THE FUNDAMENTAL INTERCONNECTENESS OF ALL THINGS (MATHEMATICAL)

LIOR SILBERMAN

Notes for undergraduate colloquium talk.

Introduction

Idea: we only have one mathematics. Sometimes not clear from courses.
As a motiativing them we'll consider one problem. Ready bingo cards for math fields.
Problem 1. Which integers can be represented as a sum of four squares?
Define $r_{k}(n)=\#\left\{\underline{x} \in \mathbb{Z}^{k} \mid \sum_{i=1}^{k} x_{i}^{2}=n\right\}$.
(1) $k=1$ these are the squares
(2) $k=2$ Fermat; unique factorization in $\mathbb{Z}[i]$.
(3) $k=3$ Lagrange: $r_{k}(n)=1$ iff $n<0$ or $n=4^{a}(8 m+7)$.
(4) $k=4$ Legendre: $r_{k}(n) \geq 1$ iff $n \geq 0$ (Euler identity / factorization of quaternions + proof for primes).

1. Combinatorics

Observe that $r_{k+\ell}(n)=\sum_{a+b=n} r_{k}(a) r_{\ell}(b)$ - additive convolution. We therefore consider the generating function

$$
\theta_{k}(q)=\sum_{n=0}^{\infty} r_{k}(n) q^{n} \in \mathbb{Z}[[q]]
$$

We have

$$
\begin{aligned}
\sum_{n \geq 0} r_{k+\ell}(n) q^{n} & =\sum_{n \geq 0} q^{n} \sum_{a+b=n} r_{k}(a) r_{\ell}(b) \\
& =\sum_{n \geq 0} \sum_{a+b=n} r_{k}(a) q^{a} r_{\ell}(b) q^{b} \\
& =\sum_{a} r_{k}(a) q^{a} \sum_{b} r_{\ell}(b) q^{b} .
\end{aligned}
$$

Thus $\theta_{k}(q)=(\theta(q))^{k}$ for $\theta=\theta_{1}$.

2. Analysis

2.1. Complex analysis 1. The series converges for $|q|<1$, but no good analytic properties from that point of view. Instead try $q=e(\tau)=e^{2 \pi i \tau}$ so

$$
\theta(\tau)=\sum_{d \in \mathbb{Z}} e^{2 \pi i d^{2} \tau}
$$

We have $|q|<1$ iff $\mathfrak{I} \tau>0$ so this is a function on the upper halfplane. The series converges locally uniformly absolutely there, so defines a holomorphic function.
2.2. Harmonic analysis. Let $\tau=i y$. Let $f(x)=e^{-2 \pi y \cdot x^{2}}$ and let $F(x)=\sum_{d \in \mathbb{Z}} f(x+d)$ (so that $\theta(i y)=F(0)$). Then $F(x)$ is a smooth function on the circle \mathbb{R} / \mathbb{Z} so Fourier analysis gives

$$
\begin{aligned}
F(x) & =\sum_{k \in \mathbb{Z}} \hat{F}(k) e(k x) \\
& =\sum_{k \in \mathbb{Z}} \hat{f}(k) e(k x) .
\end{aligned}
$$

Setting $x=0$ we get the Poisson summation formula:

$$
\sum_{d \in \mathbb{Z}} f(d)=\sum_{k \in \mathbb{Z}} \hat{f}(k) .
$$

Here

$$
\begin{aligned}
\hat{f}(k) & =\int_{-\infty}^{+\infty} e^{-2 \pi y x^{2}} e^{-2 \pi i k x} d x \\
& =e^{-2 \pi k^{2} / 4 y} \int_{-\infty}^{+\infty} e^{-2 \pi y\left(x^{2}-\frac{i k}{y} x-\frac{k^{2}}{4 y^{2}}\right)} d x \\
& =\frac{1}{\sqrt{-2 i \tau}} e^{2 \pi i k^{2} /(-4 \tau)}
\end{aligned}
$$

so for $\tau=i y$ we get

$$
\theta\left(-\frac{1}{4 \tau}\right)=\sqrt{-2 i \tau} \theta(\tau)
$$

2.3. Digression (Riemann). Consider $\frac{1}{2} \int_{0}^{\infty}(\theta(i y)-1) y^{2 s} \frac{d y}{y}$. For $\mathfrak{R}(s)>1$ we have

$$
\begin{aligned}
\int_{0}^{\infty} \sum_{d=1}^{\infty} e^{-2 \pi d^{2} y} y^{2 s} \frac{d y}{y} & =\sum_{d=1}^{\infty} \int_{0}^{\infty} e^{-2 \pi d^{2} y} y^{2 s} \frac{d y}{y} \\
& =\sum_{d=1}^{\infty} d^{-s} \int_{0}^{\infty} e^{-2 \pi y} y^{2 s} \frac{d y}{y} \\
& =\zeta(s) \zeta_{\infty}(s)
\end{aligned}
$$

and now the transformation rule can be used to prove the analyical contiuation and functional equation for $\zeta(s)$.
2.4. Complex analysis 2. By analyticity we have

$$
\theta\left(-\frac{1}{4 \tau}\right)=\sqrt{-2 i \tau} \theta(\tau)
$$

for all τ. Using invariance by $\tau \rightarrow \tau+1$ we also get ${ }^{1}$

$$
\theta\left(\frac{\tau}{4 \tau+1}\right)=\sqrt{4 \tau+1} \theta(\tau)
$$

2.5. Group theory and geometry. $\mathrm{SL}_{2} \mathbb{R}$ acts on \mathbb{H} via $\gamma \tau=\frac{a \tau+b}{c \tau+d}$. Thus let $\Gamma_{\theta}<\mathrm{SL}_{2} \mathbb{Z}$ be the subgroup generated by $\tau \rightarrow \tau+1$ and $\tau \rightarrow \frac{\tau}{4 \tau+1}$. We get

$$
\theta(\gamma z)=\sqrt{c \tau+d} \theta(\tau)
$$

for all $\gamma \in \Gamma_{\theta}$.
Fact 2. $\Gamma_{\theta}=\Gamma_{0}(4)=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \equiv\left(\begin{array}{ll}1 & * \\ 0 & 1\end{array}\right)(4)\right\}$.
NOT FOR TALK. Clearly $\Gamma_{\theta} \subset \Gamma_{0}(4)$. Now let $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma_{0}(4) \backslash \Gamma_{\theta}$ have $|c|$ minimal, and subject to have that $|d|$ minimal. Then $c \neq 0$ (otherwise $\left.\gamma= \pm\left(\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right) \in \Gamma_{\theta}\right)$. Then $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\left(\begin{array}{cc}1 & n \\ 0 & 1\end{array}\right)=\left(\begin{array}{cc}* & * \\ c & d+n c\end{array}\right) \in \Gamma_{0}(4) \backslash \Gamma_{\theta}$ and from the minimality of $|d|$ we get that $|d| \leq \frac{1}{2}|c|$ and the inequality is strict since $4 \mid c$ and $d \equiv 1(4)$ is odd. Similarly $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\left(\begin{array}{cc}1 & 0 \\ 4 n & 1\end{array}\right)=\left(\begin{array}{cc}* & * \\ c+4 n d & d\end{array}\right) \in \Gamma_{0}(4) \backslash \Gamma_{\theta}$ and from the minimality of c we get $|c| \leq 2|d|<|c|$, a contradiction.

$$
1_{\text {using }}\left(\begin{array}{cc}
0 & 1 / 4 \\
-1 & 0
\end{array}\right)\left(\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
0 & -1 \\
4 & 0
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
4 & 1
\end{array}\right)
$$

2.6. Complex analysis 3. $\theta_{4}=\theta^{4}$ satisfies

$$
\begin{equation*}
\theta_{4}(\gamma z)=(c \tau+d)^{2} \theta(\tau) . \tag{2.1}
\end{equation*}
$$

There are not functions on $\Gamma_{\theta} \backslash \mathbb{H}$! But they are sections of a line bundle.
Fact 3. (Riemann-Roch) The space of functions satisfying (2.1) and holomorphic at infinity is 2-dimensional.
3. The space of lattices

$$
G_{2}(\Lambda)=\sum_{\lambda \in \Lambda \backslash\{0\}} \lambda^{-2}
$$

is not absolutely convergent. Works conditionally if we order

$$
G_{2}\left(\Lambda_{\tau}\right)=\sum_{c \in \mathbb{Z}} \sum_{d \in \mathbb{Z}}^{\prime} \frac{1}{(c \tau+d)^{2}}
$$

Then (with σ the divisor function)

$$
G_{2}(\tau)=2 \zeta(2)-8 \pi^{2} \sum_{n=1}^{\infty} \sigma(n) q^{n}
$$

Now G_{2} is not invariant!

$$
\frac{1}{(c \tau+d)^{2}} G_{2}(\gamma \tau)=G_{2}(\tau)-\frac{2 \pi i c}{c \tau+d}
$$

(conditional convergence FTW). But this means

$$
\begin{aligned}
& G_{2,2}(\tau)=G_{2}(\tau)-2 G_{2}(2 \tau) \\
& G_{2,4}(\tau)=G_{2}(\tau)-4 G_{2}(4 \tau)
\end{aligned}
$$

are $\Gamma_{0}(4)$-invariant. Compute Fourier expansion, use first few coefficients to see $\theta_{4}=-\frac{1}{\pi^{2}} G_{2,4}$ and get

$$
r_{4}(n)=8 \sum_{\substack{0<d \mid n \\ \psi d d}} d .
$$

- Can solve 2 -square problem, 6 -square problem, up to 10 square problem the same way.
- 12-square problem is different.
3.1. Algebraic geometry. $\Gamma_{\theta} \backslash \mathbb{H}$ can be given the structure of an algebraic variety.
3.2. Representation theory, PDE. Space of lattices $=>$ representation of $\mathrm{SL}_{2}(\mathbb{R})$

CR equation $=>$ representation is irreducible.

