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Random Groups

Why random groups?
« Understanding discrete groups via presentations.
* Trying to get a feel for the “typical’ group in some sense.

» Counterexamples.

Models for random groups: add relations “at random” to a given
group.



The Cayley graph Cay(I'; 5)







Hyperbolicity (the geometry of 1)




Property (T) (the geometry of actions of I)

 Let I" act isometrically on (Y, dy). y € Y is e-almost invariant if
dy(sy,y) <eforall s eS.

— FE(y Is small

seS

« Kazhdan’s property (T) with Kazhdan constant s: every unitary
representation of with an e-almost invariant unit vector has a I'-
invariant unit vector.

« Example: SL,(Z) for n > 3, but not F,,.

 (Guichardet-Delorme) I" is Kazhdan (T) iff every isometric action
on a Hilbert space Y has a fixed point.

* (Margulis) Let I' have property (T). Then {CayI'/N;S)}yr IS
family of expanders.



Models of random groups

Start with I' = (S | R), and add relations.

In each case we have a sequence of probability spaces
{(A.,Pr,)}>_, and for each a € A,, of words W, in S, giving random

groups:
[o=(S|RUW,).
As usual say P(I',,) holds asymptotically almost surely (a.a.s) if

lim Pr,{a € A, |, hasP} = 1.

m—0o0



“Density” models

» Choose a parameter 0 < ¢§ <1
» Set R, = "all (reduced / cyclically reduced / geodesic) words of length

* Set A, = {all subsets oR?,, of size ~ |R,,|’}.
Theorem (Ollivier) Let I" be non-elementary hyperbolic. In each case
there exists ¢, such that:

1.1f 6 > 6. then a.a.s. [I',| < 2.
2. If 9 < é.then a.a.s. I', is non-elementary hyperbolic.

Proof : “Small cancellation theory” for hyperbolic groups.
 For I' = F,, the case of finitely many relations (6 = 0”) is due

to Ol'shankii and Champetier, and the fact that 6. = % IS due to
Gromov.



The “graph” model
e Take a graph G = (V, E), let A; = {symmetri(n . E — S}.
o If = (é1,...,€e,)Is a path set a(p) = a(éy) - ... - afe,), and
W, = {«a(c) | ¢aclosed path i} .
« Example : I' = Fy, ), G = Cy marked aba™'b~". Then T, ~ Z°.

Key observation: Let X, = Cayl',;S). Take base vertices u, € V,
xg € X,. Forapath p': uy ~» uvin G set

gz (1) = 0x(P).
This is a map of decorated graphs «,,—.,: (G, a) — X,.

Restricting to a neighbourhood of radius < 3, we also have a well-
defined map BJ,(u) — X = Cay(T’; S).



Results

For simplicity assume G is d-regular, d > 3, and let g = girth(G).

Theorem 1: (Ollivier, Delzant) Assume that g > log |V | and that I is
non-elementary hyperbolic. Then I',, is non-elementary
hyperbolic a.a.s. as |V| — oc.

Also gives information about the radius of the injectivity of the quo-
tient map I' — I', and the maps o, .

Theorem 2: (S) Given 2k = |S|, 0 < Ay < 1 there exists g, such that if
g(G) > go and \*(G) < A3 then for some a, b depending
on Ay, k,d

Pr{T', has Kazhdan (T)> 1 — ae "I/,

Here \?(G) = max {\? | \; # £1 is an eigenvalue of }.



Remarks :

1.7, = (S| RUW,) is a quotient of (S | W,) = w.l.g. ' is free, so
X = Cayl;.5) is a 2k-regular tree.

2. Theorem 1 in fact uses a graph GG’ constructed from G by “blowing
up” edges. Theorem 2 still holds in that context.

3. The construction seems to need expanders of large girth, i.e. the
Ramanujan graphs of L-P-S.

4. Iterating the construction using larger and larger expanders we
can form a limit group. With positive probability the Cayley graph
of this “wild” group cannot be embedded in Hilbert space with
bounded distortion.



Proof of Theorem 2
Averagingon G

e up(u — ') - Transition probability for »n steps of the standard
random walk on G. E.g.:

(u,u') € E
0 (wu)é¢E

Let f: V — Y be a vector-valued function
are defined by:

Ul

e(u — o) = pglu — ) = {

. Its “local averages”

Aqu ZMGU—WL ).

» Spectrum of G = Spectrum of A

.- A2(G) controls convergence
of AZQ f to the constant function.
G



 “Proof”: Use energy (variance):

Eyn(f) = Q,V‘Zzugueu )£ (w) = £y
= (- 45,) £.£)

« Expanding f in an eigenbasis we see:

By(f) < —

TQ(@E 2 (f)
(independently of n!)

« Geometric fact: if g > n, then for /(v — -)-most «/,

[ (w = ) = gl — )] = 0 (i w — )

« = “Smoothing effect” of A,,:

Eg(Apl) = Bglf) = Byl
0u(1) B, (1) + 0u(VE,2 (1) = 0a(1) B, (f)



Averaging on X

Representation of I', on Y <= I" acts on Y by isometries, W, acting
trivially. p3l(z — 2’) std. rw. on X.

« To each y € Y associate f,(y) = vy (a I'-equivariant map f: X —
Y).

* Note that 2 — 3, MX(a; — a') ||f(z) — f(z')|)5 is [-invariant. Set

E,a(f Z > " ud(z — ) | @) — f@)5-

xGF\X x!

Then y almost-invariant < £, (f) small.

*Weneedtofindy € Y, i.e. f,st. £, (f) =0. Idea: Fixr < 1.
Given f, find [ for which

By (Aaf) <rEa ()



Proof of Theorem 2

Prop. 1: (Geometry) There exist ¢;,d; —— 0 such that for every I'-

[—o0

space Y and every equivariant f: X — Y,
Bz (Aaf) <aEa(f)+dE;(f).

Prop. 2: (Spectral Gap) Assume 3g(G) > 2n. Then a.a.s. as |V| —
oo, for every I',-space Y and every equivariant f: X — Y,
there exists § < < n, such that:

Ba(f) < — s

=g Al

Proof of Thm: Choose n = 6, large enough such that r = f‘&%c +

d, < 1, and let g(G) > 4n. Given Y and f; € B'(X, Y) we
can set f;j.; = Au% f; with the right [ to get:

B, (fin) < B, ().



Proposition 2

Recall the maps ay,_..,: (G,a) — X,. Since every f : B'(X,Y)
decends to X, we can consider f o ay,—.,,: G — V. By direct com-
putation

Eu%;”(f © Quyzy) = Epn (f)

'uX,a
with the “effective walk”
Bale = =z > mE®
O‘po—w(ﬁ) =1/
7 = 2n

and the sum is over all paths p of length 2n connecting vertices u, v’
such that «,_..(p) = v’

* Since 1¢(G) > 2n, a,_.,(p) is a well-defined member of X.



o k=1
2n .

e Warning: iy’ # px'! In fact, py',, =~ iy

For any z, 2’ € X we now consider ;ﬂ” as a function of «. From the
radial symmetry it is clear that we can write:

]E:LLXax_)x ZPZMXQU—WC

* If 19(G) > 2n we can take [ > 2 without much error.

» Observation: changing a single a(e) makes a very small change
to ﬂ%}f&. Also, A is the product measure space.



 Hence (concentration of measure and the union bound) all the
[L%}”fa(:c — z') are close to their expectation values with high prob-
ability. If that happens then for every Y and f as above,

ZPZE a(f) < E,uXa(:c —1') < Eﬂ%’(”a(f>'
Tl<l o

By lifting f to G we know

1

E,u%?a(f) S TQ(G')EM%(O[(JC)’

and under the “high probability” umberlla we can also add
B (f) < Eug((f)’ concluding that

E%glplEp%g(f) 2 1
<
Z%gl Di - Z%glpl 1= X(G) "

Finally, the smallest EM%(f) must be at least their average.

E2 (f),



Proposition 1

p random walk on X, Y a CAT(0) space, f: X — Y I'-equivariant. v
a ['-invariant measure on X. H, denotes A,» here.

BuH.) < 5 [ dole) [ [ (@ — o) = du'(o — )] d(Ha i), 12,

X

and
%/dem /X dp(x — 2 )d3(H, f (@), £(@)) < Bun(f):

Use with u = u3%. Since X is a tree, ¥ ™(x — 2') — p¥(z — ') is
small.



	Random Groups
	Why random groups?
	The Cayley graph Cay(;S)
	Hyperbolicity (the geometry of )
	Property (T) (the geometry of actions of )
	Models of random groups
	``Density'' models
	The ``graph'' model

	Results

	Proof of Theorem 2
	Averaging on G
	Averaging on X
	Proof of Theorem 2
	Proposition 2
	Proposition 1




