke
operator, and think of it as arising from a discrete foliation of the manifoldX where the leaf
of G(Q)g∞gfKf is given by{G(Q)g∞gfxpKf}xp∈Gp : each leaf is of the formHp\Gp/Kp

for some (generically trivial) subgroupHp < Gp and the action ofTh onf : X → C is given
by restrictingf to each leaf and convolving on the right withh. This action is analyzed in
detail in Chapter 5, where the control of subgroupsHp causing the Hecke correspondence
to return is achieved using the results of Chapter 4.

Together the Hecke operators at all placesp /∈ R generate the (commutative)Hecke
algebraH(R). This is the algebra we have in mind when we apply Theorem 1.3.2.

DEFINITION 2.4.1. We callψ ∈ L2(X,ω) a Hecke eigenfunctionif it is a joint eigen-
function of the Hecke algebraH(R).



CHAPTER 3

The Micro-Local Lift

3.1. Introduction and motivation

Let ψ ∈ L2(Y, ω) be normalized as well as an eigenfunction ofZ. The aim of the
present section is to construct a distributionµψ onXZ that lifts the measurēµψ onYZ , and
establish some basic properties ofµψ. We will of course takeψ = ψn, and the correspond-
ing distribution will be the distributionµn discussed in the proof of Theorem 1.3.2. The
functionsψ̃n will then be chosen so that the measures|ψ̃n(x)|2dx approximateµn; finally,
both|ψ̃n(x)|2 andµn will becomeA-invariant asn→∞.

We begin by fixing notation and providing some motivation for the relatively formal
definitions that follow.

Settingψ(x) = ψ(xK) for anyx ∈ X, we can think ofψ as a function inL2(X,ω).
By the uniqueness of spherical functions [13, Th. 4.3 & 4.5],ψ generates an irreducible
sphericalG-subrepresentation ofL2(X). As discussed in Section 3.2.1 below, we can then
find ν ∈ a∗C such that this representation is isomorphic to a principal series representation
πν (in particular,πν is unitarizable). We will assume for the rest of this section thatRe(ν) =

0, i.e.πν is tempered, and thatν is regular. This will eventually be the only case of interest
to us in view of the non-degeneracy assumption (Definition 3.3.8). In this case the induced
representation(VK , Iν) (living on a space of functions onK defined below, including the
constant functionϕ0) is irreducible and isomorphic toπν .

It follows that there is a uniqueG-homomorphismRψ : (V, Iν) → L2(X) such that
Rψ(ϕ0) = ψ. The normalization‖ψ‖L2(X,ω) = 1 now implies‖Rψ(f)‖L2(X) = ‖f‖L2(K)

for anyf ∈ VK , i.e. thatRψ is an isometry.
We now give the rough idea of the construction that follows in the language of Wolpert

and Lindenstrauss; the language we shall use later is slightly different, so the discussion
here also provides a translation. The strategy of proof is similar to theirs; in a sense, the
main difficulty is finding the “correct” definitions in higher rank. For instance, the proofs of
Wolpert and Lindenstrauss use heavily the fact thatK-types forPSL2(R) have multiplicity
one, and the explicit action of the Lie algebra by raising and lowering operators. We shall
need a more intrinsic approach to handle the general case.

The measurēµψ onYZ is defined byg 7→
∫
YZ
g(y)|ψ(y)|2dy. More generally, suppose

thatψ′ ∈ L2(X) belongs to theG-subrepresentation generated byψ, i.e. ψ′ ∈ Rψ(V ).
Thenψ(x)ψ′(x) isZ-invariant and we can consider the (signed) measure onXZ given by:

(3.1.1) σ : g 7→
∫
XZ

ψ(x)ψ′(x)g(x)dx.

20
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If g(x) is K-invariant, then so is the productψ(x)g(x), and it follows that the right-hand
side of (3.1.1) depends only on the projection ofψ′ ontoRψ(V )K . The spaceRψ(V )K is
one-dimensional, spanned byψ, and it follows that ifψ′−ψ ⊥ ψ then the measureσ onX
projects to the measurēµψ onY .

The distributionµψ we shall construct will be in the spirit of (3.1.1), but withψ′ a
“generalized vector” inRψ(V ). Suppose, in fact, thatψ′1, ψ

′
2, . . . ψ

′
n, . . . are an infinite

sequence of elements ofRψ(V ) that transform under differentK-types, and suppose further
that g ∈ C∞

c (XZ)K . Then, by consideringK-types, the integral
∫
X
ψ(x)ψ′j(x)g(x)dx

vanishes for all sufficiently largej. It follows that, if one setsψ′ to be theformal sum∑∞
j=1 ψ

′
j, one can make sense of (3.1.1) by interpreting it as:

σ(g) =
∞∑
j=1

∫
X

ψ(x)ψ′j(x)g(x)dx

In other words, ifg ∈ C∞
c (XZ)K , we may make sense of (3.1.1) while allowingψ′ to

belong to the spacêVK of “infinite formal sums ofK-types.” Our definition ofµψ will,
indeed, be of the form (3.1.1) but withψ′ an “infinite formal sum” of this kind.

For a certain choice ofψ′ (denotedΦ∞ in [18]), we will wish to show that (3.1.1) is “ap-
proximately a positive measure” and “approximatelyA-invariant,” where both statements
become true in the large eigenvalue limit in an appropriate sense. For the “approximate
positivity,” we shall integrate (3.1.1) by parts to show that there exists another unit vector
ψ′′ ∈ Rψ(V ) such that

∫
X
ψ(x)ψ′(x)g(x)dx ≈

∫
X
|ψ′′(x)|2g(x)dx, where the right-hand

side is evidently a positive measure. For the “approximateA-invariance,” we will construct
differential operators that annihilateψ(x)ψ′(x); this reduces to a purely algebraic ques-
tion of constructing elements inU(g) that annihilate a vector in a certain tensor product
representation.

The spacêVK is very closely linked to the dualV ′
K of theK-finite vectors: the conju-

gate linear isomorphismT : V → V ′ (3.2.1) extends to a conjugate-linear isomorphism
T : V̂K → V ′

K . For formal reasons, it is simpler to work withV ′
K thanV̂K ; this is the view-

point we shall take in Definition 3.3.1. To motivate this viewpoint, let us rewrite (3.1.1)
in a different fashion. Letv′ ∈ V be chosen so thatψ′ = Rψ(v′), and letP be the or-
thogonal projection ofL2(X) ontoRψ(V ). We may rewrite (3.1.1) – using the notations of
Definition 3.2.3 – as follows:

σ(g) = 〈ψ(x)g(x), ψ′(x)〉L2(X) = 〈P (ψ(x)g(x)), ψ′(x)〉L2(X)

= 〈R−1
ψ ◦ P (ψ(x)g(x)), v′〉V = T (v′) ◦R−1

ψ ◦ P (ψ(x)g(x))(3.1.2)

Now, if g ∈ C∞
c (XZ)K , then the quantityRψ ◦ P (ψ(x)g(x)) is K-finite, i.e. belongs to

VK . It follows that, if g ∈ C∞
c (XZ)K , the last expression of (3.1.2) makes formal sense if

we replaceT (v′) by any functionalΦ ∈ V ′
K .



3.2. MORE ON REAL LIE GROUPS 22

3.2. More on Real Lie Groups

3.2.1. Spherical Representations and the model(VK , Iν). We recall some facts from
the representation theory of compact and reductive groups. At the end of this section we
analyze a model (the “compact picture”) for the spherical dual ofG.

THEOREM 3.2.1. [16, Th. 1.12]LetK be a compact topological group and let̂Kfin be
the set of equivalence classes of irreducible finite-dimensional unitary representations of
K.

(1) (Peter-Weyl) Everyρ ∈ K̂fin occurs discretely inL2(K) with multiplicity equal to
its dimensiond(ρ). Moreover,L2(K) is isomorphic to the Hilbert direct sum of its
isotypical components{L2(K)ρ}ρ∈K̂fin

.
(2) Let π : K → GL(W ) be a representation ofK on the Frêchet spaceW . Then

⊕ρ∈K̂Wρ is dense inW , whereWρ is theρ-isotypical subspace.
(3) Every irreducible representation of on a Frêchet space is finite-dimensional and

hence unitarizable. In particular,̂Kfin is the unitary dual ofK.
(4) For K as in Section 2.2,̂K is countable.

Note that while [16, Th. 1.12(c-e)] are only claimed for unitary representations on
Hilbert spaces, their proofs only rely on the action of the convolution algebraC(K) on
representations ofK, and hence carry over with little modification to the more general
context needed here. The last conclusion follows from the separability ofL2(K), which in
turn follows from the separability ofK.

NOTATION 3.2.2. Letπ : K → GL(W ) be as above. The algebraic direct sum

WK
def
= ⊕ρ∈K̂Wρ

consists precisely of thesew ∈ W which generate a finite-dimensionalK-subrepresenta-
tion. We refer toWK as the space ofK-finite vectors. We will useWK to denote these
vectors ofW fixed byK.

DEFINITION 3.2.3. SetV = L2(M\K), and setVK ⊂ V to be the space ofK-finite
vectors. LetC∞(M\K) be the smooth subspace,C∞(M\K)′ the space of distributions
onM\K. Let V ′

K (resp. V ′) be the dual toVK (resp. V ). Then we have natural inclu-
sionsVK ⊂ C∞(M\K) ⊂ V andV ′

K ⊃ C∞(M\K)′ ⊃ V ′; further, we have (Riesz
representation) a conjugate-linear isomorphism

(3.2.1) V
T

↪→ V ′

where the mapT : V → V ′ is defined via the ruleT (f)(g) = 〈g, f〉V =
∫
M\K gfdk.

Fix an increasing exhaustive sequence of finite dimensionalK-stable subspaces ofVK ,
i.e. a sequenceV1 ⊂ V2 ⊂ · · · ⊂ VN ⊂ VN+1 ⊂ . . . of subspaces such that∪∞i=1Vi = VK
and eachVi is aK-subrepresentation.

For Φ ∈ V ′
K and1 ≤ N ∈ Z, define theN -truncation ofΦ as the unique element

ΦN ∈ VN such thatT (ΦN)− Φ annihilatesVN .
Finally letϕ0 ∈ VK be the function that is identically1.
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DEFINITION 3.2.4. Letµ be a regular Borel measure on a spaceX. Call a sequence of
non-negative functions{fj} ∈ L1(µ) a δ-sequenceat x ∈ X if, for every j,

∫
fjdµ = 1,

and moreover if, for everyg ∈ C(X), limj→∞
∫
fj · gdµ = g(x).

LEMMA 3.2.5. There exists a sequence{fj}∞j=1 ⊂ VK such that|fj|2 is a δ-sequence
onM\K.

PROOF. Let {hj}∞j=1 ⊂ C(M\K) be aδ-sequence. By the Peter-Weyl theoremVK is
dense inC(M\K), so that for everyj we can choosef ′j ∈ VK such that the difference∥∥∥√hj(k)− f ′j(k)

∥∥∥
∞
≤ 1

2j
. Then one may takefj =

f ′j

‖f ′j‖2

. �

Secondly, we recall the construction of the spherical principal series representations
of a reductive Lie group. An irreducible representation ofG is sphericalif it contains a
K-fixed vector. Such a vector is necessarily unique up to scaling.

To anyν ∈ a∗C we associate the characterχν(p) = exp(ν(H0(p)) of P0 and the unitarily
induced representation with(g, K)-module

(3.2.2) IndGP0
χν =

{
f ∈ C∞(G)K | ∀p ∈ P, g ∈ G : f(pg) = e〈ν+ρ,H0(p)〉f(g)

}
.

By the Iwasawa decomposition, everyf ∈ IndGP0
χν is determined by its restriction toK;

this restriction defines an element of the spaceVK . Conversely, everyf ∈ VK extends
uniquely to a member ofIndGP0

χν .

DEFINITION 3.2.6. Forν ∈ a∗C, we denote by(Iν , VK) the representation ofg on VK
fixed by the discussion above; we shall also useIν to denote the corresponding action ofg

onC∞(M\K) and ofG onV . We shall denote byI ′ν the dual action ofg on eitherV ′
K or

C∞(M\K)′.

Note also thatϕ0 ∈ VK (see Definition 3.2.3) is a spherical vector for the representation
(Iν , VK).

THEOREM 3.2.7. (The unitary spherical dual; references are drawn from[16])

(1) For any ν ∈ a∗C, IndGP0
χν has a unique spherical irreducible subquotient, to be

denotedπν . [Th. 8.37] Any spherical irreducible unitary representation ofG is
isomorphic toπν for someν. [Th. 8.38] We haveπν1 ' πν2 iff there existsw ∈
W (a : g) such thatν2 = wν1.

(2) [§7.1-3] If Re(ν) = 0 thenIndGP0
χν is unitarizable, with the invariant Hermitian

form given by〈f, g〉 =
∫
M\K f(k)g(k)dk. This representation has a unique spher-

ical summand (necessarily isomorphic toπν), and we letjν : VK → πν denote the
orthogonal projection map. [Th. 7.2] Ifν is regular thenIndGP0

χν is irreducible.
(3) [§16.5(7) & Th. 16.6] Ifπν is unitarizable thenRe(ν) belongs to the convex hull

of {wρ}{w∈W(a : g)} ⊂ a∗, a compact set. Moreover, there existsw ∈ W (a : g) such
thatw2 = 1 andwν = −ν̄. In particular if Re(ν) 6= 0, thenw 6= 1, and since
Im(ν) isw-fixed it is not regular.

Note that the norm onπν is only unique up to scaling. IfRe(ν) = 0 and Im(ν) is
regular (the main case under consideration), we choose‖ϕ0‖πν = 1.
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For future reference we compute the action ofg onVK via Iν . First, note that the action
of K onV = L2(M\K) is given by right translation, and the action ofk ⊂ g onVK is then
given by right differentiation.

Secondly, recall that ifU ⊂ Rn is open, adifferential operatorD onU is an expression
of the form

∑K
i=1 fi∂

α1
1 . . . ∂αnn , where thefi are smooth andαj ≥ 0. If M is a smooth

n-manifold, we say a mapD : C∞(M) → C∞(M) is a differential operator if it is defined
by a differential operator in each coordinate chart.

LEMMA 3.2.8. Letf ∈ VK and letX ∈ g. Then there exists a differential operatorDX

onM\K (depending linearly onX and independent ofν) such that for everyk ∈ K,

(Iν(X)f)(k) = 〈ν + ρ,H0(Ad(k)X)〉 f(k) + (DXf)(k).

PROOF. Let t ∈ R be small, and considerf(k exp(tX)) = f(exp(tAd(k)X) · k). We
write the Iwasawa decomposition ofAd(k)X ∈ g asAd(k)X = Xn(k) +Xa(k) +Xk(k)

whereXa(k) = H0(Ad(k)X). By the Baker-Campbell-Hausdorff formula,exp(tAd(k)X)

has the formexp(tXn(k)) · exp(tXa(k)) · exp(tXk(k)) +O(t2), so that:

(Iν(X)f)(k) =
d

dt
f (exp(tXn(k)) · exp(tXa(k)) · k)�t=0 +

d

dt
f (exp(tXk(k))k)�t=0 .

To conclude, observe thatf 7→ d
dt
f (exp(tXk(k))k)�t=0 defines a differential operatorDX

onM\K. �

Lemma 3.2.8 will be used in the following way: as‖ν‖ → ∞, the operatorIν( X
‖ν‖) acts

onVK in a very simple fashion,modulocertain error terms of order‖ν‖−1. The simplicity
of this “rescaled” action as‖ν‖ → ∞ will be of importance in our analysis.

3.2.2. Some Functional Analysis.We collect here some simple functional analysis
facts that we shall have need of.

Let C∞
c (XZ) denote the space of smooth functions of compact support onX. It is

endowed with the usual “direct-limit” topology: fix a sequence ofK-invariant compact sets
C1 ⊂ C2 ⊂ . . . such that their interiors exhaustX. Then theC∞

c (Ci) exhaustC∞
c (XZ).

C∞
c (Ci) is endowed as usual with a family of seminorms, viz. for anyD ∈ U(gC) we define
‖f‖Ci,D = supx∈Ci |Df |. These seminorms induce a topology on eachC∞

c (Ci). We give
C∞

c (XZ) the topology of the union ofC∞
c (Ci), i.e. a map fromC∞

c (XZ) is continuous if
and only if its restriction to eachC∞

c (Ci) is continuous.
In other words: a sequence of functions converges inC∞

c (XZ) if their supports are
all contained in a fixed compact set, and all their derivatives converge uniformly on that
compact set.

C∞
c (XZ)is a locally convex complete space in this topology. In particular, its subspace

C∞
c (XZ)K of K-finite vectors is dense. We denote byC∞

c (XZ)′ (resp. C∞
c (XZ)′K) the

topological dual toC∞
c (XZ) (resp. the algebraic dual toC∞

c (XZ)K). Both spaces will
be endowed with the weak-* topology. We shall refer to an element ofC∞

c (XZ)′ as a
distributiononX.

Let C0(X) be the Banach space of continuous functions onX decaying at infinity,
endowed with the supremum norm. LetC0(X)′ be the continuous dual ofC0(X); the



3.3. REPRESENTATION-THEORETIC LIFT 25

Riesz representation theorem identifies it with the space of finite (signed) Borel measures
onX. We endowC0(X)′ with the weak-* topology.

It is easy to see thatC∞
c (XZ)K is dense inC0(X). In particular any (algebraic) linear

functional onC∞
c (XZ)K which is bounded w.r.t. thesup-norm extends to a finite signed

measure onX, with total variation equal to the norm of the functional. Moreover, if this
functional is non-negative on the non-negative members ofC∞

c (XZ)K then the associated
measure is a positive measure.

3.3. Representation-Theoretic Lift

3.3.1. Lifting a single (non-degenerate) eigenfunction.

DEFINITION 3.3.1. LetΦ ∈ V ′
K be an (algebraic) functional, andf ∈ VK . Letµψ(f,Φ)

be the functional onC∞
c (XZ)K defined by the rule:

(3.3.1) µψ(f,Φ)(g) = Φ ◦R−1
ψ ◦ P (Rψ(f) · g)

whereg ∈ C∞
c (XZ)K , P : L2(X,ω) → Rψ(V ) is the orthogonal projection, andRψ(f) · g

denotes pointwise multiplication of functions onX.

REMARK 3.3.2. In fact, ifΦ ∈ C∞(M\K)′ (see equation (3.2.1)) thenµψ(f,Φ) ex-
tends to an element ofC∞

c (XZ)′, i.e. defines a distribution onX: µψ is the composite

C∞
c (XZ)

g 7→Rψ(f)g
−→ C∞

c (XZ)
R−1
ψ P
−→ C∞(M\K)

Φ→ C,

and it is easy to verify that each of these maps is continuous. This is never used in our
arguments: we use this observation only to refer to certainµψ as “distributions”.

DEFINITION 3.3.3. Letδ ∈ V ′
K be the distributionδ(f) = f(1), and callµψ

def
=

µψ(ϕ0, δ) the (non-degenerate)microlocal lift of µ̄ψ.

The rest of the section will exhibit basic formal properties of this definition. We will
establish most of the formal properties ofµψ by restrictingΦ to be of the formT (f2), where
the conjugate-linear mappingT is as defined in (3.2.1). This situation will occur sufficiently
often that, for typographical ease, it will be worth making the following definition:

DEFINITION 3.3.4. Letf1, f2 ∈ VK . We then setµTψ(f1, f2) = µψ(f1, T (f2)).

LEMMA 3.3.5. Supposef1, f2 ∈ VK . Then

(3.3.2) µTψ(f1, f2)(g) =

∫
XZ

Rψ(f1)(x)Rψ(f2)(x)g(x)dx.

andµTψ defines a signed measure onXZ of total variation at most||f1||L2(K)||f2||L2(K). If
f1 = f2, thenµTψ(f1, f1) is a positive measure of mass||f1||2L2(K).

PROOF. (3.3.2) is a consequence of the definition ofµ. The Cauchy-Schwarz inequality
implies that|µTψ(f1, f2)(g)| ≤ ||f1||L2(K)||f2||L2(K)||g||L∞(X), whence the second conclu-
sion. The last assertion is immediate. �

In fact, it may be helpful to think ofµψ as being given by a distributional extension of
the formula (3.3.2); see the discussion of Section 3.1.
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LEMMA 3.3.6. The distributionµψ(ϕ0, δ) onX projects to the measure|ψ|2dy onY .

PROOF. In view of the previous Lemma, it will suffice to show that the distribution
µψ(ϕ0, δ)−µTψ(ϕ0, ϕ0) onX projects to0 onYZ . This amounts to showing thatµψ(ϕ0, δ−
T (ϕ0)) annihilates anyK-invariant functiong ∈ C∞

c (XZ)K . Taking into account that the
functionalδ− T (ϕ0) onVK annihilates anyK-invariant vector, the claim follows from the
definition ofµψ. �

LEMMA 3.3.7. The mapµψ : VK ⊗ V ′
K → C∞

c (XZ)′K is equivariant for the natural
g-actions on both sides.

PROOF. This follows directly from the definition ofµψ. �

Concretely speaking, this says that forf ∈ VK ,Φ ∈ V ′
K , g ∈ C∞

c (XZ)K , X ∈ g we
have

(3.3.3) µψ(Xf1,Φ)(g) + µψ(f1, XΦ)(g) + µψ(f1,Φ)(Xg) = 0

whereX acts onVK via Iν and onV ′
K via I ′ν . In particular, iff1, f2 ∈ VK we have

(3.3.4) µTψ(Xf1, f2)(g) + µTψ(f1, Xf2)(g) + µTψ(f1, f2)(Xg) = 0

3.3.2. Sequences of eigenfunctions and quantum limits.In what follows we shall
considerψn ∈ L2(Y, ωn), a sequence of eigenfunctions with parameters{νn}∞n=1 diverging
to∞ (i.e. with ‖νn‖ → ∞). Setν̃n = νn−dωn

‖νn‖ (i.e. remove the central character part of the

parameter). Forf1, f2 ∈ VK andΦ ∈ V ′
K , we abbreviateµTψn(f1, f2) (resp.µψn(f,Φ)) to

µTn (f1, f2) (resp.µn(f,Φ)), and we abbreviate the microlocal liftµψn (:= µn(ϕ0, δ)) to µn.

DEFINITION 3.3.8. (Gad = G/Z simple) We say a sequenceψn is non-degenerateif
every limit point of the sequencẽνn is regular.

We say that it isconveniently arrangedif it is non-degenerate, Re(νn) = 0 for all n,
the limit in limn→∞ ν̃n exists, theνn are all regular, and for allf1, f2 ∈ VK the measures
µTn (f1, f2) converge inC0(XZ)′ asn→∞. In this situation we denotelimn→∞ ν̃n by ν̃∞.

The existence of non-degenerate sequences of eigenfunctions was discussed in Remark
1.3.3. This follows from strong versions of Weyl’s Law onY . By Theorem 3.2.7, the
non-degeneracy of a sequenceψn as in the Definition implies Re(νn) = 0 for all large
enoughn. For fixedf1, f2 ∈ VK the total variation of the measuresµTn (f1, f2) is bounded
independently ofn (Lemma 3.3.5); in view of the (weak-*) compactness of the unit ball in
C0(X)′ it follows that this sequence of measures has a convergent subsequence. Combining
this remark with the fact thatVK has a countable basis, a diagonal argument shows that
every non-degenerate sequence of eigenfunctions has a conveniently arranged subsequence.

Now suppose{ψn} is a conveniently arranged sequence and fixf1 ∈ VK ,Φ ∈ V ′
K , g ∈

C∞
c (XZ)K . Let ΦN be theN -truncation ofΦ (see Definition 3.2.3). In view of (3.3.1),

if we chooseN := N(f1, g) sufficiently large, thenµn(f1,Φ)(g) = µTn (f1,ΦN)(g). It
follows that the limitlimn→∞ µn(f1,Φ)(g) exists.
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We may consequently defineµ∞ : VK × V ′
K → C∞

c (XZ)′K andµT∞ : VK × VK →
C∞

c (XZ)′K by the rules:

(3.3.5)
µ∞(f,Φ)(g) = lim

n→∞
µn(f1,Φ)(g), (g ∈ C∞

c (XZ)K)

µT∞(f1, f2) = µ∞(f1, T (f2))

LEMMA 3.3.9. For fixedf1 ∈ VK , the mapΦ → µ∞(f1,Φ) is continuous as a map
V ′
K → C∞

c (XZ)′K , both spaces being endowed with the weak topology.

PROOF. This is an easy consequence of the definitions. �

It is natural to ask whetherµ∞(f1,Φ) extend to an element ofC∞
c (XZ)′, at least when

Φ ∈ C∞(M\K)′. Indeed a uniform bound on the distributionsµn(f1,Φ) follows from
making the argument of Remark 3.3.2 quantitative. This is not needed for our choice of
(f1,Φ), however, when we can address this directly.

Henceforth{ψn}∞n=1 will be a conveniently arranged sequence. We will show that
µ∞(ϕ0, δ) is positive and bounded w.r.t. theL∞ norm onC∞

c (XZ)K . It hence extends to a
finite positive measure.

The key to the positivity of the limits is the following lemma (cf. [33, Prop. 3.3], [18,
Th. 3.1]).

LEMMA 3.3.10. (Integration by parts) Let{ψn} be conveniently arranged. Then, for
anyf, f1, f2 ∈ VK we have:

(3.3.6) µT∞(f1, f · f2) = µT∞(f̄ · f1, f2).

Here e.g.f · f2 denotes pointwise multiplication of functions onM\K.

PROOF. We start by exhibiting explicit functionsf for which (3.3.6) is valid.
Extend everyν ∈ a∗C to g∗C via the Iwasawa decompositiong = n ⊕ a ⊕ k. For any

X ∈ gss, letpX(k) = 1
i
〈ν̃∞,Ad(k)X〉. For fixedX, k 7→ pX(k) defines aK-finite element

of L2(M\K).
By (3.3.4), for everyX, f1, f2, g, andn, we have

(3.3.7) µTn (Xf1, f2)(g) + µTn (f1, X f2)(g) + µTn (f1, f2)(Xg) = 0.

Divide by‖νn‖ and apply Lemma 3.2.8 (as well as〈dωn, gss〉 = 0) to see:

µTn (ipn · f1, f2)(g) + µTn (f1, ipn · f2)(g)(3.3.8)

= −µ
T
n (DXf1, f2)(g) + µTn (f1,DXf2)(g) + µTn (f1, f2)(Xg)

‖νn‖
,

wherepn(k) = 1
i

〈
ν̃n + ρ

‖νn‖ ,Ad(k)X
〉

.

As n → ∞, the right-hand side of (3.3.8) tends to zero by Lemma 3.3.5. On the
other hand,pnfi (considered as continuous functions onK) converge uniformly topXfi.
Another application of Lemma 3.3.5 shows that the left-hand side of (3.3.8) converges to
iµT∞(pXf1, f2)−iµT∞(f1, pX ·f2). SincepX = pX this shows that (3.3.6) holds withf = pX .

Now let F ⊂ C(M\K) be theC-subalgebra generated by thepX and the constant
function 1. Clearly (3.3.6) holds for allf ∈ F . This subalgebra isK-stable since
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pX(kk1) = pAd(k1)X(k) and henceF ∩ Vρ ⊂ F for all ρ ∈ K̂. ShowingF is dense in
L2(M\K) suffices to conclude thatF = VK .

We will prove the stronger assertion thatF is dense inC(M\K) using the Stone-
Weierstrass theorem. Note that1 ∈ F , andF is closed under complex conjugation since
pX = pX . It therefore suffices to show thatF separates the points ofM\K. To this
end, letk1, k2 ∈ K be such thatpX(k1) = pX(k2) for all X ∈ g. Then〈ν̃∞,Ad(k1)X〉 =

〈ν̃∞,Ad(k2)X〉 for allX ∈ g, i.e.〈Ad(k1)
−1ν̃∞−Ad(k2)

−1ν̃∞, X〉 = 0 for allX ∈ g. This
implies thatAd(k−1

1 )ν̃∞ = Ad(k2)
−1ν̃∞; by the non-degeneracy assumption,ZK(ν̃∞) =

ZK(A) = M , soMk1 = Mk2, i.e.k1 andk2 represent the same point ofM\K. �

Lemma 3.3.10 shows easily thatµ∞(ϕ0, δ) extends to a positive measure. Indeed,
choosingfj as in Lemma 3.2.5, we see that

(3.3.9) µ∞(ϕ0, δ) = lim
j→∞

µT∞(ϕ0, |fj|2) = lim
j→∞

µT∞(fj, fj).

Here we have invoked Lemma 3.3.9 for the first equality. It is clear thatµT∞(fj, fj) defines
a positive measure onX; thusµ∞(ϕ0, δ), initially defined as an (algebraic) functional on
C∞

c (XZ)K , extends to a positive measure onX. To obtain the slightly stronger conclusion
implicit in (2) of Theorem 1.3.2, we will analyze this argument more closely.

COROLLARY 3.3.11.Notations as in Lemma 3.3.10, there exist a constantCf1,f2,f and
a seminorm|| · || onC∞

c (XZ) such that

(3.3.10)
∣∣µTn (f1, f · f2)(g)− µTn (f · f1, f2)(g)

∣∣ ≤ Cf1,f2,f‖g‖
[
‖ν̃∞ − ν̃n‖+ ‖νn‖−1

]
PROOF. We keep track of the error term in the proof of of Lemma 3.3.10.
Fix a basis{Xi} for g = gss⊕ Zg, and define a seminorm onC∞

c (XZ) by ‖g‖ =

‖g‖L∞(XZ)+
∑

i ‖Xig‖L∞(XZ). With this seminorm, (3.3.10) holds forf1, f2 ∈ VK andf =

pX . This follows from (3.3.8), utilizing Lemma 3.3.5 and the fact that‖pX−pn‖L∞(M\K) �
‖ν̃∞ − ν̃n‖.

Next supposef1, f2, f, f
′ ∈ VK andα, α′ ∈ C. Then, if (3.3.10) is valid for(f1, f2, f)

and (f1, f2, f
′), it is also valid for(f1, f2, αf + α′f ′). Further, if (3.3.10) is valid for

(f1, f
′ · f2, f) and for(ff1, f2, f

′), then it is also valid for(f1, f2, f · f ′).
Consider now the set off ∈ VK for which (3.3.10) holds for allf1, f2 ∈ VK . The

remarks above show that this is a subalgebra ofVK that contains eachpX . The Corollary
then follows from the equalityF = L2(M\K)K established in the Lemma. �

REMARK 3.3.12. It is possible to obtain a bound of the formCf1,f2,f,ν̃n‖g‖‖νn‖−1, with
the constant uniformly bounded if thẽνn are uniformly bounded away from the walls. This
result can be used to avoid passing to a subsequence in Theorem 1.3.2 or the following
Proposition; this is unnecessary for our applications, however.

PROPOSITION3.3.13. (Positivity and equivariance: (2) and (4) of Theorem 1.3.2).
Let {ψn} be non-degenerate. After replacing{ψn} by an appropriate subsequence,

there exist functions̃ψn onX with the following properties:

(1) Define the measureσn via the ruleσn(g) =
∫
X
g(x)|ψ̃n(x)|2dx. Then, for each

g ∈ C∞
c (XZ)K we havelimn→∞(σn(g)− µn(g)) = 0.
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(2) Let E ⊂ EndG(C∞(XZ)) be a C-subalgebra of endomorphisms ofC∞(XZ),
commuting with theG-action. Note that eache ∈ E induces an endomorphism
of C∞(Y ). Assume in addition thatψn is an eigenfunction forE. Then we may
chooseψ̃n so that each̃ψn is an eigenfunction forE with the same eigenvalues as
ψn.

PROOF. Without loss of generality we may assume that{ψn} are conveniently ar-
ranged.

Let {fj}∞j=1 ⊂ VK be the sequence of functions provided by Lemma 3.2.5, so that
T (|fj|2) approximatesδ. The main idea is, as in (3.3.9), to approximateµn = µn(ϕ0, δ)

usingµTn (fj, fj).
For anyg ∈ C∞

c (XZ)K we have:∣∣µn(g)− µTn (fj, fj)(g)
∣∣ ≤ ∣∣µn(ϕ0, δ)(g)− µn(ϕ0, |fj|2)(g)

∣∣
+
∣∣µn(ϕ0, |fj|2)(g)− µn(fj, fj)(g)

∣∣ .(3.3.11)

Corollary (3.3.11) provides a seminorm‖·‖ onC∞
c (XZ) and a constantCj such that∣∣µn(ϕ0, |fj|2)(g)− µn(fj, fj)(g)

∣∣ ≤ Cj||g|| ·
[
‖ν̃n − ν̃∞‖+ ‖νn‖−1] .

Choose a sequence of integers{jn}∞n=1 such thatjn →∞ and:

Cjn ·
[
‖ν̃n − ν̃∞‖+ ‖νn‖−1] −−−→

n→∞
0

We now estimate the other term on the right-hand side of (3.3.11). ChoosingN = N(g)

large enough so thatµn(ϕ0, δ)(g) = µn(ϕ0, δN)(g), we have∣∣µn(ϕ0, δ)(g)− µn(ϕ0, |fj|2)(g)
∣∣ ≤ ∥∥|fj|2N − δN

∥∥
L2(M\K)

‖g‖∞ .

As j → ∞ (in particular, if j = jn), |fj|2N → δN in VN , so this term tends to zero. It
follows that

(3.3.12) lim
n→∞

∣∣µn(g)− µTn (fjn , fjn)(g)
∣∣ = 0.

Settingψ̃n = Rψn(fjn), we deduce that

(3.3.13) lim
n→∞

(
µn(g)−

∫
XZ

|ψ̃n|2g(x)dx
)

= 0

holds for everyg ∈ C∞
c (XZ)K . In particular, we obtain (1) of the Proposition.

To obtain the equivariance property note that the representationIνn is irreducible as a
(g, K)-module. By [16, Corollary 8.11], there existsun ∈ U(g) such thatIνn(un)ϕ0 = fjn.
Thus ψ̃n = unψn. Now everye ∈ E commutes with the rightG-action; in particular,
eun = une. It follows thatψ̃n transforms under the same character ofE asψn. �

3.4. Cartan invariance of quantum limits

In this section we show that a non-degenerate quantum limitµ∞ is invariant under
the action ofA < G. This invariance follows from differential equations satisfied by the
intermediate distributionsµn. The construction of these differential equations is a purely
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algebraic problem: construct elements in theU(gC)-annihilator ofϕ0 ⊗ δ ∈ VK ⊗ V ′
K ,

where theU(gC)-action is byIν ⊗ I ′ν .
Ultimately, these differential equations are derived from the fact that eachz ∈ Z =

Z(gC) acts by a scalar on the representation(VK , Iνn). To motivate the method and provide
an example, we first work out the simplest case, that ofPSL2(R), in detail. In this case the
resulting operator is due to Zelditch.

This section is written without reference to the central character – assume it to be trivial.
Allowing the central character to vary would amount to writingZ(g) = Z(gss)⊗Z(Zg) and
only working with the first part.

3.4.1. Example ofG = PSL2(R). SetG = PSL2(R), Γ ≤ G a lattice, andA the sub-
group of diagonal matrices. LetH (explicitly given below) be the infinitesimal generator
of A, thought of first as a differential operator acting onX = Γ\G via the differential of
the regular representation. If{ψn} is a conveniently arranged sequence of eigenfunctions
on Γ\G/K, andµn the corresponding distributions (Definition 3.3.3), we will exhibit a
second-order differential operatorJ such that for allg ∈ C∞

c (XZ)K ,

(3.4.1) µn((H − J

rn
)g) = 0,

wherern ∼ |λn|1/2. Since theµn(Jg) are bounded (they converge toµ∞(Jg)), we will con-
clude thatµ∞(Hg) = 0, in other words thatµ∞ is A-invariant. This operator in equation
(3.4.1) is given in [36]. Its discovery was motivated by the proof (via Egorov’s theorem)
of the invariance of the usual microlocal lift under the geodesic flow. We show here how it
arises naturally in the representation-theoretic approach.

By Lemma 3.3.7, it will suffice to find an operator annihilating the elementϕ0 ⊗ δ ∈
VK ⊗ V ′

K , whereU(gC) acts viaIν ⊗ I ′ν .

LetH =

(
1

−1

)
, X+ =

(
0 1

0

)
, X− =

(
0

1 0

)
be the standard generators

of SL2, with the commutation relations[H,X±] = ±2X±, [X+, X−] = H. The roots w.r.t.
the maximal split torusa = R ·H are given by±α(H) = ±2. We also setW = X+−X−,
so thatR·W = k. Letting+α be the positive root,n = R·X+, we haveρ(H) = 1

2
α(H) = 1.

Setexp a = A as in the introduction.
The Casimir elementC ∈ Z(SL2C) is given by4C = H2 + 2X+X− + 2X−X+. For

the parameterν ∈ ia∗ given byν(H) = 2ir (r ∈ R), C acts onπν with the eigenvalue
λ = −1

4
− r2. The Weyl element acts by mappingν 7→ −ν. On S = G/K with the

metric normalized to have constant curvature−1, C reduces to the hyperbolic Laplacian.
In particular, every eigenfunctionψ ∈ L2(Γ\G/K) with eigenvalueλ < −1

4
generates a

unitary principal series subrepresentation. Definition 3.3.3 associates toψ a distribution
µψ(ϕ0, δ) onΓ\G.

As in Definition 3.2.6, we have an actionIν of G on V and ofg on VK . Note that
for g ∈ NA, f ∈ VK , (Iν(g)f) (1) = f(g) = e〈ν+ρ,H0(g)〉f(1). Sinceδ(f) = f(1) and
the pairing betweenVK andV ′

K is G-invariant, it follows that forX ∈ a ⊕ n, I ′ν(X)δ =

−〈ν + ρ,H0(X)〉 δ.
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SuppressingIν from now on this means thatX·(f⊗δ) = (Xf)⊗δ−〈ν + ρ,H0(X)〉 f⊗
δ. Extendν + ρ trivially on n to obtain a functional ona⊕ n. Then

(3.4.2) (X + (ν + ρ)(X)) · (f ⊗ δ) = (Xf)⊗ δ.

Now sincea normalizesn andν+ ρ is trivial onn, the mapX 7→ X +(ν + ρ) (X) is a Lie
algebra homomorphisma ⊕ n → a ⊕ n, and hence extends to an algebra homomorphism
τν+ρ : U(aC ⊕ nC) → U(aC ⊕ nC). (3.4.2) shows that, foru ∈ U(aC ⊕ nC),

(3.4.3) τν+ρ(u) · (f ⊗ δ) = (uf)⊗ δ

In view of (3.4.3) any operatoru ∈ U(aC ⊕ nC) annihilatingϕ0 gives rise to an operator
annihilatingϕ0 ⊗ δ.

The natural starting point is the eigenvalue equation(4C+1+4r2)ϕ0 = 0. Of course,C
is not an element ofU(nC⊕aC). Fortunately, it “nearly” is: there exists anC ′ ∈ U(nC⊕aC)

such thatC − C ′ annihilatesϕ0.
In detail, we use the commutation relations and the fact thatX− = X+ −W to write

4C = H2 − 2H + 4X2
+ − 4X+W . Sinceφ0 is spherical, it follows thatWφ0 = 0. Thus

(3.4.4)
(
H2 − 2H + 4X2

+ + 1 + 4r2
)
ϕ0 = 0

Since(ν + ρ)(H) = 2ir + 1, we conclude from (3.4.3) that:(
(H + 2ir + 1)2 − 2(H + 2ir + 1) + 4X2

+ + 1 + 4r2
)
· ϕ0 ⊗ δ = 0.

Collecting terms in powers ofr we see that this may be written as:(
(2H)(2ir) + (H2 + 4X2

+)
)
ϕ0 ⊗ δ = 0

SettingJ =
H2+4X2

+

4i
and dividing by4ir we see that the operatorH+ J

r
annihilatesϕ0⊗ δ,

and so also the distributionµn. One then deduces theA-invariance ofµ∞ as discussed in
the start of this section.

Notice that the terms involvingr2 in (3.4.4) canceled. This is a general feature which
will be of importance.

3.4.2. The general proof.We now generalize these steps in order. Notations being as
in Sections 2.2,3.2 and in Definition 3.3.3, we first compute the action ofU(mC⊕aC⊕nC)

onδ (Lemma 3.4.1) and then onϕ0⊗ δ (Corollary 3.4.2). Secondly we find an appropriate
form for the elements ofZ(gC) (Corollary 3.4.5), which gives us the exact differential
equation (3.4.6). We then show that the elements we constructed annihilatingµψ are (up to
scaling) of an appropriate formH + J

‖ν‖∗ (Lemma 3.4.6), and “take the limit asν → ∞”
(Corollary 3.4.7) to see thatµ∞ is invariant under a sub-torus ofA.

A final step (not so apparent in thePSL2(R) case) is to verify that we have constructed
enoughdifferential operators to obtain invariance under the full split torus (Lemma 3.4.8).
In fact, even in the rank-1 case one needs to verify that the “H” part is non-zero.

Givenλ ∈ a∗C, we extend it to a linear mapmC ⊕ aC ⊕ nC → C. SincemC ⊕ nC is an
ideal of this Lie algebra,λ is a Lie algebra homomorphism; thus it extends to an algebra
homomorphismλ : U(mC⊕aC⊕nC) → C. We denote byτλ the translation automorphism
of U(mC⊕aC⊕nC) given byX 7→ X+λ(X) onmC⊕aC⊕nC. Similarly, givenχ ∈ h∗C, we
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defineτχ : U(hC) → U(hC). We shall writeU(gC)≤d for the elements ofU(gC) of degree
≤ d, and similarly for other enveloping algebras andZ = Z(gC) (e.g.Z≤d = Z∩U(gC)≤d).

Let ν ∈ a∗C. Let χν : Z → C be the infinitesimal character corresponding toIν (that
is, the scalar by whichZ acts in(Iν , VK).) Recall thatρh denotes the half-sum of positive
roots for(hC : gC), ρ the half-sum for(a : g).

LEMMA 3.4.1. For X ∈ m⊕ a⊕ n, Iν(X)δ = −〈ν + ρ,X〉 δ.

PROOF. This follows from the definitions. �

COROLLARY 3.4.2. For anyu ∈ U(mC ⊕ aC ⊕ nC) andf ∈ VK ,

Iν ⊗ I ′ν(τν+ρ(u)) · (f ⊗ δ) = (Iν(u)f)⊗ δ.

PROOF. This follows from the previous Lemma. �

REMARK 3.4.3. Denote byDG(G/K) the ring ofG-invariant differential operators
on S = G/K. There is an evident homomorphismU(gC)K → DG(G/K) with kernel
U(gC)K ∩ kU(gC), see [12, 2.6] or [5, 9.2]. We recall that “projection toU(aC)” under
the Poincaré-Birkhoff-Witt isomorphismU(gC) = U(nC)⊗ U(aC)⊗ U(kC) descends (af-
ter composing with an appropriate translation onU(aC)) to an isomorphism ofDG(G/K)

with U(aC)W (g:a). We shall need some very slightly refined information about this decom-
position. There is an evident mapZ → DG(G/K) and it will suffice for our purpose to
understand the decomposition on the image ofZ(gC). (Although we do not need this, the
map fromZ → DG(G/K) is in most cases nearly surjective; in all cases the quotient field
of the image coincides with the quotient field ofDG(G/K), c.f. [13, 3.16].)

DEFINITION. Let pr : U(gC) → U(hC) be the projection corresponding to the de-
compositionU(gC) = U(hC) ⊕ [(nC ⊕ nM)U(gC) + U(gC)(n̄C ⊕ n̄M)] (arising from the
decompositiongC = nC ⊕ nM ⊕ hC ⊕ n̄C ⊕ n̄M by the Poincaré-Birkhoff-Witt Theorem).

LEMMA 3.4.4. For z ∈ Z≤d, we have

z − pr(z) ∈ U(nC)U(aC)≤d−2U(kC).

PROOF. It suffices to show thatz − pr(z) ∈ U(nC)U(gC)≤d−2U(kC), sincegC = nC ⊕
aC ⊕ kC.

Let B(nC), B(n̄C), B(nM) andB(n̄M) be bases fornC, n̄C, nM and n̄M , respectively,
consisting ofhC-eigenvectors. LetB(aC) andB(bC) be bases foraC andbC, respectively.

By Poincaré-Birkhoff-Witt, one may uniquely expressz as a linear combination of
terms of the form:

D = X1 . . . XnY1 . . . YmA1 . . . AtB1 . . . BrX1 . . . XkY 1 . . . Y l

whereX∗ ∈ B(nC), Y∗ ∈ B(nM),A∗ ∈ B(aC),B∗ ∈ B(bC),X∗ ∈ B(n̄C) andY ∗ ∈ B(n̄M).
Thenz − pr(z) consists of the sum of all termsD for whichn+m+ k + l 6= 0. We show
that each such term satisfiesD ∈ U(nC)U(gC)≤d−2U(kC).

In view of the fact thatz − pr(z) commutes withaC, one hasn = 0 iff k = 0. Further,
if n = k = 0, then the fact thatz − pr(z) commutes withbC impliesm = 0 iff l = 0. Also
one hasn+m+ t+ r + k + l ≤ d.
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We now proceed in a case-by-case basis, using either the inclusionnM ⊕ bC ⊕ n̄M =

mC ⊂ kC, or the observation that forX ∈ n̄C we haveθCX ∈ nC, whileX + θCX ∈ kC (it
is θC-stable!).

(1) k = l = 0 is impossible, for this would forcen = m = 0.
(2) k ≥ 1 andl ≥ 1. Thenn ≥ 1 so thatX1 . . . Xn ∈ U(nC), Y 1 . . . Y l ∈ U(kC), and

m+ t+ r + k ≤ d− 2.
(3) k = 0 andl ≥ 1. Thenn = 0 andm ≥ 1, sot ≤ d− 2. Since[a,m] = 0 we may

commute theA-terms past theY -terms, so thatD is the product of theA-terms (at
mostd− 2 of them) andY1 . . . YmB1 . . . BrY 1 . . . Y l ∈ U(kC).

(4) k ≥ 1 andl = 0. Thenn ≥ 1. Sets = Y1 . . . YmA1 . . . AtB1 . . . BrX1 . . . Xk−1

so thatD = X1 . . . Xn · s ·Xk. Sincem+ t+ r + (k − 1) ≤ d− 1− n ≤ d− 2,
we haves ∈ U(gC)≤d−2. Then (recallθC is the complex-linear extension of the
Cartan involutionθ to gC),

D = X1 . . . XnsXk = X1 . . . Xn · s · (Xk − θC(Xk))(3.4.5)

+ X1 . . . XnθC(Xk)s

+ X1 . . . Xn(sθC(Xk)− θC(Xk)s).

From the observation above, the first two terms on the right clearly belong to
U(nC)U(gC)≤d−2U(kC). Moreover,

[
s, θC(Xk)

]
∈ U(gC)≤d−2 (the general fact

that [p, q] ∈ U(gC)dp+dq−1 wheneverp ∈ U(gC)≤dp , q ∈ U(gC)≤dq follows by
induction on the degrees from the formula[ab, c] = a[b, c] + [a, c]b). Thus the
third term of (3.4.5) belongs toU(nC)U(gC)≤d−2U(kC) also.

�

COROLLARY 3.4.5. Let z ∈ Z≤d. Then there existsb = b(z) ∈ U(nC)U(aC)≤d−2 such
that z − pr(z) + b(z) ∈ U(gC) · kC.

SinceIν(kC) annihilatesϕ0 andz·ϕ0 = χν(z)ϕ0, we haveIν(χν(z)−pr(z)+b(z))·ϕ0 =

0. In view of Corollary 3.4.2inf} we obtain:

(3.4.6) Iν ⊗ I ′ν(τν+ρ pr(z)− τν+ρb(z)− χν(z))(ϕ0 ⊗ δ) = 0

In what follows, we shall freely identify the algebraU(hC)W(hC : gC) with the Weyl-
invariant polynomial functions onh∗C.

GivenP ∈ U(hC)W(hC : gC), we denote byP ′ : h∗C → hC its differential. In other words,
we identify P with a polynomial function onh∗C, andP ′ denotes the derivative of this
function; it takes values in the cotangent space ofh∗C, which is canonically identified at
every point withhC.

We shall use the notationU(gC)[aC]≤r to denote polynomials of degree≤ r on a∗C,
valued in the vector spaceU(gC). Note that givenJ ∈ U(gC)[aC]≤r andν ∈ a∗C we can
speak of the “value ofJ atν.” We denote it byJ(ν) and it belongs toU(gC).
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LEMMA 3.4.6. LetP ∈ U(hC)W(hC : gC) have degree≤ d. SetH = P ′(ν)
||ν||d−1 ∈ hC. Then

there existsJ ∈ U(gC)[aC]≤d−2 such that

Iν ⊗ I ′ν

(
H +

J(ν)

‖ν‖d−1

)
· ϕ0 ⊗ δ = 0.

(As defined in Section 2.2,‖ν‖ denotes the norm ofν ∈ a∗C w.r.t. the Killing form.)

PROOF. The mapγHC : Z → U(hC)W(hC : gC) given byγHC(z) = τρh
pr(z) is an iso-

morphism of algebras, the Harish-Chandra homomorphism. With the above identification,
the infinitesimal character of(VK , Iν) corresponds to “evaluation atν + ρ − ρh,” i.e. for
P ∈ U(hC)W(hC : gC):

(3.4.7) χν(γ
−1
HC(P)) = P(ν + ρa − ρh)

(See [16, Prop 8.22]; w.r.t. the maximal torusbC ⊂ mC, the infinitesimal character of the
trivial representation ofmC is (the Weyl-group orbit of)ρ− ρh).

GivenP ∈ U(hC)W(hC : gC) of degreed, we setz = γ−1
HC(P) in (3.4.6), writingb(P)

for the elementb(z). Note thatz ∈ Z(gC)≤d, as the Harish-Chandra homomorphism “pre-
serves degree” (see [5, 7.4.5(c)]), and henceb(P) ∈ U(nC)U(aC)≤d−2.

Combining (3.4.6) and (3.4.7):ϕ0 ⊗ δ is then annihilated by the operator

(3.4.8)
(
τν+ρ−ρh

P − P(ν + ρa − ρh)− τν+ρb(P)
)
ϕ0 ⊗ δ = 0

Let x = (x1, . . . , xn), y = (y1, . . . , yn). If a polynomialp ∈ C[x] has degreed,
p(x + y) − p(y) = p′(y)(x) + q(x, y) whereq ∈ (C[x]) [y] has degree at mostd − 2 in y,
and the derivativep′(y) is understood to act as a linear functional onx.

Applying this top = P , y = ν + ρ − ρh we see that there existsJ1 ∈ U(gC)[aC]≤d−2

with deg(J) ≤ d− 2 and

(3.4.9) τν+ρ−ρh
P − P(ν + ρ− ρh) = P ′(ν + ρ− ρh) + J1(ν)

Now b(P) ∈ U(nC) · U(aC)≤d−2, so the mapν 7→ τν+ρb(P) can be regarded as an
elementJ2 ∈ U(gC)[aC]≤d−2. Similarly ν 7→ P ′(ν + ρ − ρh) − P ′(ν) defines an element
J3 ∈ U(gC)[aC]≤d−2.

Combining these remarks with (3.4.8) and (3.4.9), we see that

(P ′(ν) + J1(ν) + J2(ν) + J3(ν))ϕ0 ⊗ δ = 0

SetJ ≡ J1 + J2 + J3 and divide by‖ν‖d−1 to conclude. �

COROLLARY 3.4.7. LetP ∈ U(hC)W(hC : gC). Notations being as in Definition 3.3.8 and
Lemma 3.3.9, suppose{ψn} is conveniently arranged. Thenµ∞(ϕ0, δ) isP ′(ν̃∞)-invariant.

PROOF. It suffices to verify this forP homogeneous, say of degreed. Combining
Lemma 3.4.6 and Lemma 3.3.7, and using the homogeneity ofP, we see that there exists
J ∈ U(gC)[aC]≤d−2 so that(

P ′(ν̃n) +
J(νn)

||νn||d−1

)
· µn(ϕ0 ⊗ δ) = 0
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Here (P ′ + . . . ) acts onµn(ϕ0 ⊗ δ) according to the natural action ofU(gC) on
C∞

c (XZ)′K . Now fix g ∈ C∞
c (XZ)K . Let u→ ut be the uniqueC-linear anti-involution of

U(gC) such thatX t = −X for X ∈ gC ⊂ U(gC). Then we have for eachd

(3.4.10) µn (ϕ0 ⊗ δ)

((
P ′(ν̃n)−

J t(νn)

‖νn‖d−1

)
g

)
= 0.

Note that, asn varies, the quantity
(
P ′(ν̃n)− Jt(νn)

‖νn‖d−1

)
g remains in a fixed finite di-

mensional subspace ofC∞(X)K . Further, it converges in that subspace toP ′(ν̃∞)g.
With these remarks in mind, we can pass to the limitn → ∞ in (3.4.10) to obtain

µ∞(ϕ0 ⊗ δ)(P ′(ν∞)g) = 0, i.e.P ′(ν∞) annihilatesµ∞ as required. �

It remains to show that the subspace

(3.4.11) S =
{
P ′(ν̃∞) | P ∈ U(hC)W(hC : gC)

}
⊂ hC

containsaC. By the Corollary this will show thata annihilates any limit measure, or that
this measure isA-invariant.

LEMMA 3.4.8. LetW0 ⊂ W (hC : gC) be the stabilizer of̃ν∞ ∈ a∗C, and defineS as in
(3.4.11). ThenS = hW0

C . In particular, if ν̃∞ is regular, thenS containsaC.

PROOF. This can be seen either from the fact thatS is the image of the map on cotan-
gent spaces induced by the quotient maph∗C → h∗C/W0, or more explicitly: first construct
many elements inU(hC)W(hC : gC) by averaging overW (hC : gC), and then directly compute
derivatives to obtain the claimed equality.

W0 is generated by the reflections inW (hC : gC) fixing ν̃∞. In the case wherẽν∞
is regular as an element inia∗R, the corresponding roots must be trivial on all ofa∗C. In
particular, any element ofW0 fixes all ofaC. �

COROLLARY 3.4.9. Let notations be as in Proposition 3.3.13. Then any weak-* limit
σ∞ of the measuresσn isA-invariant.

PROOF. After passing to an appropriate subsequence, we may assume that{ψn} is con-
veniently arranged. Proposition 3.3.13, (1), shows thatσ∞(g) = µ∞(ϕ0, δ)(g) whenever
g ∈ C∞

c (XZ)K . Corollary 3.4.7 and Lemma 3.4.8, together with the fact thatC∞
c (XZ)K is

dense inC0(X), show thatσ∞ isA-invariant. �



CHAPTER 4

The Method of Hecke Translates I: Tubular Neighbourhood,
Translates, and Diophantine Geometry

4.1. Overview

In the previous chapter we have seen that a Maass form cannot be too concentrated –
its associated measure can be approximately lifted to a measure which is approximately
A-invariant (in the non-degenerate case). This chapter and the next one are devoted to
showing a similar conclusion for Hecke eigenforms. We hence fix a unitary Hecke character
ω ∈ Ẑ and a normalized Hecke eigenfunctionψ ∈ L2(X,ω), and letµ denote the measure
µψ(f) =

∫
XZ

f |ψ|2 dx onXZ . We will of course takeψ to be one of the functions̃ψn of
Theorem 1.3.2. As before,π will denote any of the quotient mapsG � X � XZ .

In Section 4.2 we will describe certain relatively compact open setsBa(C, ε) ⊂ G to
be called “tubular neighbourhoods”, depending on a parameterε, their “width” , which will
tend to zero. We will also use the term for sets of the formxBa(C, ε) ⊂ XZ wherex ∈ XZ .

Using the isomorphismXZ = ΓZ\G ' G(Q)Z\G×G(Af)/Kf , any pairg∞ ∈ G and
gf ∈ G(Af) gives rise to a relatively compact open subset

g∞Ba(C, ε)gf
def
= {ZG(Q)g∞bgfKf | b ∈ Ba(C, ε)} ⊂ XZ ,

which we will call aHecke translateof the tubular neighbourhoodxBa(C, ε) of x = ZΓg∞.
Writing gf = γkf for someγ ∈ Γ, kf ∈ Kf , we see thatg∞Ba(C, ε) = x′Ba(C, ε) where
x′ = ZΓ(γ−1

∞ g∞). In other words, a Hecke translate of a tubular neighbourhood is again a
tubular neighbourhood of the same type.

In the next chapter we will analyze the behaviour ofψ on a large number of such trans-
lates to bound the measuresµψ(xBa(C, ε)) and show they must decay as a power ofε

(“positive entropy for the action ofa”). We would like to choose a disjoint set of translates,
and hence we need to understand the intersection pattern of such a set. The main result of
this chapter (Theorem 4.4.4 of Section 4.4) is the first step in that direction, showing that
under certain conditions onS ⊂ G(Af) there exists a properQ-subalgebra of our division
algebra which controls the intersection pattern of the Hecke translates{xBa(C, ε)gf}gf∈S.
Since we assumeD to be of prime degreed, this proper subalgebra will then be commuta-
tive, i.e. a number field of dimensiond contained inD(Q).

The key idea is the analysis in section 4.3 of the polynomial nature of the condition
“the subalgebra ofD(Q) generated by the subsetU ⊂ D(Q) is proper”.

For a very concrete version the ideas of this chapter (in the cased = 2) the see Lemmata
3.1, 3.2 and 3.3 of [3].

36
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4.2. Algebra in tubular neighbourhoods

Let a ∈ A \ Z. We then setna ⊂ n be the Lie subalgebra spanned by the root spaces
nα associated to rootsα such thatα(a) > 0. This is the unipotent radical of a parabolic
subalgebra associated to that set of roots. The Levi factor isMaAa = ZG(a), whereAa =

Z(MaAa) = ∩α(a)=0 Ker(α) is its center. We then setn̄a = na, the unipotent radical of the
opposite parabolic subgroup.

For anyε > 0 let nεa = {X ∈ na | ‖X‖ < ε} (note that̄nεa = θnεa), and setNa(ε) =

exp nεa, N̄a(ε) = ΘNa(ε) = exp n̄εa. For any relatively compact symmetric neighbourhood
of the identityC ⊂ AaMa and everyε > 0, we setBa(C, ε) = N̄a(ε) · C · Na(ε) ⊂ G.
We callC̃ ⊂ G a neighbourhoodof C if C̃ is neighbourhood of everyc ∈ C̄ (topological
closure).

DEFINITION 4.2.1. We call a set of the formBa(C, ε) a tubular neighbourhoodof the
pieceC ⊂ AaMa.

Thinking ofε as small (C will be fixed), the elements ofBa(C, ε) are very close to lying
onAaMa. SinceAaMa is a subgroup, one expects that a set of the formBa(C, ε)Ba(C

′, ε′)

also consists of elements close to a neighbourhood of the identity ofAaMa.

LEMMA 4.2.2. (c.f. [3, Lemma 3.2]) For anyC,C ′, any relatively compact symmetric
neighbourhoodsC ⊂ C̃ resp. CC ′ ⊂ C̃, and anyε, ε′ small enough w.r.t. the choice of
C,C ′, C̃ we have:

Ba(C, ε)
−1 ⊂ B(C̃, OC(ε))

resp.
Ba(C, ε)Ba(C

′, ε′) ⊂ Ba(C̃, OC,C′(ε+ ε′)).

PROOF. This is a direct computation. We only prove the first assertion.
Since the adjoint action is differentiable andB(C, 1) is a relatively compact subset of

G, there exists a constantrC such that‖Ad(m)X‖ ≤ rC ‖X‖for anym ∈ B(C, 1) and
X ∈ g. Secondly, for any (vector-space) direct sum decompositiong = ⊕iVi the map
(Xi)i 7→

∏
i expXi is a local diffeomorphism. Thus there existsδ, r′ > 0 such that if

X1, X2, Y ∈ g are all of norms≤ δ then there existsX ′ ∈ g and(Y1, Y2, Y3) ∈ n̄a ⊕ ma ⊕
na ' g such that‖X ′‖ ≤ r′ (‖X1‖+ ‖X2‖), ‖Yi‖ ≤ r′ ‖Y ‖ andexpX ′ = expX1 expX2

andexpY = expY1 expY2 expY3 (the existence ofX ′ follows from the smoothness of
the multiplication operation in the co-ordinate systemexp : g → G, the existence ofYi
from the equivalence of that co-ordinate system with the one induced from the direct sum
decomposition). We also observe that ifC1 ⊂ G is any relatively compact subset, andC2 ⊃
C1 is a neighbourhood then forε small enough we haveC1 exp {X ∈ g | ‖X‖ ≤ ε} ⊂ C2.

Assume thatrCε ≤ 1, rCε ≤ δ, r′rCε ≤ δ. As the setsnεa, n̄εa are symmetric, so are
Na(ε) andN̄a(ε), so for the first assertion it suffices to show that ifb = n̄mn ∈ Ba(C, ε)

thennmn̄ ∈ Ba(C̃, OC(ε)). For this writen = expX, n̄ = expY with ‖X‖ , ‖Y ‖ ≤ ε and
write n′ = m−1nm so that:

nmn̄ = mn′n̄ = mn′n̄n′−1n′.
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We next note thatn′ = exp(Ad(m−1)X) ∈ B(C, 1) since‖Ad(m)X‖ ≤ rC ‖X‖ ≤ 1.
Sincen′n̄n′−1 = exp(Ad(n′)Y ) we conclude‖Ad(n′)Y ‖ ≤ rC ‖Y ‖ ≤ rCε. We can thus
write exp(Ad(n′)Y ) = exp(Y1) exp(Y2) exp(Y3) with Y1 ∈ n̄a, Y2 ∈ ma andY3 ∈ na and
‖Yi‖ ≤ r′rCε. It follows that:

nmn̄ = exp(Ad(m)Y1) (m exp(Y2)) (exp(Y3) exp(Ad(m)X)) .

Finally, choosingε small enough will insure thatm exp(Y2) ∈ C̃, while ‖Ad(m)Y2‖ ≤
r′r2

Cε andexp(Y3) exp(Ad(m)X) = expX ′ for someX ′ ∈ na such that‖X ′‖ ≤ r′(1 +

r′)rCε. �

The next Lemma formalizes the notion that thexBa(C, ε) are “tubular neighbourhoods”
of the piecesxC, uniformly over compacta inG:

LEMMA 4.2.3.LetΩ∞ ⊂ G be compact. Then there exists a constantc > 0 (depending
on Ω∞, C) such that for everyx∞ ∈ Ω∞ and small enoughε > 0, if g ∈ x∞Ba(C, ε)x

−1
∞

then there existsg∞ ∈ x∞Cx−1
∞ ⊂ x∞AaMax

−1
∞ with |xi(g∞)− xi(g)| ≤ cε for everyi.

PROOF. We know thatg = x∞ng̃n̄x
−1
∞ with g̃ ∈ C, n ∈ Na(ε) andn̄ ∈ N̄a(ε). Now

setg∞ = x∞g̃x
−1
∞ and consider the mapsti : na × n̄a ×G→ R given by

(X, X̄, x∞) 7→ xi
(
exp (Ad(x∞)X) g∞ exp

(
Ad(x∞)X̄

))
.

Being the composition of smooth maps this is one as well; in particular it is continu-
ously differentiable on a relatively compact open neighbourhood ofn1

a × n̄1
a × Ω∞. We

can hence findc > 0 such that forX ∈ n1
a, X̄ ∈ n̄1

a

∣∣ti(X, X̄, x∞)− ti(0, 0, x∞)
∣∣ ≤

cmax
{
‖X‖ ,

∥∥X̄∥∥} . Since we haveg∞ = t(0, 0, x∞) and g = t(X, X̄, x∞) for some
X ∈ nεa, X̄ ∈ n̄εa we have the desired result. �

4.3. Diophantine Geometry of Division Algebras

We will show that ifI ⊂ D(Q) are close to a properR-subalgebraD′
R ⊂ D(R) and

have small denominators, they generate a properQ-subalgebra ofD of dimension at most
dimRD

′
R. Along the way we will make extensive use the co-ordinatesxi on D introduced

as Notation 2.1.1.

LEMMA 4.3.1. Let

Vr,s(K) =
{
x =

(
x(1), . . . , x(s)

)
∈ D(K)s

∣∣∣ dimK SpKx ≤ r
}
,

whereSpKx is theK-subspace ofD(K) = D(Q) ⊗ K spanned byx. ThenVr,s(K) =

∩p∈F {p = 0} whereF is a finite family of homogeneous polynomials in the co-ordinates
of thex(i), with coefficients inQ and degrees bounded as a function ofd.

PROOF. We need to verify that the statement “the rank of thes×d2 matrixM is at most
r” is equivalent to the joint vanishing of some polynomials in the entries ofM . Indeed,M
having rank≤ r is equivalent to the vanishing of the determinant of every(r+ 1)× (r+ 1)

minor ofM , and the coefficients of the polynomials are in fact±1. �
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LEMMA 4.3.2. For each1 ≤ k ≤ d2 and any fieldK extendingQ, let

Vr(K) =
{
x ∈ D(K)d

2
∣∣∣ dimK K[x] ≤ k

}
,

whereK[x] is theK-subalgebra ofD(K) = D(Q) ⊗ K generated byx. ThenVr is an
algebraic variety defined overQ, when defined in terms of the co-ordinates of the elements
of x in the basis. Moreover, it is defined by a finite set of homogeneous polynomials of
a-priori bounded degrees.

PROOF. Forx ∈ D(K)d
2

letWt(x) denote the subspace ofD(K) spanned by all prod-
ucts of length at mostt in the elementsx(1), . . . , x(d2). This is a non-decreasing sequence of
subspace of thed2-dimensionalK vector spaceD(K). Hence there must exist a1 ≤ t ≤ d2

such thatWt+1 = Wt. This means that the subspaceWt, spanned by products of thex(i),
is closed under left and right multiplication by them. In other words,Wt = K[x], the
subalgebra generated by thex. Since theWt cannot increase further we conclude that
Wd2 = K[x] in all cases. Now, the set of products of at mostd2 of thex is an element

of (D(K))
Pd2

l=0 d
2l

which depends polynomially onx (fix an ordering). Since the previous
Lemma showed thatV

r,
Pd2

l=0 d
2l is defined by homogeneous polynomial equations, we are

done. Note that the “structure constants”aijk enter into the coefficients of these polynomi-
als. �

DEFINITION 4.3.3. Letx ∈ Q. We define itsdenominatord(x) andheighth(x) by:

d(x) =
∏

p:vp(x)<0

p−vp(x),

h(x) =
∏
p<∞

p|vp(x)|.

For a sequencex ∈ Qr we setd(x) = gcd {d(xi)}.

LEMMA 4.3.4. (Properties of denominators and heights) Letx, x′ ∈ Q.

(1) d(xx′) ≤ d(x)d(x′) andd(x+ x′) ≤ d(x)d(x′).
(2) h(xx′) ≤ h(x)h(x′). If x ∈ Q× thenh(x−1) = h(x).
(3) LetP ∈ Q[x] be a multivariate polynomial inr variables. Then there existCP > 0

and an integertP such that for allx ∈ Qr:

d(P (x)) ≤ CPd(x)tP .

PROOF. Direct calculation and induction. �

DEFINITION 4.3.5. Forxp ∈ Qp we setdp(xp) = 1 if xp ∈ Zp, dp(xp) = p−vp(xp)

otherwise andhp(xp) = p|vp(xp)|. If x ∈ Af we setd(x) =
∏

p dp(xp), h(x) =
∏

p hp(xp).

LEMMA 4.3.6. d : Af → Z is uniformly continuous in the adelic topology; Our defini-
tions are compatible with the standard embeddingsQp ↪→ Af andQ ↪→ Af .

PROOF. Letx ∈ Af , x′ ∈
∏

p Zp. Thend(x+x′) = d(x): at places wherex is integral,
so isx + x′. At places wherex is not, we havevp(x + x′) = vp(x) by the ultrametric
behaviour ofvp. The second assertion is obvious. �
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We now extend the notion of denominator to elements ofG:

DEFINITION 4.3.7. Forγ ∈ D(Q)× set d(γ) = gcd {d(xi(γ))}d
2

i=1 . As above we
extend this notion to mapsdp : Gp → Z andd: G(Af) → Z. Forg ∈ G(Af) we will also
write hp(gp) = hp(νD(gp)) andh(g) =

∏
p hp(gp) = h(νD(g)).

COROLLARY 4.3.8. d(gg′) ≤ d(g)d(g′) andh(g−1) = h(g) for anyg ∈ G(Af). The
mapd : G(Af) → Z is continuous.

PROOF. We havexi(gg′) =
∑

j,k aijkxj(g)xk(g
′) with all theaijk ∈ Z. It is also clear

that the map is locally constant. �

The continuity of the denominator map implies, in particular, its boundedness on the
compact subgroupKR, and we will assume thatd(k) ≤ c1 for anyk ∈ KR. If p /∈ R and
kp ∈ Kp and by Fact 2.1.3(4) we havexi(kp) ∈ Zp for all 1 ≤ i ≤ d2 and hencedp(kp) = 1.
In fact, if gp ∈ D(Qp) thenxi(gpkp) andxi(kpgp) are all linear combinations with integral
coefficients of thexi(gp). This meansdp(kpgp), dp(gpkp) ≤ dp(gp). Multiplying by k−1

p

(also an element ofKp) we get:

LEMMA 4.3.9. Letp /∈ R, kp ∈ Kp andgp ∈ Gp. Thendp(gpkp) = dp(kpgp) = dp(gp).
If g ∈ G(Af), k ∈ Kf andkp = 1 for p ∈ R thend(kg) = d(gk) = d(g).

4.4. Intersections of Hecke Translates

Let a ∈ A \ Z, C ⊂ AaMa. Let Ω∞ ⊂ G be compact such thatπ(Ω∞) = XZ , and
choose a neighbourhood̃C ⊂ AaMa so that for small enoughε, Ba(C, ε)Ba(C, ε)

−1 is
contained inB̃ = Ba(C̃, O(ε)) as in Lemma 4.2.2. We will also shortenB = Ba(C, ε).

Fixing somex ∈ XZ we are ready to analyze intersections of Hecke translates ofxB.
Writing x = ΓZx∞ for somex∞ ∈ Ω∞, let g, g′ ∈ G(Af) be such thatx∞Bg ∩ x∞Bg′ is
nonempty. This entails the existence ofγ ∈ G(Q), z∞ ∈ Z, k ∈ Kf andb, b′ ∈ B such that

(4.4.1) γz∞x∞bg = x∞b
′g′k

holds as an equality of adéles, whereγ is embedded diagonally inG(A). We will say that
suchγ cause an intersection. At the infinite place this readsγz∞x∞b = x∞b

′ or:

(4.4.2) γz∞ = x∞b
′bx−1

∞ ∈ x∞BB−1x−1
∞ ⊂ x∞B̃x

−1
∞ ,

where the last inclusion follows from the choice ofC̃. Now lemma 4.2.3 shows thatγz∞ is
O(ε)-close tox∞AaMax

−1
∞ (independently ofg or g′!). Recalling thatAaMa is contained

in a proper subalgebra ofD(R), we see that theseγ are very close to satisfying the poly-
nomial equations we have just constructed, except for the annoyance of the factorz∞: γ
is O(ε/z∞)-close to an element of the subalgebra, and|z∞| might be very small. Lemma
4.4.3 addresses this problem.

Noting that the sets̃B only decrease withε, we also see that (assumingε < 1) if
γ causes an intersection there existsz∞ ∈ R× such thatγz∞ belongs to the relatively
compact set:

(4.4.3) Ω∞Ba(C̃, O(1))Ω−1
∞ ⊂ G∞.
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GivenS ⊂ G(Af), we denoteI(a, x∞, B̃, S) the set ofγ ∈ G(Q) that cause an inter-
section for translates ofx∞B by someg, g′ ∈ S, whereγz∞ lies inx∞B̃x−1

∞ .

DEFINITION 4.4.1. LetT > 0. We will say thatS ⊂ G(Af) is T -boundedif every
g ∈ S satisfies:

(1) d(g), d(g−1) ≤ ε−T ;
(2) h(νD(g)) ≤ ε−T (whereνD : G(Af) → Af is the reduced norm);
(3) (gp)p∈R ∈ KR.

LEMMA 4.4.2. LetS ⊂ G(Af) beT -bounded, and letx∞ ∈ Ω∞, γ ∈ I(a, x∞, B̃, S).
Thend(γ), |νD(γ)|∞ � ε−2T where the implied constant depends only on the choice of
co-ordinates and on the compact subgroupKf .

PROOF. By definition we haveg 6= g′ ∈ S andk ∈ Kf such thatγ = g′kg−1 holds as
an equality of finite adéles. We now use this place-by-place. Projecting toGR =

∏
p∈RGp,

we havegR, g′R ∈ KR and henceγ ∈ KR under the diagonal embedding. It follows that∏
p∈R dp(γ) is uniformly bounded by the numberc we fixed above. Ifp /∈ R we use

Corollary 4.3.8 and Lemma 4.3.9 to get:

dp(γp) ≤ dp(g
′
pkp)dp(g

−1
p ) = dp(g

′
p)dp(g

−1
p ).

Multiplying over all primes we conclude:

d(γ) � e−2T .

Next, by the product formula we have|νD(γ)|∞ =
∏

p |νD(γp)|−1
p . The absolute value of the

reduced norm is a positive multiplicative quasi-character. In particular it is the constant1 on
any compact subgroup such asKf . Also, we have defined the height so that

∣∣νD(g−1
p )
∣∣
p
≤

hp(gp). It follows again that:

|νD(γ)|∞ ≤
∏
p

hp(g
′
p)hp(gp) ≤ h(g)h(g′) ≤ ε−2T .

�

LEMMA 4.4.3. There exists a constantc > 0 (depending onΩ∞, C̃) such that for
everyx∞ ∈ Ω∞, small enoughε > 0, S ⊂ G(Af) and γ ∈ I(a, x∞, B̃, S) there ex-
ist z∞ ∈ R×

>0 with |z∞| � |ν(γ)|−1/d
∞ and g∞ ∈ x∞C̃x

−1
∞ ⊂ x∞AaMax

−1
∞ such that

|xi(g∞)− z∞xi(γ)| ≤ cε for every1 ≤ i ≤ d2.

PROOF. Letγ ∈ I(a, x∞, B̃, S), diag(z∞) ∈ Z such thatγ diag(z∞) ∈ x∞B̃x−1
∞ (note

thatxi(γ diag(z∞)) = z∞xi(γ) by definition). Assuming, as we may, thatε < 1, we have
observed above thatγz∞ must belong to a specific compact subset ofG. The continuity
of the mapdet : G → R× shows thatdet(γ diag(z∞)) is uniformly bounded below. As
ν(γ) = det(γ) when on the right we embedγ in D(R), anddet(diag(z∞)) = zd∞ we are
done.
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�

THEOREM 4.4.4. (c.f. [3, Lemma 3.3]) There existsT > 0 such that, given aT -
boundedS and a pointx∞ ∈ Ω∞ we can find a number fieldF ⊂ D(Q) of dimen-
siond such thatI(a, x∞, B̃, S) ⊂ F× ⊂ G(Q), wheneverε is small enough. Moreover,

there exist
{
γ′(j)

}d
j=1

⊂ O, each of height at mostO(ε−T
′
) for some knownT ′, such that

F = Q(γ′(1), . . . , γ′(d)).

PROOF. Choose
{
γ(j)
}d2
j=1

⊂ I(a, x∞, B̃, S) which have the sameQ-span as all of

I(a, x∞, B̃, S), and letD′ denote theQ-subalgebra ofD generated by the
{
γ(j)
}

, necessar-
ily a division algebra. It suffices to show that this is a proper subalgebra ofD, since in that
casedimQ D′(Q) will be a proper divisor ofdimQ D(Q) = d2. With d assumed prime, the
possibilities aredimQ D′(Q) = 1 whereD′(Q) = Q anddimQ D′(Q) = d, whereD′(Q)

must be monogenic and hence commutative, i.e. a number field.
By Lemma 4.4.2 we haved(γ(j)) � ε2T for all j. Applying Lemma 4.4.3 as well we

can find for eachj

g(j)
∞ ∈ x∞C̃x−1

∞ ⊂ x∞AaMax
−1
∞ ⊂ Ω∞AaMaΩ

−1
∞

andz(j)
∞ ∈ ZG(R) such that

∣∣∣z(j)
∞

∣∣∣� ε2T/d and such that for each1 ≤ i ≤ d2 we have:∣∣xi(g(j)
∞ )− z(j)

∞ xi(γ
(j)
∞ )
∣∣� ε.

Now letr = dimRAaMa, and let{fm}Mm=1 be a set of polynomials with integer coefficients

definingVr, each homogeneous of degreehm in thex(j). That
{
g

(j)
∞

}d2
j=1

∈ Vr(R) (they

generate anR-subalgebra of at most that dimension!) can be written asfm

({
g

(j)
∞

}
j

)
= 0.

Since we can uniformly bound the gradient offm in a cε-neighbourhood of the relatively

compact set
(
Ω∞Ba(C̃, O(1))Ω−1

∞

)d2
for ε small enough, we have:∣∣fm ({z(j)

∞ γ(j)
∞
})∣∣� ε,

and hence: ∣∣fm ({γ(j)
∞
})∣∣� ε1−2hmT/d.

Now since the coefficients offm are integers, the denominator offm

({
γ

(j)
∞

}
j

)
is at most

the hm-th power of the maximal denominator of anxi(γ
(j)
∞ ), i.e. at mostε−2hmT . The

crucial observation is then that iffm

({
γ

(j)
∞

}
j

)
6= 0, it is then at leastε2hmT . ChoosingT

so that for allm

T <
2d

d+ 1
hm,

we can make sure that forε small enough we will havefm
({
γ

(j)
∞

})
= 0 for allm, i.e. that

dim D′ ≤ r.
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Finally, since[F : Q] = d, we can assume w.l.g. that
{
γ(j)
}d
j=1

generateF , and the

same will hold if we replaceγ(j) with γ′(j) = d(γ(j))γ(j) ∈ O. Now the discriminant ofγ′ is
at most that of the characteristic polynomial of the automorphismx 7→ γ′x of D(Q). Since
the discriminant of a polynomial is a polynomial expression in its coefficients, and since in
our case these coefficients are polynomials in thexi(γ

′), which are bounded by the height
of γ′. From this one can recover an exponentT ′ as in the statement of the Theorem. �

REMARK 4.4.5. (1) The discriminant ofF as above is alsoO(ε−T
′′
), since it is at

most the product of the discriminants of theγ′(j).
(2) We have used the observation that everyγ causing an intersection must satisfy

γ∞ ∈ Ω∞Ba(C̃, O(1))Ω−1
∞ , and the latter is a compact set independent ofε.



CHAPTER 5

The Method of Hecke Translates II: Geometry and Harmonic Analysis
on the Building

As discussed in the introduction, this method was initiated by [25, 15]. Our analysis
stems from the very concrete Lemmata 3.3 and 3.4 of [3].

The following is the second main ingredient of the main theorem:

THEOREM 5.0.1. Let a ∈ A \ Z. Then there existsη > 0 such that for every Hecke
Eigenfunctionψ ∈ L2(X,ω) and every relatively compact neighbourhood of the identity
C < Ma ,

µψ(xBa(C, ε)) �a ε
η

holds forε small enough and anyx ∈ XZ . In particular, the implied constant is indepen-
dent off .

In the previous chapter we saw that given aT -boundedS ⊂ G(Af), intersections be-
tween sets of the typex∞Bg andx∞Bg′ for g, g′ ∈ S could occur only ifγgKf = g′Kf

for someγ ∈ F×, whereF ↪→ D(Q) is a number field of degreed and bounded dis-
criminant. The proof hinges on choosing anS that will on the one hand be small enough to
(almost) fail to admit such intersections, while on the other be large enough to haveµψ(xB)

bounded by a small multiple of
∑

g∈S µψ(xBg). The resulting disjointness of the translates
implies that the latter sum is bounded by1, hence thatµψ(xB) is small. The proof will be
broken up in several stages, alternating geometrical considerations and harmonic analysis
estimates.

We first analyze the intersection pattern at a single place, in other words the action
of the torusF× on the quotientGp/Kp. We will do this by embedding the discrete set
Gp/Kp in a geometric structure, thebuilding of Gp. In Section 5.1 we give a summary
of the properties of the building and use its geometry to construct a subsetSp ⊂ Gp of
translates for which we understand the (local) intersection pattern. In Section 5.2 we then
bound

∑
gp∈Sp |ψ(x∞bgp)|2 from below by a not-too-small multiple of|ψ(x∞b)|2 for any

x∞ ∈ Ω∞ and b ∈ B. We use there bounds toward the Ramanujan conjecture due to
Luo-Rudnick-Sarnak.

The next step is to combine the information from many places. Section 5.3 shows that
by taking the union of theSp over many places we still have no intersections, allowing us
to complete the proof of Theorem 5.0.1 in Section 5.4 .

5.1. The buildings ofGLn and PGLn.

Let p be a finite rational prime,v the p-adic valuation onQ, with completionQp,
valuation ringZp and maximal idealp = pZp C Zp. The residue fieldZp/p ' Fp is

44
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then finite, and we will denote its cardinalityq. We choose a uniformizer$ ∈ p \ p2 (e.g.
$ = p) and normalize the absolute value onQp so that|$| = q−1.

REMARK 5.1.1. The distinction betweenp andq appears silly. It amounts to distin-
guishing between a finite cardinal and the associated integer, thought of as an object of
arithmetic. However, the discussion below would remain unchanged ifQp was replaced by
a field complete w.r.t. a discrete valuation,Zp by its valuation ringO, andp by the maximal
ideal ofO. In that case readq for the cardinality of the residue field,p for its characteristic.
The buildings (defined below) are locally finite exactly whenq is a finite cardinal.

NOTATION 5.1.2. For this Section (5.1) and the next only, we drop the subscript ’p’ we
use elsewhere, writingG = GLn(Qp),K = GLn(Zp). ThusA will denote the subgroup of
invertible diagonal matrices andZ = ZG ' Q×

p the center, i.e. the subgroup of non-zero
scalar matrices.

DEFINITION 5.1.3. LetB0 = PGLn(Qp)/PGLn(Zp), B̃0 = B0 × Z. We letG act on
B0 via the quotientPGLn(Qp), on B̃0 by:

g · (x, n) = (gx, n+ v(det(g))) .

REMARK 5.1.4. One can identifyG/K with the space ofZp-lattices inQn
p , B0 with the

space of homothety classes of lattices.

Noting thatdet(k) ∈ O× for any k ∈ K, for x̃ = gK ∈ G/K the integerν(det g)

is independent of the choice of representativeg ∈ x̃. We will denote itc(x̃). Then the
mapϕ : G/K → B̃0 given byϕ(x̃) = (x̃Z, c(x̃)) is aG-equivariant embedding. However,
it is not surjective: forx̃ ∈ G/K andz ∈ Q×

p thought of as an element ofZ we have
c(zx̃) = nv(z) + c(x̃). Hence, to eachx ∈ B0 we can associate a residue classax ∈ Z/nZ
so that the image ofϕ is precisely{(x, t) | x ∈ B0, t ∈ ax}.

DEFINITION 5.1.5. Call a sequence{xi}di=0 ⊂ B0 anorientedd-simplexif there exist
representative latticesΛi ∈ xi (also letΛd+1 = pΛ0) such thatΛi ⊃ Λi+1 for all 0 ≤
i ≤ d. Denote byBd the set ofd-simplexes (forgetting the orientation for the moment).
n-dimensional simplexes are calledchambers.

FACT 5.1.6.B =
{
Bd
}n
d=0

is a chamber complex:

(1) It is a simplicial complex, i.e. the intersection of two simplexes is again a simplex.
(2) Every simplex is contained in a chamber.

Moreover, theG action onB0 is simplicial.

DEFINITION 5.1.7. The complexB is called thesimplicial building of PGLn(Qp).
EndowingZ with its standard1-dimensional simplicial complex structure, the simplicial
complexB̃ = B × Z (whose set of vertices is preciselỹB0) is called the (poly-)simplicial
building of GLn(Qp). The elements ofB0 andB̃0 will be called theverticesof the respec-
tive buildings. In particular, we will thing of the cosets ofG/K as vertices of̃B.

Now letx0 ∈ B0 be the vertex stabilized byZK (i.e. the identity coset), and letA0
0 ⊂

B0 be the orbitAx0. IdentifyingA '
(
Q×
p

)n
, we haveStabA(x0) = Z ·

(
Z×
p

)n
(with the
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center acting diagonally). We then identifyA0
0 with A/ StabA(x0) ' Zn/Z(1, . . . , 1). The

vertex corresponding tor + Z(1, . . . , 1) is the homothety class of the lattice generated by
{$riei}

n
i=1 where{ei}

n
i=1 is the standard basis ofQn

p .

FACT 5.1.8. The subcomplexA0 ⊂ B consisting of those simplexes supported onA0
0 is

a chamber subcomplex; for every two simplexes∆1,∆2 ∈ B there existsg ∈ G such that
g∆1, g∆2 ∈ A0.

We have{g ∈ G | gA0 = A0} = NG(A), andNG(A) = W n A whereW < K is the
subgroup of permutation matrices (henceforth called theWeyl groupofG w.r.t.A).

DEFINITION 5.1.9. A subcomplexA of the formgA0 for someg ∈ G is called an
apartmentof B. We have just seen that any two simplexes are contained in an apartment.
In particular, any two pointsx, y of the geometric realization|B| lie in the geometric real-
ization|A| of an apartmentA.

In order to give a canonical metric onB, we start with the positive semidefinite bilinear
form

〈u, v〉 =
n∑
i=1

uivi −
1

n

(
n∑
i=1

ui

)(
n∑
i=1

vi

)
on Rn. Its isotropic subspace is one-dimensional and spanned by the vector(1, . . . , 1).
In particular, this pairing descends to a positive-definite bilinear form onRn/R(1, . . . , 1).
This defines a norm and hence a metric on this space.

FACT 5.1.10.The identification of the vertices of the standard apartment with the quo-
tient Zn/Z(1, . . . , 1) extends uniquely to a piecewise-linear isomorphism of the geometric
realization|A0| andRn/R(1, . . . , 1).

Pulling back the norm we have defined gives a metric on|A0|. We have remarked
before that the elements ofG that preserveA0 are generated byNG(A) = WA. SinceW
acts by permuting the co-ordinates, andA by affine translations, the metric we have defined
isNG(A)-invariant.

FACT 5.1.11. This metric extends uniquely to aG-invariant metricd(·, ·) on |B|, in
particular on the set of verticesB0. |B| is a simply connected complete CAT(0) metric
space. The geometric realization of an apartment is a (flat) geodesic subspace.

The standard metric onZ extends to a metric on its realizationR as a simplicial com-

plex. We extend our metricd (with the same notation) to
∣∣∣B̃∣∣∣ ' |B| × R by taking the

Euclidean product (d2 ((x, s), (y, t)) = d2(x, y) + |s− t|2).

DEFINITION 5.1.12. We call the metric space(|B| , d) together with the isometricG-

action thebuildingof PGLn(Qp), the metric space
(∣∣∣B̃∣∣∣ , d) thebuildingofG. Both spaces

are simply connected complete CAT(0) spaces.

FACT 5.1.13.Let (X, d) be a CAT(0) metric space. Then:

(1) (X, d) is uniquely geodesic. We will use[x, y] to denote the unique geodesic seg-
ment betweenx, y.
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(2) LetY ⊂ X be convex (x, y ∈ Y ⇒ [x, y] ⊂ Y ) and closed. Then for anyx ∈ X

the functiony 7→ d(x, y) on Y is strictly convex and has a unique minimum, say
πY (x).

(3) The mapx 7→ πY (x) is a retraction ofX to Y . It does not increase distances.

COROLLARY 5.1.14. Letx, y ∈ |B| satisfypr|A0|(x) = pr|A0|(y) = x0. Then we have
{a ∈ A | ax = y} ⊂ A ∩KZ.

PROOF. Since the (isometric!) action ofa on |B| preserves|A0|, and since the orthogo-
nal projection operatorpr is defined via the metric, we havepr|A0|(ax) = a pr|A0|(x) for all
x ∈ |B|, a ∈ A. In particular, ifax = y we haveax0 = x0, i.e.a ∈ StabG(x0) = KZ. �

Finally, we introduce a co-ordinate system of sorts onG, in terms of the setA+ =

{diag($r1 , · · · , $rn) | 0 = r1 ≤ r2 ≤ · · · ≤ rn} ⊂ A. It is easy to see thatA+x0 ⊂ A0
0 is

a set of representatives for the orbits ofW . From this one gets:

FACT 5.1.15. (Cartan decomposition) Letx, y ∈ B0 be vertices. Then there exists a
uniquea ∈ A+ such for someg ∈ G we havegx = x0, gy = ax0. In particular (“KAK
decomposition”), for anyy ∈ B0 there exists a uniquea ∈ A+ and somek ∈ StabG(x0) =

K such thatky = ax0.

We calla therelative positionof y w.r.t.x (in that order!). Clearly this is aG-equivariant
notion. It is also clear that the distanced(x, y) only depends on the relative position ofx
andy.

LEMMA 5.1.16. Let r ∈ A+ and letN(x0, r) be the set of vertices of relative position
r to x0. Then

#N(x0, r) ∼ q2δ(r),

asymptotically asq →∞ wherer is fixed. Hereδ(r) = −
∑n

i=1

(
n+1

2
− i
)
ri.

PROOF. TheKAK decomposition showsN(x0, r) = {kax0 | k ∈ K} wherea =

diag($r). Now it suffices to compute the index ofStabK(ax0) in K. A direct compu-
tation shows that

StabK(ax0) = {k ∈ K | ∀i, j : v(kij) ≥ ri − rj} .

Sincev(kij) ≥ 0 for all i, j, the condition only has meaning fori > j. We also letN = rn
and setKN =

{
k ∈ K | k ≡ In(p

N)
}

, the kernel of the quotient mapQ : GLn(Zp) →
GLn(Z/pNZ). By the choice ofN we see thatpri−rj | pN for all i > j, and hence that
KN ⊂ Kr. SettingK̄r = Q(Kr), Ḡ = GLn(Z/pNZ) and lettingB̄ < Ḡ denote the
subgroup of upper-triangular matrices, we then have:

#N(x0, r) = [K : Kr] =
[
Ḡ : K̄r

]
=

#Ḡ

#B̄
[
K̄r : B̄

] .
Next, let Ū < Ḡ be the subgroup of lower-triangular unipotent matrices, letW̄ < Ḡ

denote the subgroup of permutation matrices, and setŪr = Ū ∩ K̄r. We will show that
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#Ūr ≤
[
K̄r : B̄

]
≤ #W ·#Ūr, and hence that:

#N(x0, r) ∼
#Ḡ

#B ·#Ūr
.

It now suffices to compute the orders of the finite groupsḠ, B, Ūr . SinceŪr is the set of
ḡ ∈ Ḡ such that̄gij = δij for i ≤ j andḡij ∈ pri−rjZ/pNZ for i > j, we have

#Ūr ∼
∏
i>j

pN−(ri−rj) =
(
pN
)n(n−1)/2

p−2δ(r).

It is also clear that forN fixed andp → ∞ (recall thatN only depends onr), we have

#Ḡ ∼
(
pN
)n2

and

#B̄ = ϕ(pN)n · (pN)n(n−1)/2 ∼
(
pN
)n(n+1)/2

.

It remains to estimate
[
K̄r : B̄

]
. Since both̄Ur, B̄ are subgroups of̄Kr, we haveŪrB̄ ⊂

K̄r. Standard linear algebra (Gaussian elimination) shows that any element ofḠ has at
most a unique representation in the formūb̄ whereū ∈ Ū , b̄ ∈ B̄. This shows that#Ūr ≤[
K̄r : B̄

]
. On the other side, we will use Gaussian elimination showW̄ ŪrB̄ = K̄r : Start

with k ∈ Kr. If r2 > r1, we must havek11 ∈ Z×
p (every other entry in the first column is

in pZ×
p ). If r1 = r2 · · · = rs then the top-lefts × s minor of k must be invertible for the

same reason (all entries below it are divisible byp) and we thus can permute the firsts rows
to ensure the pivots of the image of this minor inGLn(Z/pNZ) are the diagonal elements.
Moreover, the permuted matrix is still inKr. Multiplying on the right by an element ofB
(the set of upper-triangular matrices inK) we can now assume that the firsts rows ofk are
the firsts standard unit vectors. Next, we assumers+1 = · · · = rs+t. Permuting these rows
(an operation which essentially commutes with what we have done so far), we can assume
that the pivots for thet× t minor on the diagonal at positions+ 1, . . . , s+ t has its pivots
on the diagonal, and continue the elimination by induction. �

LEMMA 5.1.17.Letx ∈ N(x0, en) (we think ofen as a representative of a coset modulu
Z(1, . . . , 1)). Then either# (N(x) ∩ A0

0) ≥ 2 or pr|A0|(x) = x0.

PROOF. We may assumex /∈ A0, z0 = pr|A0|(x) 6= x0. Being strictly convex, the
function y 7→ d(x, y) is strictly decreasing on the geodesic segment[x0, z0]. Let x0 ∈
∆ ∈ A0 be a chamber such that[x0, z] = |∆| ∩ [x0, z0] has positive length. LetA be an
apartment containing the simplexes∆ and{x0, x}. Thenx, x0 ∈ |A| andpr|∆2|(x) 6= x0,
sincez ∈ |∆2| is closer tox.

Without loss of generality we can identify the vertices ofA with Zn/Z as before, with
x0 = 0, ∆2 being the standard simplex with verticesxi =

∑
j≥n−i ej, andx = ek for some

k (there are all the neighbours with the correct relative position). The assumptions on the
existence ofz amount to saying thatx − x0 has a positive projection onxi − x0 for some
1 ≤ i ≤ n (otherwisex − x0 would have non-positive projection on the directionz − x0,
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contradictingd(x, z) < d(x, x0)). But the inner product is:〈
ek,

∑
j≥n−i

ej

〉
= ε− i

n

whereε = 0 if k < n− i, ε = 1 otherwise. To make this positive, we must haveε = 1, i.e.
k ≥ n− i. But thenx is in fact a neighbour ofxi ∈ ∆0

2 ⊂ A0
0.

Conversely, ifx is a neighbour of two vertices ofA0 then (since all edges inB1 have
the same length) the projection ofx to |A0| is closer tox than any of them, and in particular
cannot be a vertex. �

LEMMA 5.1.18.Letx ∈ N(x0, en) be such thatpr|A0|(x) = x0 and letx′ ∈ N(x,−en).
Thenpr|A0|(x

′) = x0.

PROOF. Assumex′ 6= x0 , z0 = pr|A0|(x) 6= x0. As before letx0 ∈ ∆ be a simplex
containing an initial segment[x, z] of [x0, z0] and letA be an apartment containing∆ and
{x, x′}. As before we can choose co-ordinates such that∆ = {xi}n−1

i=0 andx = e1 (the
last by the proof of the previous lemma). We then havex′ = e1 − ek for somek, and the
assumptionx′ 6= x0 amount to assumingk 6= 1. We now show thatx0 is the point of|∆|
nearest tox′ by computing the inner products〈x′ − x0, xi − x0〉 and showing they are all
non-positive. Indeed, withε depending oni, k as in the previous lemma, we have:

〈e1 − ek, xi〉 = −ε ≤ 0.

�

We now setS1 =
{
x1 ∈ N(x0, a) | pr|A0|(x1) = x0

}
. Continuing outward we set

Nx1 = N(x1,−en) \ {x0} for x1 ∈ S1.

LEMMA 5.1.19.The unionS2 = ∪x1∈S1Nx1 is disjoint.S1 andS2 are disjoint.

PROOF. The second assertion is immediate (the elements ofS1 andS2clearly have
different relative positions tox0). For the first, letx1 ∈ S1, x2 ∈ Nx1, and letx′ ∈ S1 be
distinct fromx1. LetA be an apartment containing the simplexes{x0, x1} and{x′1, x2}.
We can choose the co-ordinates in such a way thatx1 = e1, x

′
1 = e2, andx2 = e1 − ek for

somek 6= 1. Assumingk 6= 2, the distance squared betweenx′1 andx2 is:

〈e1 − e2 − ek, e1 − e2 − ek〉 = 9− 1

n
,

while the squared distance between adjoining vertices is easily seen to be1− 1
n
. In the case

k = 2 the squared distance is5− 1
n
. �

COROLLARY 5.1.20.LetS = S1∪S2, letx, y ∈ S, and leta ∈ A satisfyax = y. Then
a ∈ KZ.

LEMMA 5.1.21.#S1 ∼ qn−1, #S2 ∼ q2(n−1).

PROOF. By Lemma 5.1.16, we have#N(x, en),#N(x,−en) ∼ qn−1 for any vertex
x. Since#Nx1 = #N(x1,−en) − 1 for any x1 ∈ S1 and since these are all disjoint,
we see that#S2 ∼ qn−1#S1 and that it suffices to show#N(x0, en) − #S1 � qn−2.
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SinceN(x0, en) \ S1 consists of those elements ofN(x0, en) that are also neighbours of
another vertex ofA0, its cardinality is at most the size of the link ofx0 inA0 times a bound
for the number of2-simplexes inB2 containing a fixed1-simplex. Fixing a neighbour
x ∈ Lk0(x0) is equivalent to giving a latticepΛ0 < Λ < Λ0. In this language we need to
enumerate latticesΛ′ of indexp in Λ0 containingΛ. Reducing modpΛ0 this is equivalent to
enumerating the subspaces ofFnq of codimension1 containing a fixed non-trivial subspace.
Dualizing, we need to bound the number of1-dimensional subspaces ofFnq contained in a
fixed proper subspace, a number which is easily verified to be∼ qd−1 whend ≤ n − 1 is
the dimension of the subspace.

Since the structure of the apartmentA0 is independent ofq, the size of the link is
uniformly bounded (in fact by(n− 1) · n!) and we are done. �

DEFINITION 5.1.22. LetS̃1 = {(x, 1) | x ∈ S1}, S̃2 = {(x′, 0) | x′ ∈ S2}, S̃ = S̃1∪S̃2.

PROPOSITION5.1.23. (transversals)̃S ⊂ B̃0 is contained in theG-orbit of (x0, 0), i.e.
in the image ofG/K. Moreover it does not intersect theA-orbit of (x0, 0) and if a ∈ A

carriesx ∈ S̃ to y ∈ S̃ thena ∈ K.

PROOF. The first assertion is clear by construction. The second assertion follows from
noting that everyx ∈ S satisfiespr|A|(x) = x0 while everyx′ ∈ Ax0 is fixed by this
projection, and thatx0 /∈ S. For the last claim assumea(x, ε) = (y, δ) with ε, δ ∈ {0, 1}.
Fromax = y we concludea = kz for somek ∈ K, z ∈ Z. Fromv(det a) + ε = δ we
conclude that|v(det(z))| ≤ 1, and since it is a multiple ofn we must havev(det(z)) = 0.
This actually impliesz ∈ K and we are done. �

5.2. Hecke eigenfunctions – the local contribution

We keep here the notation of the previous section. However, we assumep /∈ R and
identify Gp ' GLd(Qp) with D×(Qp). Let ψ ∈ L2(X,ω) be our Hecke eigenfunction.
To anyx∞ ∈ G∞ we have associated itsp-Hecke orbit{G(Q)x∞gpKf}gp∈Gp ⊂ X. This
is isomorphic to a quotientGp/Kp, and by assumption the restrictionf of ψ to this orbit
is a Hecke eigenfunction onGp/Kp. The following Proposition can best be described by
sayingf cannot be too concentrated on apartments: iff(1) is large, thenf must also be
large on the transversal̃S which lies away from the apartment. It demonstration relies on
a bound toward the Generalized Ramanujan Conjecture, the proof of which is reproduced
below.

FACT 5.2.1. There existsδ > 0 such that the Hecke eigenvalueλ considered below
satisfies:

(5.2.1) |λ| � (#S1)
1
2 · q

1
2
−δ.

PROPOSITION5.2.2. (“part of the tree” method) Letf be obtained as above. Then∑
x̃∈S̃

|f(x̃)|2 � 1

q1−2δ
|f(1)|2 .
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PROOF. LetL1 =
∑

x̃∈S̃1
f(x̃), L2 =

∑
x̃∈S̃2

f(x̃). There existλ = λf (en, 1) depend-
ing only onf and the relative position(en, 1) such that for eachx ∈ S1 we have:∑

x′∈Nx

f(x′, 0) + f(x0, 0) = λ · f(x, 1).

Summing overS1 and using the disjointness of the union definingS2 we have:

L2 + #S1 · f(1) = λ · L1.

Therefore, at least one of the following holds:

|L1| � #S1

|λ|
|f(1)|

|L2| � #S1 |f(1)| .

Squaring, and using Cauchy-Schwartz, we get one of:∑
x̃∈S̃1

|f(x̃)|2 � #S1

|λ|2
|f(1)|2

∑
x̃∈S̃2

|f(x̃)|2 � (#S1)
2

#S2

|f(1)|2 .

Using Lemma 5.1.21 and the bound (5.2.1) complete the proof. �

Digression: proof of the estimate 5.2.1.Our eigenfunctionψ ∈ L2(X,ω) generates
an subrepresentatioñπ ⊂ L2(G(Q)\G(A), ω) of G(A). Sinceψ is invariant under right
translations by the maximal compact subgroupKp , there must exist an irreducibleπ ⊂ π̃

containing a non-zeroKp-invariant vector. It is easy to see that anyKp-invariant vector
in π̃ must have the same eigenvalueλ w.r.t. the Hecke operator under consideration asψ,
and we may thus switch to the case whereψ is aKp-spherical vector in an irreducible
subrepresentationπ ⊂ L2(G(Q)\G(A), ω).

The componentπp of this representation at the placep is then a spherical representation
of Gp ' GLd(Qp) and hence isomorphic to the spherical constituent of the representation
of GLd(Qp) induced from the characterdiag(a1, . . . , ad) 7→

∏
j |aj|

µj+it/d
p of Ap (where

t ∈ R and
∑

j µj = 0).
The eigenvalueλ is (up to normalization) the eigenvalue of the convolution operator

πp(1N(x0,en)) acting on the spherical vector ofπp, where1N(x0,en) is the characteristic func-
tion of the subset∪x∈N(x0,en)xKp of Gp. This can be computed explicitly in terms of the
parametersµj:

THEOREM 5.2.3. (the Satake Isomorphism; see[26]) To the convolution operator as-
sociated to the characteristic function ofKaK with a ∈ A it is possible to associate
a permutation-invariant polynomialP (x1, . . . , xn) such that its eigenvalue acting on the
spherical function ofπp is given byP (qµ1+it/d, . . . , qµd+it/d). If a = diag(qr1 , . . . , qrd)

with 0 ≤ r1 ≤ · · · ≤ rd, a monomial of maximal degree inP is
∏

j x
rj
j .
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In our case we get a symmetric polynomialP of degree1 in d variables such that

λ = P (qµ1 , . . . , qµn)qit

for all choices of{µj} , t. Since there is a unique such polynomial up to rescaling, we have:

λf = cqit(
∑
j

qµj).

We evaluate the constantc by considering the special caset = 0, µj = d+1
2
− j, whereπp is

the trivial representation. In that casef (the restriction ofψ to an orbitGp/Kp) is constant
and we have the explicit evaluationλf = #N(x0, ed) ∼ qd−1. We conclude that asq →∞

c =
#N(x0, ed)∑

j q
d+1
2
−j

∼ q
d−1
2 .

As #S1 ∼ qd−1 this means:

|λf | ∼ (#S1)
1/2

∣∣∣∣∣∑
j

qµj

∣∣∣∣∣ .
We now obtain a bound on the parametersµj in three steps.
First, we construct an automorphic representation ofGLd(A) which also hasπp as its

local component atp:

THEOREM 5.2.4. (Arthur-Clozel; see[2]) Let π be an automorphic representation on
D×(A). Then there exists an automorphic representationΠ on GLd(A) in the discrete
spectrum such that for every finite placev whereD splits we haveπv ' Πv.

Secondly, we argue that in the case whered is primeΠ is in fact acuspidalrepresen-
tation: the classification of the residual spectrum due to Mœglin-Waldspurger [24] implies
that ford prime the discrete non-cuspidal spectrum ofGLd(A) consists of1-dimensional
representations.Π is not a character sinceπp isn’t.

Thirdly, the cuspidality implies a bound on the spectral parameters ofΠp ' πp:

THEOREM 5.2.5. (Luo-Rudnick-Sarnak; see[21]) Let Π be a cuspidal automorphic
representation ofGLd(A). At every placev whereΠv is unramified, let it be the unitary
spherical constituent of the representation induced from the characterdiag(a1, . . . , ad) 7→∏

j |aj|
µj+it/d
v ofAv (wheret ∈ R and

∑
j µj = 0). Then

|<µj| ≤
1

2
− 1

d2 + 1
.

This gives|λ| � (#S1)
1
2 · q 1

2
−δ whereδ = 1

d2+1
. We also note that our estimate ofc

above shows that the implied constant is independent ofq.

5.3. Split Tori

From here on we return to the usual notations:G = G(R) ' GLd(R) etc. In order
to apply the Diophantine results of the previous chapter, we need to fixC̃ ⊂ AaMa and
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Ω∞ ⊂ G as in the beginning of Section 4.4. We retain the notationsB = Ba(C, ε) andB̃
as defined there.

We first estimate the denominator of an element ofG(Af) in terms of the geometry of
the building. Recall that for eachp /∈ R we fixed an algebra isomorphismϕp : D(Qp) →
Md(Qp) such thatϕp(Op) = Md(Zp), and letT(Qp) ⊂ G(Qp) be the inverse image under
ϕ of the torus of diagonal matricesAp < GLd(Qp). Pulling back the Cartan decomposition
(Fact 5.1.15) we see that for everygp ∈ Gp there exists a uniqueap ∈ A+

p and some
kp, kp′ ∈ O×

p = Kp such thatgp = kpϕ
−1
p (ap)k

′
p. If ap has co-ordinatesr = (r1 ≤ · · · ≤ rn)

we write1 rp(gp) = max {−r1, rn}. Necessarily a non-negative number, we call it the
radiusof gp. It is immediate thatrp(g−1

p ) = r(gp).

LEMMA 5.3.1. dp(gp) ≤ prp(gp), hence alsodp(g−1
p ) ≤ prp(gp).

PROOF. Let ap be defined as above, and letz ∈ ZGLd(Qp) be the scalar matrixp−r1 so
thatzap ∈Md(Zp). Sinceϕp is an algebra homomorphism, we conclude thatp−r1gp ∈ Op,
and hence thatxi(gp) ∈ pr1Zp for all i. �

Now letT be as in Theorem 4.4.4. For each primep /∈ R, let S̄p denote all elements of
Gp of radius at most1 such thathp(gp) ≤ p (we setS̄p = ∅ if p ∈ R) also identify every
h ∈ S̄p with the elementg ∈ G(Af) such thatgp = h andgp′ = 1 for all primesp′ 6= p.
Finally, givenε > 0 let:

S̄ε = ∪p2≤ε−T S̄p ⊂ G(Af).

This family of sets isT -bounded by construction. It follows that forε small enough, we can
associate to eachx ∈ Ω a commuting subset

{
γ(j)
}d
j=1

⊂ O, of discriminants bounded by

O(ε−T
′
), such that everyγ ∈ G(Q) causing an intersection forxB w.r.t. Hecke translation

by S̄ε lies in the subalgebraF = Q
(
γ(1), . . . , γ(d)

)
⊂ D(Q), which is isomorphic to a

number field also to be denotedF . Given this data we letE = Z[γ(1), . . . , γ(d)]denote
the subring ofO generated by theγ(j), and letD = O(ε−dT

′
) denote the product of their

discriminants, a multiple of the discriminant ofE. SinceO is aZ-algebra of finite type all
its elements are integral overZ. In particular we haveE ⊆ OF and hence the discriminant
of F dividesD. Reflecting this we set

RD = R ∪ {p | p|D} , Pε =
{
p ≤ ε−T/2

}
\RD.

Let TF ⊂ G be the (maximal)Q-torus such thatTF (Q) = F×. We will be interested in
theQp-points of this torus, a subtorus ofGp. ClearlyTF (Qp) = (F ⊗Q Qp)

× ⊂ D(Qp)
×.

As is well-known,F ⊗Q Qp ' ⊕v|pFv where the direct sum is over the places ofF lying
overp. We thus have:

(F ⊗Q Qp)
× '

∏
v|p

F×
v .

We now assumep /∈ RD. Then everyv ∈ |F | lying abovep is unramified, and hence
p is still a uniformizer ofFv so thatF×

v = Q×
pO×

Fv
. In fact, F×

v = Q×
p F

1
v , whereF 1

v =

1This definition is independent of the choice of isomorphismϕp, but we shall not need this fact.
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x ∈ Fv | NFv

Qv (x) = 1
}
⊂ OFv . We thus have:

TF (Qp) '

∏
v|p

Q×
p

×

∏
v|p

F 1
v

 .

SettingTsp
F (Qp) =

∏
v|p Q×

p , Tan
F (Qp) =

∏
v|p F

1
v we note that these are theQp-points,

respectively, of the maximal split and anisotropicQp-subtori ofTF . In other words, we
have just written our torus as an almost-direct product of its split and anisotropic parts.

LEMMA 5.3.2. (torus orbit contained in an apartment) Assumep /∈ RD. Then there
existkp ∈ Kp for which k−1

p Tsp
F (Qp)kp ⊂ T(Qp). In addition, Tan

F (Qp) ⊂ Kp, so that
TF (Qp) ⊂ kpT(Qp)Kp.

PROOF. We first note that sinceO is a freeZ-module of finite rank, every element of
O is integral overZ. In particular, the elements of the ringE ⊂ F (defined above) are
algebraic integers ofF . Since theγ(j) generateF , we see thatE is an order ofF , and its
discriminant dividesD. Sincep does not divideD this implies thatE is dense inOFv for
any placev ∈ |F | lying abovep. For the remainder of this proofv will denote such a place,
and sums or products will be over the set of places ofF lying abovep.

The proof thatF is dense in⊕vFv can be extended to show thatE ⊗ Zp is dense in
⊕vOFv and hence that

⊕vOFv = E ⊗ Zp ⊂ Op.

Restricting our attention to the invertible elements we conclude that

Tan
F (Qp) ⊂

∏
v

O×
Fv
⊂ Kp.

In order to diagonalize the split part we letxv ∈ F ⊗ Qp denote the idempotent given
by the identity element ofFv under the isomorphism ofF ⊗Qp with ⊕vFv. Since

Tsp
F (Qp) =

{∑
v

avxv | av ∈ Q×
p

}
,

it suffices to simultaneously diagonalize the{xv}. Sincexv ∈ OFv , the previous discussion
shows thatxv ∈ Op. Applying the isomorphismϕp it now suffices to show that a family
{xv} of commuting idempotents inϕ(Op) = Md(Zp) can be diagonalized by an element
of GLd(Zp). Equivalently we need to find a minimal generating set of the standard lattice
Λ = ⊕iZpei ⊂ Qd

p which consists of joint eigenvectors of thexv.
For each choice of eigenvaluesεv ∈ {0, 1}, we setP (ε) =

∏
v(−1)εv(xv − εv) ∈

Md(Zp). Since thexv commute, this is a collection of commuting idempotents as well.
Furthermore, it is easy to check that

∑
ε P (ε) =

∏
v(xv + (1 − xv)) = 1. This way we

obtain a direct sum decompositionΛ = ⊕εΛε whereΛε = P (ε)Λ. It is clear that eachΛε

is a torsion-freeZp-module consisting of those elementst ∈ Λ for which xvt = εvt for
everyv. In particular, we can choose aZp-basis for each of them. Combining these bases
we obtain the desired basis forΛ, and hence an element ofGLd(Zp) conjugating the{xv}
to diagonal0− 1 matrices. �
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For each primep ∈ Pε now fix kp as in the lemma and let̃S be the transversal con-
structed in Definition 5.1.22. The first claim of Proposition 5.1.23 assures us we can choose
a set of representativesgs ∈ GLd(Qp) such that{gs(x0, 0)} = S̃.

COROLLARY 5.3.3. LetSp =
{
kpϕ

−1
p (gs)k

−1
p

}
s∈S̃. Then:

(1) Sp ⊂ S̄p. In other words, everygp ∈ Sp is of radius at most1 and height at most
p.

(2) We haveSp ⊂ S̄p \ TF (Qp)Kp.
(3) For x 6= y ∈ Sp andg ∈ TF (Qp) gx = y impliesg ∈ k−1

p Kpkp = Kp.
(4) For everyx∞ ∈ G we have∑

gp∈Sp

|ψ(ZΓx∞gp)|2 �
1

p1−δ |ψ(ZΓx∞)|2 .

PROOF. (1) The elements of̃S are of relative positionsen and−e1 + en to the identity
coset, respectively. Their pull-backs byϕ−1

p are thus of radius1 and reduced norm of abso-
lute value eitherp or 1. Since multiplication by an element ofKp on the left or right does
not change the radius or the height of an element ofGp, the same holds for the elements of
Sp.

(2) and (3) follow directly from the corresponding claims of Proposition 5.1.23 via the
Lemma. Part (4) follows from 5.2.2. �

Again constructing our set of translates place-by-place, we set:

Sε =
⋃

p2≤ε−T
Sp.

LEMMA 5.3.4. (intersections only occur place-by-place) Letγ cause an intersection
for Hecke translates ofx∞B bySε. Then there exists a primep such thatγp′ ∈ Kp′ for all
p′ 6= p.

PROOF. Recall the basic observation from the previous chapter: ifg, g′ ∈ Sε are distinct
andγ causes an intersection betweenx∞Bg andx∞Bg′ then (the finite part of equation
(4.4.1)):

γ ∈ g′Kg−1.

Let g ∈ Sp, g′ ∈ Sp′. If p′′ 6= p, p′ then forgp′′ , g′p′′ ∈ Kp′′ soγp′′ ∈ Kp′′. If p = p′ we
are done. In the casep′ 6= p thep′-component ofg, is an elementgp′ ∈ Kp′. We then read
off γp′ ∈ g′p′Kp′. Sinceγ ∈ TF (Qp) this meansg′p′ ∈ TF (Qp)Kp, which contradicts the
construction ofSp′ as interpreted in the first part of Corollary 5.3.3. �

The main geometric property of our construction is now clear:

PROPOSITION5.3.5. There exists finite subsetI ⊂ Γ such that forε small enough, the
set ofγ ∈ G(Q) that cause intersections for{x∞Bg}g∈Sε (x∞ ∈ Ω∞ fixed) is contained in
I. In particular, any point of the unionx∞B

⋃
∪g∈Sεx∞Bg ⊂ XZ is contained in at most

|I| of the translates forming the union.



5.4. THE PROOF OF THEOREM 5.0.1 56

PROOF. Recalling the observation leading to equation (4.4.3), we set

Q =
{
g ∈ G1

∞ | |det(g)| = 1 ∧ ∃z∞ ∈ R× : gz∞ ∈ Ω∞Ba(C̃, O(1))Ω−1
∞

}
.

For g ∈ Q and z∞ as in the definition, we have|det(z∞)| = |det(gz∞)| belonging to
a compact subset ofR×. It follows thatQ is relatively compact, and we will see that
I = Γ ∩Q works as claimed.

Letγ ∈ F× = TF (Q) cause an intersection betweenx∞Bg andx∞Bg′. By the Lemma
we haveg, g′ ∈ Sp for somep, so thatγp′ ∈ Kp′ for all p′ 6= p. At the placep itself the
second claim of Corollary 5.3.3 now givesγp ∈ Kp, so thatγ ∈ Kf, i.e.γ ∈ Kf∩G(Q) = Γ.

Next,γ ∈ Kf implies|ν(γ)|∞ =
∏

p |ν(γp)|
−1 = 1 so that|det(γ)| = 1 andγ ∈ Q.

Finally, let y ∈ x∞Bg with g ∈ Sp. Then, ify ∈ x∞Bg
′ for some otherg′ ∈ Sε we

must haveg′ ∈ Sp and someγ ∈ I causing that intersection. As usual we write this in the
form:

γpgpKp = g′pKp.

In particular, the cosetg′pKp ∈ Gp/Kp can be recovered fromγ andg. Now sinceSp
was chosen to be a system of representatives for a set of such cosets, it follows thatg′ is
uniquely determined byγ, so that there can be at most|I| suchg′. �

5.4. The proof of theorem 5.0.1

In summary, we fixed an open compact subgroupKf < G(Af), an elementa ∈ A \ Z,
a compact fundamental domainΩ∞ ⊂ G, and relatively compact neighbourhoodC, C̃ ⊂
MaAa.

Then, forε > 0 small enough, we have found in order a number fieldF with discrim-
inant boundD controlling the intersections, a set of primesPε avoiding ramification, and
finally a set of Hecke translatesSε satisfying both geometric and spectral properties. We
now show that for any central characterω unramified atR, Hecke eigenfunctionψ and any
x ∈ XZ , µψ(xB) decays polynomially withε.

PROOF. Choose somex∞ ∈ Ω∞ projecting tox ∈ XZ , and let1x∞Bg denote the
characteristic function of the translatex∞Bg ⊂ XZ , Proposition 5.3.5 can be interpreted
to read: ∑

g∈Sε

1x∞Bg(y) ≤ |I| .

Multiplying by |ψ(y)|2 and integrating overXZ we conclude:∑
g∈Sε

µψ(x∞Bg) ≤ |I| .

Recall the construction ofSε as∪p∈PεSp. Changing the order of summation and inte-
gration, we obtain: ∑

g∈Sp

µψ(x∞Bg) =

∫
B

∑
g∈Sp

|ψ(x∞bg)|2 dm(b)
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Wheredm is the Haar measure onXZ . We now apply part (4) of Corollary 5.3.3 and
conclude ∑

g∈Sp

µψ(x∞Bg) �
1

p1−δ

∫
B

|ψ(x∞b)|2 dm(b) =
1

p1−δµψ(xB).

Summing overp ∈ Pε we get:∑
g∈Sε

µψ(x∞Bg) �

(∑
p∈Pε

1

p1−δ

)
µψ(xB).

Since ∑
p∈RD

1

p1−δ ≤
∑
p∈R

1

p1−δ + logD � log ε−1,

while ∑
p2≤ε−T

1

p1−δ � ε−Tδ/3,

the latter expression also bounds the asymptotics of
∑

p∈Pε p
−1+δ. We thus have:

µψ(xBa(C, ε)) � εTδ/3.

We remark that the implicit constant indeed only depends ona, on properties ofD and
Kf such that the setR of ramified places and the structure constantsaijk, and finally on
the choices ofΩ∞, C̃. The exponentη = Tδ/3, furthermore, only depends on the degree
d of the division algebra (sinceT depends on that and on the dimensionr < d2 of the
subalgebra spanned byMaAa). �
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