Math 100:V02 – WORKSHEET 18 MULTIVARIABLE OPTIMIZATION

1. CRITICAL POINTS; MULTIVARIABLE OPTIMIZATION

Definition. We say the point (x_0, y_0) is a *critical point* for the function f = f(x, y) if f is defined in a neighbourhood of the point and

$$\begin{cases} \frac{\partial f}{\partial x}(x_0, y_0) = 0\\ \frac{\partial f}{\partial y}(x_0, y_0) = 0 \end{cases}.$$

(1) *How many critical points does $f(x,y) = x^2 - x^4 + y^2$ have?

(2) *Find the critical points of $f(x,y) = x^2 - x^4 + xy + y^2$.

(3) (MATH 105 Final, 2013) \star Find the critical points of $f(x,y) = xye^{-2x-y}$.

- (4) WARNING: in general checking along the axes only is not enough to determine if a point is a local minimum or maximum. For more on this look up the multivariable second derivative test in the reference book.
 - (a) $\star\star$ Let $f(x,y) = 4x^2 + 8y^2 + 7$. Find the critical point(s) of f(x,y), and determine (if possible) whether each critical point corresponds to a local maximum, local minimum, or neither ("saddle point").

(b) (MATH 105 Final, 2017) ** Let $f(x,y) = -4x^2 + 8y^2 - 3$. Find the critical point(s) of f(x,y), and determine (if possible) whether each critical point corresponds to a local maximum, local minimum, or neither ("saddle point").

(5) \star Find the critical points of $(7x + 3y + 2y^2)e^{-x-y}$.

2. Optimization

Fact. The maximum and minimum of a function must (if they exist) occur either at (1) a critical point; (2) a singular point; (3) the boundary.

- (6) **Find the minimum of $f(x,y) = 2x^2 + 3y^2 4x 5$: (a) on the rectangle $0 \le x \le 2, -1 \le y \le 1$.

(b) on the rectangle $2 \le x \le 3, -1 \le y \le 1$.

(7) Find the maximum of $(7x + 3y + 2y^2)e^{-x-y}$ for $x \ge 0$, $y \ge 0$,

- (8) A company can make widgets of varying quality. The cost of making q widgets of quality t is $C=3t^2+\sqrt{t}\cdot q$. At price p the company can sell $q=\frac{t-p}{3}$ widgets.

 (a) Write an expression for the profit function f(q,t).

 - (b) How many widgets of what quality should the company make to maximize profits?

(9) Find the maximum and minimum values of $f(x,y) = -x^2 + 8y$ in the disc $R = \{x^2 + y^2 \le 25\}$.

(10) (MATH 105 final, 2015) Find the maximum and minimum values of $f(x,y) = (x-1)^2 + (y+1)^2$ in the disc $R = \{x^2 + y^2 \le 4\}$.

- (11) (The inequality of the means) We calculate the maximum of f(x, y, z) = xyz on the domain x+y+z = 1, $x, y, z \ge 0$.
 - (a) Explain why it's enough to find the maximum of g(x,y) = xy(1-x-y) on the domain $x \ge 0, y \ge 0, x+y \le 1$.

(b) Find the critical points of g in the interior of the domain, and the values of g at those points.

(c) What is the boundary of the domain of g? What is the maximum there?

(d) What is the maximum of g?

(e) Show that for all $X,Y,Z\geq 0$ we have $(XYZ)^{1/3}\leq \frac{X+Y+Z}{3}$ (the "inequality of the means"). Hint: define $x=\frac{X}{X+Y+Z},\,y=\frac{Y}{X+Y+Z},\,z=\frac{Z}{X+Y+Z}$ and apply the previous result.

3. Lagrange multipliers (MATH 100C)

Fact (Method of Lagrange Multipliers). Let f(x,y) and G(x,y) be two functions (the objective function and the constraint). Suppose that (x_0, y_0) is a local maximum or minimum of frestricted to the curve G(x,y) = 0. Then there is a number λ (the "Lagrange multiplier") so that the following equations are satisfied:

$$\begin{cases} \frac{\partial f}{\partial x}(x_0, y_0) = \lambda \frac{\partial G}{\partial x}(x_0, y_0) \\ \frac{\partial f}{\partial y}(x_0, y_0) = \lambda \frac{\partial G}{\partial y}(x_0, y_0) \\ G(x_0, y_0) = 0 \end{cases}$$

(11) (MATH 105 final, 2017) Use the mConstrained optimizationethod of Lagrange Multipliers to find the maximum value of the utility function $U = f(x,y) = 16x^{\frac{1}{4}}y^{\frac{3}{4}}$, subject to the constraint G(x,y) = 50x + 100y - 500,000 = 0, where $x \ge 0$ and $y \ge 0$.

(12) Labour-Leisure model: a person can choose to spend L hours a day not working ("leisure"), working 24-L hours with way w. Suppose their fixed income is V dollars per day. Their consumption of goods is them C=w(24-L)+V, equivalenly C+wL=24w+V (here C,L are variables while w,V are constants). If their utility function is U=U(C,L) find a system of equations for maximum utility.