EXPANDING GRAPHS AND PROPERTY (T)

LIOR SILBERMAN

1. EXPANDERS

1.1. Definitions and analysis on graphs.Let G = (V, E') be a (possibly infinite) graph. We allow self-loops and multiple edges.
Forz € V theneighbourhood of is the multisetV,, = {y € V|(z,y) € E}. Let E(A,B) = |[EN A x B|, e(4, B) = |E(A, B)|,
e(A) = e(A,V) for A, B C V. WeG islocally finite i.e. thatd, = | N, | is finite for allz € V. We will consider the spack?(V)
under the measurg({x}) = d,. Note thate(V') is twicethe (usual) number of edges in the graph.

Definition 1.1. The “local average” operatot : L?(V) — LQ(V) of Gis:
(Af Z fly
y€N
It is a self-adjoint operator oh? (1) since

<Af,g>v=2dw( > fy ) =Y dyf(y) diZT (f,Ag)y

eV y€N yeVv

Two applications of Cauchy-Schwarz give
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(Afgh] < 3 d e T X low] < 3 170)| Vi, ( 3 |g<u>|2>

veV uEN veV UEN,

1/2 1/2
< (Z If(v)|2d1)> (Z > Ig(v)l2> = [1fll 2 N9l 2 »

veV veV ueN,
which meang{A| ;. < 1.
From now on we assume th@thas finite components. Then by the maximum princiglg,= f iff f is constant on connected
components off andAf = —f iff f takes opposing values on the two sides of each bipartite component.

Definition 1.2. Thediscrete Laplaciaron V' is the opearto\ = [ — A.

By the previous discussion it is self-adjoint, positive definite and of norm atIndste kernel ofA is spanned by the characteristic
functions of the components (e.g.Gfis connected then zero is a non-degenerate eigenvalue). Its orthogonal compléaiénis
the space obalancedfunctions (i.e. the ones who average to zero on each componéft dhespectral gap\; (G) (the infimum
of the positive eigenvalues) is an important parametey; (&) > A we callG a A-expander

Definition 1.3. Let A C V. Theboundary ofAis A = E(A,"A). TheCheeger constardf the graph’ is:
h(G) = min { o4,

1
e(A, ’A CV,e(ANX) < —e(X) for every componenk C V} .
Proposition 1.4. h(G) >

2

A

Proof. Let X be a componentd C X such thaRe(A) < e(X), let B = X \ A, and choose, 5 so thatf(z) = ala(z) + Blp(z)
is balanced. Then we havgj (G) < (BDv  Now,

(f:f)v
|N.NA| |N.NB| |N.NB| .
Af(z) = o uxlfNr'?Lua ) |z\|rNr§J|3\ﬁ red \]\lfNﬂlA\( —#) red
B — ”ﬁ,'a— |fvz|ﬂ r€B \f\le 6 —a) r € B
sothat(Af, f), = (a — B)al0A| + B(8 — «)|0B| = (o — 3)?|0A| and thus
1—8y2
M(G) < (1-a) _|0A].

~ e(A) +e(B)(B/a)

1
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(f,1x), = e(A)a + e(B)p, so that the choicg/a = —e(A)/e(B) makesf balanced. This means:

(e(B) +e(4))® |0A] e(B) +e(4)
Al(G) < |aA|e(A)e(B)2 +e(B)e(A)? Qe(A) 2¢(B)
But2e(B) > e(X) = e(A) + e(B) and we are done. O

Conversely,
Proposition 1.5. h(G) < /21 (G).

Proof. Let f be an eigenfunction oA of e.v. A < A\; + ¢, w.l.g. supported on a componekit and everywhere real-valued. Let
A={zeV|f(z) >0}, B=X\A. WecanassumgA) < 1e(X) by taking— f instead off if necessary. Leg(z) = 1 4(z)f(z).

Then forz € A,
Af(z)=f —fo —fo —fo

yEN yGN nA yGN NnB

1
=Ag(@)+ Y (=f(2) = Aglw).

x yeENNB

Since alsqAf)(xz) = Af(z) for all z, we have:
A deg(@)? =) doAf(x) - g(w) > Y deAg(x) - g(w)
z€A z€A z€EA
or (g [p=0):
(Ag, 9)y
(9:9)v

we now estimat€Ag, g),, in a different fashion. Motivated by the continuous faCly? = 2gVg, we evaluate

I—deZIQ y)*|

eV ' YyEN,

Mte> >

in two different ways. On the one hand,

1/2 1/2
I= Y Ig(x)+9(y)|-lg(x)—g(y)|§( > (9($)+9(y))2) (( > (g(x)—g(y))Q) :

(z,y)EE (z,y)EE JY)EE

and we note that

> (gl =) dug(x Z (g( = dygly Z (9(x) — g(y))

(z,y)EE zeV yGN yeVv :EGN
=2(Ag,9)y
and
DT @) +gw)’<2 D (9@ +9w)?) =4(g.9)y
(z,y)EE (z,y)EE
So:

On the other hand, let(x) take the value$g; };_, where0 = Gy < 51 < --- < G, andletL; = {z € Vl|g(z) > 8;} (€.9.Lo = V).

Then write:
I1=2 Z Z (512 - 1'2—1)

(z,y)EE a(z,y)<i<b(z,y)

where{Buz.): Bo(wy) } = {9(x), 9(y)} (i.e. replaces? — 52 with (87 — Bz_,) +- - - + (62, — B2)). Then the differencg? — 37,
appears for every paitr, y) € E such thatu(x,y) < i < b(z,y) or such thainax{g(z), g(y)} > 82 while min{g(z), g(y)} < 32.
This exactly means thaf, y) € dL; and

—22 (87 — B7_1) |OL4| -

By definition ofh, L; C A ande(A) < Eimply |0L;| > h e(L ) so:

2 8.0) ) =20 SRR ) 20 ()

i=1
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Also, €(L1) — 6(Li+1) = G(Ll \ Li+1) SO:

r—1

(1.2) I>2n) " > Blde+2h- > Bidy =20 dag(x)’ =2h-(g,g)y .
i=1 g(z)=p; g(z)=Br zeV

We now combine Equations 1.1 and 1.2 to get:

2h{g,9)y < I <2200 +2) (g, 9)y
h(G) < /2M(G).

foralle > 0, or

Let us restate the previous two propositions in:

SM(G) < (G) < VNG

1.2. References, examples and applicationsThe above propositions can be found in [2], with slightly different conventions. We
also modify their definitions to read:

Definition 1.6. Say thatG is anhg-expandelif h(G) > ho. Say thaiG is a -expandeiif \;(G) > .

The previous section showed that both these notions are in some sense equivalent. Being well-connected, sparse (in pa
regular) expanders are very useful, e.g. for sorting networks of finite depth (see ), de-randomization (see ),

The existence of expanders can be easily demonstrated by probabilistic arguments (see [3]). Infinite families of expanders ¢
difficult to find, e.g. the incidence graphs Bt (F,) haveA = 1 — qTﬁ1 (as computed in [6] and later in [1]). However families of
regular expanders are more difficult. The next section discusses the generalization by Alon and Milman in [2] of a construction
to Margulis [11]. For a different explicit family of regular expanders which enjoys additional useful properties see [10].

We remark here that there exists a bound for the asymptotic expansion constant of a family of expanders:

Theorem 1.7. (Alon-Boppana) For every > 0 there exists” = C(k,e) > 0 such that ifG is a connected-regular graph onn
vertices, the number of eigenvaluesfin the interval

2 -]

is at leastC' - n.

Corollary 1.8. Let{G,,}>_, be a family of connecteklregular graphs such thg¥/,,| — oo. Then

2vEk —1
limsup A1 (Gpp) <1 — ——.

m—0o0 k

This leads to the following definition (the terminlogy is justified by [10]):
Definition 1.9. A k-regular graphG such that\| < 2—”“,;1 for every eigenvalua # +1 of A is called aRamanujan graph

1.3. Cayley graphs and property (T). One way of generating families of finite regular graphs is by taking quotients of groups. Le
I be a discrete group, and 16t C T be finite symmetric (i.ey € S <= ~~! € S) not containing the identity. Then for any
subgroupN < T of finite index, we can construct a finite graph CAWI'; S) as follows: the vertices will be the righ-cosets
N\T', and we will take an edge:, zs) for any cosetr = N~ and anys € S. Note that ifS actually generateE then CayN\T'; S)
is connected for allV.

ClearlyG = Cay(N\T'; S) is an|S|-regular graph. Furthermore, the set of vertices comes naturally equipped withattien of
right translation (which is not an action on tgephunlessl" is Abelian). This make&Z (V) into a unitaryl'-representation with no
I'-fixed vectors (these would be constant!). NowAetB = V(G) and consider the balanced functigf) = b14(x) — al g where

a=[A|,b=|[B|. Then||f|; = tb?a+ ab = 4% Itis easy to see that:

a+b re€Axse Borze Byxse€ A
(s/)w) = fl)l = { 0 z,zs bothinA or B
Thus we have: )
lsf = £ll = grloAl

Where we writeds A = {(z,y) € E(A, B)|y = sz Vy = s~ 'z} so thatd A = U595 A and we only need to take one of every pair
5,571 € S. Clearly to insure thad A is large it suffices to maké, A large for somes € S. Itis thus natural to consider groupsof
the following type:
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Definition 1.10. (see Lemma 2.20) Ldt be a discrete grou C I' a finite subset. Theh hasproperty (T) with Kazhdan constant
e > 0w.rt. S if for any unitary representation: I' — Aut(s#°) of I" such that’#” has no nontrivial'-fixed vectors, and any € ¢
of norm1 there existss € S such thatl — (p(s)z,z),, > e. The largest for which this holds is called th&azhdan constanf
(T,5).

Note that then|p(s)z — z||%, = 2 — 2 (p(s)z, z) ,, > 2e.

Corollary 1.11. (Alon Milman[2]) If T" has property (T) w.r.t. a symmetric generating suliséten for everyV <1 T of finite index,
Cay(I'/N; S) isan re7-expander.

Proof. Let A C T'/N and assum4| < %n (note that a Cayley graph is regular). Lt L2(T'/N) be as above. Then for some
se S, |sf — flly, = el fll; and therefore2b > n by assumption!)

|0A] |0s Al 1 abn e2_ ¢
> > 2 > —

= = 57.7
e(4) ~ [A]lS] an? || [S|n T 9]

2. PROPERTY(T)

2.1. The Fell Topology and its properties. Let G be a locally compact group, and 6t(resp.G) be the set of equivalence classes
of unltary representatiohgresp. irreducible unitary representationsybfA basis of open neighbourhoods for thell topology(see
[5] from which the following discussion is taken) 6his the setd/(p, {v;}/_,, K, <) defined for eaclip, V) € G, an finite subset
{v;}_,; C V of vectors of norm, a compact C G and some > 0 by:

Ulp, {i}ie K, 2) = {(0.W) € G|B{ws}joy € W s Juylly = 1A Vg € KV, i+ [{plg)us, v3)y — (rlg)ws,widyy| < e}
This forms a basis for a topology sinceg(if, W) € U(p, {v:}, K,¢) let{w;} C W be of norml as in the definitionK is compact,
so

d=¢~— H}aj‘X H(p(g)vla Uj)V - <U(g)wlij>WHLoo(K)

is positive and the®/ (o, w, K, ) C U(p, v, K, ). Also in this spirit we have:

Proposition 2.1. Let f : G — H be a continuous homomorphism of groups. fet H — G be the pull-back map of representation.
Thenf* is continuous in the Fell topology.

Proof. Let (p, V) € H, {v;} € V, K C G be compact and > 0. Thenf*~*(Ug(f*p, {vi}, K,€)) 2 Ug(p, {vi}, f(K),e). O
Corollary 2.2. If H < G thenRes$; : G — H is continuous, since it is dual to the inclusion magtbin G.

Corollary 2.3. Assume thaf (G) is dense inH. Since the Fell topology af is its induced topology as a subset@fand since the
pull-back of an irreduciblefl -representation is in this case irreducible asGarepresentation, one can replace H with G, H in
the previous proposition and corollary.

Example 2.4. If G is abelian, then the Fell topology @ coincides with the Pontryagin topology.
Example 2.5. As in the abelian case, (@ is compact thei is discrete:

Proof. Note that in this case we can always take = G in the definition above. Letp,V),(s,W) € G and Consider the
operatorsTy = [, x,(9)p(g9)dg andTw = [, x,(g9)o(g)dg acting onV, W respectively. They commute with the respective
representation sincg, is a class functiony,(hg) = x,(h~'(hg)h) = x,(gh). So by Schur's Iemma they act by scalars. Note
thatTr Ty = fG mxg(g)dg whichis1if p ~ o and0 otherwise. Thus ipc we haveTy = -, while Ty = 0. Now let
v € V,w € W be of norml, and consider

1
dim V"’

A= (Tyv,v)y, — (Tww,w)y, =
We also have:
A= [ [G@](elore )y — (oo w)y)dg
G
and thus
A< pla)o. )y = (o)) iy [ [Nola] o

1For set-theoretic reasons, one should only consider representations on Hilbert spaces of bounded (large) cardinality.
2We are considering the “quotient topology” of that paper.
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9 1/2
By the Cauchy-Schwarz inequalitf, ‘Xp(g)‘ dg < (fG ‘Xp(g)’ dg> (J dg)l/2 = 1 and thus for any representatierdistinct

from p and anyw € W we have:
1
||<p(g)U7U>V - <g(g)w7w>WHLoo(G) Z m,

Which means that/ (p, v, G, 1rxim77) = {(p, V)} as desired. O
Lemma 2.6. Let H < G be closed. Thet¥/H is a separable locally compact Hausdorff space in the quotient topology.

Definition 2.7. Let H < G be closed, a Borel measuseon H\G is calledquasi-invariantif p(E) = 0 <= p(Ez) = 0 for any
measurabldz C H\G and anyz € G.

Let H < G be closedp a quasi-invariant Borel measure 6y H, and let\(z,y) = ‘“j—g”(m) be the Radon-Nikodym derivative

whereR,p(E) = p(Ey). This is a continuous function afi. Now let(x, V) € H, and let
w'={re M(G,V)‘Vh € H,x € G flha) =n(h)f(x)}.

Note that if f,g € W' then(f(hx), g(hx)),, = (w(h)f(x),n(h)g(x)),, = (f(x),g(x)), so that(f(z),g(x)), is anH-invariant
C-valued function ort7. In particular we can define

w— {f ew’ /G/H |F@II3 doz) < oo}

and (identifying functions which are equala.e.) we obtain a Hilbert space structure idhwith the inner productf, g),, =
fH\G (f(x),9(x)), du(xz). Completeness is a direct consequence of the completenéssied standard arguments. Furthermore

if f € Wandy € Gtheny/A(z,y)f(zy) (as a function ofr) is also inW and has the same norm #s We can thus define a
representation aff on W by (o (g) f)(z) = Az, y) f(zy).

Definition 2.8. Let H < G be closed. We callo, W) the representation & inducedby the representatiofr, V') of H.

Lemma 2.9. Let H < G be closed. Then there exists a quasi-invariant Borel megsae H\G. Furthermore, ifp;, p2 are two
such measures thép,, W1) ~ (p2, W2) asG-representations.

Let dh be aright Haar measure di, and letp € C.(G, V') (norm topology ori’). We can then define:
folw) = [ wl)oth o
H

which is easily verified to be an element Bf. Note thatf4is a continuous function ot with compact support mod H (i.e.
| f4 ()|, is of compact support o'/ H).
Lemma 2.10. The space of f»|¢ € C.(G,V)} is dense iV

Also, if ¢, — ¢ uniformly on G, all of them supported on a single compact set, tfign — f in the topology ofl¥. We
note that the subspace 6% (G, V) (elements ofC.(G, V) supported on the compa#f) generated by the functions of the form
o(z) = a(xz)v wherev € V is fixed andn € Ck (G, C) is dense in theup-norm. We thus have:

Corollary 2.11. The subspac€ = {>""" | fa,u|a; € Co(G,C),v; € V,&; € C}is dense iV as well.
Theorem 2.12.If H is a closed subgroup @ thenInd$ : H — G is continuous.

Proof. Let (o, W) = Ind%(x, V) € G. Let K C G be compact{f;} ¢ W be of norml ande > 0. We wish to prove that the
inverse image ot/ (o, { fi}, K, ¢) contains an open neighbourhood(af, V') in H. We first replacef; by a “nicer” choice. The
computation @y, we, wi, wh € W

are of normt):

[{o(g)wr, wa)y — (o(g)wh, wh)yy| < (o (g)wr, wa)y, — (o(g)wi, wo)y |+ [{o(g)wi, wa)y — (o(g)wh, wh)yy |

< llo(@will lwe — whlly + llwlly lo(g)(wr = wi)lly = lwy = willy + llwz = wly, -
shows that if we replacg; with f; € £ of norm1 such that| f; — f||;, < 5 thenUg(o,{fi}, K,e) 2 Us(o,{f{}, K, §). In other
words, we can assume w.l.g. thate £, and specifically that

n
fi = Z foz,jvj
Jj=1

where||v;||,, = 1 and w.l.g.[Jay;]| < 1 (the last by repeating some;v; if needed). LeC;; = supp a;; and letC = {e} U; ; C;;
which is a compact subset 6f, containing the support of.
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The idea of the proof is as follows: if we can identify; } C V' in a neighbouring representation that transforms like{thg
we can reconstruct aff € Indg(ﬂ’, V') that transforms likef;. In fact, letM = H N CC~!CKC~! (a compact subsetp df),
and consider

U=Ug(m {v;}, M,9).

If (z/,V') € U, nd% (', V') = (¢/,W’) we will prove that(c’, W) € Ua(o, f, K, ¢) if ¢ is small enough. By definition we
can choosgv’;} C V' such tha4 (m(h)vj, vr)y, — <7r’(h)v;,v;€>v/ <dforallh e C,j,k. Wethenletf; =37, Jaiv € W', so
that

(0(9)fi)(x) = V Az, 9) fi(xg) = \//\(3379)Z/Haij(h_lxg)ﬂ'(h)vjdh

and
(0(9) firs fisdw = / ((o(9)fir)(@), fir (2))y dp()

G/H

-/ VG gietz) [ au 0 ), (0 ) (o wha)us )y dind

J1,d2=1 HXxH

= Y [ dp)Awg) [ dh (b on)y [ dbai,s (g a)
G1,j2=1 G/H H H
The same holds far’ and f/ so that:

<0(g)filafi2>w - <0 (g)filvfi2>wl = jlgl ~/G/H dp(x) V )\(l‘,g)

/H dhg (<7r(h2)vj1ﬂvj2>v - <7rl(h2)U;1’U;2>V')

/dhlaim(hlfcg)ai2j2(h2h1$)~
H

Nowif CNHz =0 thenaim(hghlaz) = 0 for all i5, jo, hy1, ho and thus the inner integral is zero. In particular, the outer integral
can be taken over the compact imagef C in G/H, and we may assume < C'in the inner integral. If furthermorg € K then
@i, j, (hizg) = 0 unlesshy € CK~1C~! (we needh;zg € C) so we can take the inner integral oM CK—'C !, or:
‘/ dhiai, j, (hzg) iy, (hehiz)| < pr(HNCK ™07
H
wheredyy (h) = dh. Secondly, ifr € C andh; € CK~1C~! thenhyhyz € C implieshy, € CC7'CKC~ti.e. ho € M. Thus
ho-integral can be taken ovéd instead, where

‘ <7T(h2)vj1 ) Uj2>V - <7T/(h2)U31 ’ U;2>V/ <o
so that
/ dhs (<7T(h2)vjuvj2>v - <7T'(h2)v}1a?f§2>v/)/ dhia, j, (Mxg) vy j, (hahi)| < ppr(HNCK'C™ 1) g (M)s.
H H
Since also

/Cdp(ﬂs)\/A(xyg) < /@(1 + Az, 9))dp(x) = p(C) + p(Cg) < p(C) + p(CK),
we finally have for aly € K
[(o(9) fir fihw = (0" ()i, fi )| < 02(p(C) + p(CK)) prg (M)pr (H N CK ™1 C71)8
and itis clear thato’, W') € Ux (o, {fi}, K, ¢) if ¢ is small enough. O

Remark2.13 Ugx(,v, K, €) (only one vector!) form a basis for the topologyGf

Proof. Since these are open sets if suffices to prove that évg(yr, {v;}, K, €) containslU(w, v, N, ¢) for somev, N, 6.
Takev € V; of norm1 such that{o(g)v | g € G} spanV,.. Then there exisI" = {t;};_; C H and{a;;} C C are such that

vi =, aijﬂ'(tj)UHV <d. LetA=max; )y |aj>, M = T"'KTUT'T and let

U=Ug(m,v,M,9).
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We will prove that ifé is small enough the(w’, V') € U implies(r’, V') € Ugx (7, {v;}, K, €). By definition we can choosg € V'
such that(m(h)v,v),, — (7/(R)v',v').| < A~leforall h € N. Now letv] = > aijm (t;)v" and observe that sin<1‘(f521gtj1 eEN
foralll <ji,ja <7,9€K,

<

‘ <7T(g)vi1 ) Ui2>V - <7T(g)’l)7/4-1 ) Ugg >V’
Z |ai1j1 ai2]’2| <7T(tj7219t]‘1>vvv>v - <W/(tj;19tj1)vlvv/>vl
J1.J2
by Cauchy-Schwarz. Setting = i» = i and usingl’~'T C N shows that/1 — 45 < ||v}||,, < v/1+ Ad. The analysis at the
beginning of the proof of the theorem then implies thatfor= o/ then’(w(g)v’-’ vy, — (m(g)v] ”/'>v" <2v1+4 A5~1+¢Aﬁ

< Ad

R VA4l 7
and it is clear that fos small enough we are done. O

2.2. Kazhdan’s Property (T). This section is based on Kazhdan'’s paper [8], Chapter 3 of Lubotzky’s book [9], as well as de
Harpe and Valette’s book [4]

Definition 2.14. We say that the locally compact groGphasproperty (T)if the trivial representation is an isolated point@fn the
Fell topology.

Example 2.15. By example 2.5 every compact group has property (T). Using example 2.4 as well we find that an Abelian group
property (T) iff it is compact.

Example 2.16. Let G have property (T). Then every quotiehitof G has property (T).

Proof. See Corollary 2.3. Note also thatfifG) is dense irH then f* maps non-trivial representations to non-trivial representations.
O

Corollary 2.17. LetG have property (T). The6?® = G'/[G, G] is compact, since it is an Abelian group with property (T).

Definition 2.18. Leto,p € G. Say that is containedin p (o € p) if p has a subrepresentation isomorphieta.e. if there exists a
G-equivariant Hilbert space embedding of the space ito the space of.

We say thatr is weakly containedn p (o x p) if o € {p} where the closure is in the topology 6f In other wordsg o p iff
every matrix element of is a uniform limit on compact sets of matrix elementsof

Lemma 2.19. G has property T iffi o o implies1 € o for everys € G.
A stronger version is:

Lemma 2.20. If G has property (T) then there exists an open neighbourtiéed U (1,1, K, €’) of the trivial representation such
thatif p € U thenl € p.

Proposition 2.21. A group with property (T) is compactly generated.

Proof. AssumeG countable first, safz = {v,,}°2, and letH,, = (71, ...,v,) . ThenH,, is a closed subgroup @¥, and consider
the representatiop,, = Indgn 1 (the L? functions onH,,\G w.r.t. counting measure wity' acting by right translation). Sinc@
isn't finitely generatedH,, \ G is infinite, and thus there are d&-invariant vectors i, (i.e. the constant function of,,\ G isn’'tin
L?) and thusl ¢ p = &,p,. On the other hand for every compact (i.e. finite) subiéet G, there exists an such thatk’ ¢ H,,
from some point onwards and then any unit vectas,jris H,,-invariant, in particulads invariant so thal « p.

For a general locally compadt, this reads as follows: for each compact subdset G let Hx = (K) (the closed subgroup
generated byK), and consider the representatipp = IndeK 1. Note that any unit vector ipg is K-invariant. If G isn't
compactly generated] i \ G not compact, hence of infinite quotient measure. In particular, there ateineariant vectors .
Thusl ¢ p = ©xpr. On the other hang contains ak -invariant vector for every compadt C G by construction, so that
1 x p. (|

The main result of Kazhdan’s seminal pahisr

Theorem 2.22. Let G be a simple algebraic group defined over a local figldof F-rank at leas2. ThenG r has property (T).
This is useful for our purposes due to:

Proposition 2.23. Let G be locally compact]” < G be a closed subgroup such that there exists a fiGH@avariant regular Borel

measure on G /I'. Thenl™ has property T iffZ has property (T).

3The original paper actually claims the result for real groups of ¥agkout it was pointed out later that the proof given there works over any local field and for
rank2 groups as well.
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