
Math 100:V02 – SOLUTIONS TO WORKSHEET 18
MULTIVARIABLE OPTIMIZATION

1. Critical points; multivariable optimization

(1) ⋆How many critical points does f(x, y) = x2 − x4 + y2 have?
Solution: ∂f

∂x (x, y) = 2x − 4x3 = 2x(1 − 2x2) while ∂f
∂y = 2y. Thus ∂f

∂y = 0 only when y = 0

while ∂f
∂x = 0 when x ∈

{
0,± 1√

2

}
. Thus there are three critical points: (0, 0) ,

(
1√
2
, 0
)
,
(
− 1√

2
, 0
)
.

(2) ⋆Find the critical points of f(x, y) = x2 − x4 + xy + y2.
Solution: Now ∂f

∂x (x, y) = 2x− 4x3 + y while ∂f
∂y = x+ 2y. At a critical point we have ∂f

∂y = 0

so y = − 1
2x and also ∂f

∂x (x, y) = 0 so 2x−4x3+y = 0. Substituting y = − 1
2x we get 3

2x−4x3 = 0 or

−4x
(
x2 − 3

8

)
= 0 so we have a critical point when x ∈

{
0,±

√
3
8 = ± 1

2

√
3
2

}
and hence at the points{

(0, 0) ,
(

1
2

√
3
2 ,−

1
4

√
3
2

)
,
(
− 1

2

√
3
2 ,

1
4

√
3
2

)}
.

(3) (MATH 105 Final, 2013) ⋆ Find the critical points of f(x, y) = xye−2x−y.
Solution: ∂f

∂x (x, y) = ye−2x−y − 2xye−2x−y = y(1 − 2x)e−2x−y while ∂f
∂y (x, y) = xe−2x−y −

xye−2x−y = x(1 − y)e−2x−y. Since e−2x−y ̸= 0 everywhere, the critical points are the solutions to
the system of equations {

y(1− 2x) = 0

x(1− y) = 0 .

Starting with the second equation we either have x = 0 or y = 1. In the first case the first equation
reads y = 0 and we get the critical point (0, 0). In the second case the first equation reads 1−2x = 0
and we get the critical point

(
1
2 , 1

)
.

(4)
(a) ⋆⋆ Let f(x, y) = 4x2 + 8y2 + 7. Find the critical point(s) of f(x, y), and determine (if possible)

whether each critical point corresponds to a local maximum, local minimum, or neither (“saddle
point”).
Solution: ∂f

∂x = 8x and ∂f
∂y = 16y. The only point where both vanish is where x = y = 0

where f(0, 0) = 7. Since 4x2 + 8y2 ≥ 0 for all x, y we have f(x, y) ≥ 7 for all x, y so this point
is the global minimum, and in particular a local minimum.

(b) (MATH 105 Final, 2017) ⋆⋆ Let f(x, y) = −4x2 + 8y2 − 3. Find the critical point(s) of f(x, y),
and determine (if possible) whether each critical point corresponds to a local maximum, local
minimum, or neither (“saddle point”).
Solution: ∂f

∂x = −8x and ∂f
∂y = 16y. The only point where both vanish is where x = y = 0

where f(0, 0) = −3. We have a local maximum along the x axis (for constant y the parabola
−4x2 +

(
8y2 − 3

)
is concave down) but a local minimum along the y axis (for constant x the

parabola 8y2 −
(
4x2 + 3

)
is concave up), so this is a saddle point.

(5) ⋆ Find the critical points of (7x+ 3y + 2y2)e−x−y.
Solution: Since ∂f

∂x = e−x−y(7 − 7x − 3y − 2y2) and ∂f
∂y = e−x−y(3 + 4y − 7x − 3y − 2y2) the

critical points are at {
7x+ 3y + 2y2 = 7

7x+ 3y + 2y2 = 3 + 4y .
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At a solution of this system we must have 3 + 4y = 7 so y = 1 and then 7x = 7 − 3y − 2y2 forces
x = 2

7 , so the only critical point is at
(
2
7 , 1

)
.

2. Optimization

(6) ⋆⋆Find the minimum of f(x, y) = 2x2 + 3y2 − 4x− 5:
(a) on the rectangle 0 ≤ x ≤ 2, −1 ≤ y ≤ 1.

Solution: We have ∂f
∂x = 4x− 4 = 4(x− 1) and ∂f

∂y = 6y so the only critical point is at (1, 0)

where f (1, 0) = −7. We now examine the boundary. If y = ±1 we have

f(x,±1) = 2x2 − 4x− 2

which has f(0,±1) = −2, f(2,±1) = −2 and a critical point at x = 1 where f(1,±1) = −4 so
the minimum on those edges is −4. If x = 0 we have

f(0, y) = 3y2 − 5

which clearly has a minimum f(0, 0) = −5. If x = 2 we have f(2, y) = 3y2 − 5 and the same
conclusion follows.
Bottom line: the minimum is −7 and occurs at the critical point
Solution: We have f(x, y) = 2(x2 − 2x+ 1) + 3y2 − 7 = 2(x− 1)2 + 3y2 − 7 so the minimum
is at (1, 0).

(b) on the rectangle 2 ≤ x ≤ 3, −1 ≤ y ≤ 1.
Solution: There are now no critical points in the rectangle, so the maximum occurs on the
boundary. As before when y = ±1 we have

f(x,±1) = 2x2 − 4x− 2

which has f(2,±1) = −2 and f(3,±1) = 4 and no critical points (∂f∂x only vanishes at x = 1)
so the minimum on these edges is −2. Similarly

f(2, y) = 3y2 − 5

has its minimum at y = 0 where f(2, 0) = −5 while f(3, y) = 1+ 3y2 which for −1 ≤ y ≤ 1 has
its minimum value 1 at y = 0. It follows that the minimum value is 5 attained at (2, 0).

(7) Find the maximum of (7x+ 3y + 2y2)e−x−y for x ≥ 0, y ≥ 0,
Solution: We start with the boundary. If y = 0 we have f(x, 0) = 7xe−x, the derivative of

which is 7e−x − 7xe−x = 7(1 − x)e−x which only vanishes at x = 1. The maximum is then at
x = 1 where the value is 7

e . If x = 0 we get f(0, y) = (3y + 2y2)e−y with derivative (3 + 4y − 3y −
2y2)e−y = −

(
2y2 − y − 3

)
e−y. This vanishes at y = 1±

√
25

4 = 3
2 ,−1, so at y = 3

2 . Since f(0, 0) = 0,
f(0, 3

2 ) = 9e−3/2 > 0 and f(0, y) is negative for large y, the maximum on this boundary is at 9e−3/2.
Finally the function tends to 0 if x → ∞ or y → ∞ (the exponential always wins) so there will be a
maximum which, if it occurs at the interior, must occur at a critical point. We already saw that the
only critical point is at

(
2
7 , 1

)
, and evaluation gives f( 27 , 1) = 7e−9/7 < 7

e . The maximum is therefore
at the larger of the boundary values. Now(

7

e

/ 9

e3/2

)2

=
72e

92
>

49 · 2
81

> 1

so 7
e is the largest value, hence the maximum. (With a calculator we could also check that 7

e ≈ 2.58,
9

e3/2
≈ 2.01, and 7

e9/7
≈ 1.94).

(8) A company can make widgets of varying quality. The cost of making q widgets of quality t is
C = 3t2 +

√
t · q. At price p the company can sell q = t−p

3 widgets.
(a) Write an expression for the profit function f(q, t).

Solution: To sell q widgets the price must be p = t−3q, so the revenue will be R = qp = tq−3q2

and the profit will be

f(q, t) = R− C = tq − 3q2 − 3t2 +
√
t · q .
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(b) How many widgets of what quality should the company make to maximize profits?
Solution: We need to maximize

f(q, t) = tq − 3q2 − 3t2 +
√
t · q .

Now ∂f
∂q = t − 6q +

√
t while ∂f

∂t = q
(
1 + 1

2
√
t

)
− 6t. From the first equation we find that at

fixed quality we maximize profits at q = t+
√
t

6 . As t → ∞ q ∼ t
6 so

f(q, t) ∼ t ·
t

6
− 3

(
t

6

)2

− 3t2 +
√
t
t

6

∼ −
(
3− 1

6

)
t2 → −∞

so there is a limit to the qualities at which we will make a profit. Conversely at quality 0 we have
f(q, 0) = −3q2 ≤ 0 so we must have some positive quality to make a profit, and the maximum
will occur at a critical point. Plugging q = t+

√
t

6 into ∂f
∂t = 0 we get the equation

1

6

(
t+

√
t
)(

1 +
1

2
√
t

)
− 6t = 0

that is

t+
3

2

√
t+

1

2
= 36t

or

70
(√

t
)2

− 3
√
t− 1 = 0

which has the solution
√
t =

3±
√
9 + 4 · 70
2 · 70

=
3±

√
289

140

=
20

140
=

1

7

since we must have
√
t > 0. At this value we have q = 8

49 · 6 = 4
3 · 49 and f(q, t) = 7

3 · 492 =
1

3 · 343 > 0, so this is indeed the maximum.
(9) Find the maximum and minimum values of f(x, y) = −x2 + 8y in the disc R =

{
x2 + y2 ≤ 25

}
.

Solution: ∂f
∂x = −2x and ∂f

∂y = 8, so f has no critical points in the interior of the disc (or
anywhere, for that matter), and the minimum and maximum must occur on the boundary, where
x2 + y2 = 25, so −x2 = y2 − 25 and (only there)

f(x, y) = y2 + 8y − 25 = (y + 4)2 − 41 .

The minimum is therefore at the point(s) where y is closest to −4 and the maximum is where they
are furthest away. Since (±3,−4) are on the circle x2 + y2 = 5 the minimum is −41 attained at
(±3,−4). On the circle we have −5 ≤ y ≤ 5 so the maximum of (y + 4)

2 is where y = 5 (and x = 0).
Thus the maximum is 40 attained at (0, 5).

(10) (MATH 105 final, 2015) Find the maximum and minimum values of f(x, y) = (x− 1)
2
+ (y+ 1)2 in

the disc R =
{
x2 + y2 ≤ 4

}
.

Solution: We have ∂f
∂x = 2(x− 1) and ∂f

∂y = 2(y + 1) so the only critical point is (1,−1) where
f(1,−1) = 0. Since f(x, y) ≥ 0 for all x, y this must be the global minimum. The maximum must
therefore occur on the boundary where x2 + y2 = 4. There

f(x, y) = x2 + y2 − 2x+ 1 + 2y + 1 = 6− 2x+ 2y .

Now along the curve x2+ y2 = 4 we have 2y dy
dx +2x = 0 so dy

dx = −x
y . Along that curve we thus have

df

dx
= −2 + 2

dy

dx
= −2− 2x

y
.
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From the point of view of optimization on the boundary we then have a critical point where x
y = −1

that is x = −y and a singular point where y = 0. Now x = −y means x2 = y2 = 2 so the points are(√
2,−

√
2
)

and
(
−
√
2,
√
2
)
. When y = 0 we have x = ±2. We now evaluate f at these points:

f (−2, 0) = 10 f (2, 0) = 2

f
(√

2,−
√
2
)
= 6− 4

√
2 f

(
−
√
2,
√
2
)
= 6 + 4

√
2

and since
√
2 > 1 we see that the maximum is 6 + 4

√
2 at

(
−
√
2,
√
2
)
.

(11) (The inequality of the means) We calculate the maximum of f(x, y, z) = xyz on the domain x+y+z =
1, x, y, z ≥ 0.
(a) Explain why it’s enough to find the maximum of g(x, y) = xy(1 − x − y) on the domain

x ≥ 0, y ≥ 0, x+ y ≤ 1.
(b) Find the critical points of g in the interior of the domain, and the values of g at those points.

Solution: We have ∂g
∂x = y(1 − x − y) − xy = y (1− 2x− y) so ∂f

∂y = x(1 − 2y − x). Since
x, y ̸= 0 inside the domain the critical points are the solutions of{

2x+ y = 1

x+ 2y = 1
,

and it’s easy to check that the only solution is x = y = 1
3 where g

(
1
3 ,

1
3

)
= 1

27 .
(c) What is the boundary of the domain of g? What is the maximum there?

Solution: The edges of the triangle are x = 0, 0 ≤ y ≤ 1, y = 0, 0 ≤ y ≤ 1, and the line
x+ y = 1 and on all of them we have g ≡ 0 so the maximum is 0.

(d) What is the maximum of g?
Solution: The largest value is 1

27 , attained at
(
1
3 ,

1
3

)
.

(e) Show that for all X,Y, Z ≥ 0 we have (XY Z)
1/3 ≤ X+Y+Z

3 (the “inequality of the means”).
Hint: define x = X

X+Y+Z , y = Y
X+Y+Z , z = Z

X+Y+Z and apply the previous result.

3. Lagrange multipliers (MATH 100C)

(11) (MATH 105 final, 2017) Use the mConstrained optimizationethod of Lagrange Multipliers to find the
maximum value of the utility function U = f(x, y) = 16x

1
4 y

3
4 , subject to the constraint G(x, y) =

50x+ 100y − 500, 000 = 0, where x ≥ 0 and y ≥ 0.
Solution: If x = 0 or y = 0 we have f(x, y) = 0 while if x, y > 0 we have f(x, y) > 0 so the

maximum must be in the interior of the domain (and occur at a critical point). By the method of
Lagrange Multipliers the maximum occurs at a point x, y where

4x−3/4y3/4 = 50λ

12x1/4y−1/4 = 100λ

50x+ 100y − 500, 000 = 0 .

If λ = 0 then either x = 0 or y = 0 by the first two equations, Constrained optimizationwhich isn’t
the case, so λ ̸= 0 and we can divide the second equation by the first. We get:

3
x

y
= 2 ,

that is 3x = 2y. Writing the equation of the constraint as x + 2y = 10, 000 we see that we must
have 4x = 10, 000 so x = 2, 500 and y = 3x

2 = 3, 750. Since this is the only solution it must be the
maximum, and the value is

f (2500, 3750) = 16 ·
(
104

4

)1/4 (
3
104

8

)3/4

= 24
10√
2

· 103 · 33/4 · 2−9/4 = 104 · 2
5
4 · 33/4

= 20, 000× 21/433/4 .
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(12) Labour-Leisure model: a person can choose to spend L hours a day not working (“leisure”), working
24 − L hours with way w. Suppose their fixed income is V dollars per day. Their consumption of
goods is them C = w(24 − L) + V , equivalenly C + wL = 24w + V (here C,L are variables while
w, V are constants). If their utility function is U = U(C,L) find a system of equations for maximum
utility.

Solution: We need to maximize U(C,L) subject to the budget constraint C + wL = 24w + V ,
so we get the system 

∂U
∂C = λ
∂U
∂L = λw

C + wL = 24w + V .
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