Math 100:V02 — SOLUTIONS TO WORKSHEET 18
MULTIVARIABLE OPTIMIZATION

1. CRITICAL POINTS; MULTIVARIABLE OPTIMIZATION

(1) xHow many critical points does f(z,y) = 22 — 2* + y* have?

Solution: %(m,y) = 2z — 42® = 22(1 — 22?) while % = 2y. Thus % = 0 only when y = 0
while % =0 when z € {O, :t%} Thus there are three critical points: (0,0), (I,O) , (—%,0).

(2) «Find the critical points of f(x,y) = 2% — 2% + zy —|— y .
Solution: Now ﬂ(z y) =2z —4a3 +y while 2 8— =z + 2y. At a critical point we have % =

soy:—lm and also 2 55 (x y) = 0so 2z —423+y = 0. Substitutingy——lx we get 3w 423 = 0 or

—4x ( 2 _ 7) = 0 so we have a critical point when x € {0 :I:\[ +5 L %} and hence at the points

{0.0). (3y/5.-3v3) (3R 43)}

(3) (MATH 105 Flnal 2013)  Find the critical points of f(z,y) = zye 2*7Y.
Solution: (’)x [(z,y) = ye 25V — 2pye= 22V = y(1 — 2z)e~ 2~ while y(x y) = xe 2T —

rye 2*7Y = z(1 — y)e 2®7Y. Since e~2*7Y £ 0 everywhere, the critical points are the solutions to

the system of equations
y(l—22)=0
z(1—y)=0

Starting with the second equation we either have x = 0 or y = 1. In the first case the first equation
reads y = 0 and we get the critical point (0,0). In the second case the first equation reads 1 —2x = 0
and we get the critical point (%, 1).

(4)

(a) *x Let f(z,y) = 42 + 8y* + 7. Find the critical point(s) of f(z,v), and determine (if possible)
whether each critical point corresponds to a local maximum, local minimum, or neither (“saddle
point”).

Solution: % = 8z and 85 = 16y. The only point where both vanish is where x = y = 0
where £(0,0) = 7. Since 422 + 8y? > 0 for all z,y we have f(z,y) > 7 for all z,y so this point
is the global minimum, and in particular a local minimum.

(b) (MATH 105 Final, 2017) %x Let f(z,y) = —4z? + 8y* — 3. Find the critical point(s) of f(z,y),
and determine (if possible) whether each critical point corresponds to a local maximum, local
minimum, or neither (“saddle point”).

Solution: % = —8z and % = 16y. The only point where both vanish is where x = y = 0
where f(0,0) = —3. We have a local mazimum along the x axis (for constant y the parabola
—42? + (8y* — 3) is concave down) but a local minimum along the y axis (for constant z the
parabola 8y2 — (4:172 + 3) is concave up), so this is a saddle point.
(5) » Find the critical points of (7x + 3y + 2y%)e %Y.
Solution: Since % = e *7Y(7T - Tx — 3y — 2y?) and ‘3—5 = e *7Y(3+ 4y — Tz — 3y — 2y?) the
critical points are at
Tr+3y+2y? =7
Te4+3y+2y° =3+4y.
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(6)

(7)

At a solution of this system we must have 3 + 4y = 7 so y = 1 and then 7z = 7 — 3y — 2y? forces
T = %, so the only critical point is at (%, 1).

2. OPTIMIZATION

*x*Find the minimum of f(x,y) = 222 + 3y? — 42 — 5:
(a) on the rectangle 0 < <2, —1<y<1.
Solution: We have % =4r —4=4(x—1) and % = 6y so the only critical point is at (1,0)
where f(1,0) = —7. We now examine the boundary. If y = +1 we have

flo,£1) =222 — 4z — 2

which has f(0,4+1) = —2, f(2,4£1) = —2 and a critical point at z = 1 where f(1,+1) = —4 so
the minimum on those edges is —4. If x = 0 we have

F(0,y) =3y* =5

which clearly has a minimum f(0,0) = —5. If x = 2 we have f(2,y) = 3y? — 5 and the same
conclusion follows.
Bottom line: the minimum is —7 and occurs at the critical point
Solution: We have f(z,y) = 2(z? — 22 + 1) + 3y? — 7 = 2(x — 1)? + 3y? — 7 so the minimum
is at (1,0).

(b) on the rectangle 2 <z <3, -1 <y <1.
Solution: There are now no critical points in the rectangle, so the maximum occurs on the
boundary. As before when y = +1 we have

flz, 1) =227 — 42 — 2

which has f(2,£1) = —2 and f(3,+£1) = 4 and no critical points (g—i only vanishes at z = 1)
so the minimum on these edges is —2. Similarly

F(2,y) =3y* -5

has its minimum at y = 0 where f(2,0) = —5 while f(3,y) = 1 + 3y? which for —1 <y < 1 has
its minimum value 1 at y = 0. It follows that the minimum value is 5 attained at (2,0).
Find the maximum of (7z + 3y + 2y*)e *Y for x > 0, y > 0,

Solution: We start with the boundary. If y = 0 we have f(x,0) = Tze™?, the derivative of
which is 7e™® — Twze™® = 7(1 — x)e~® which only vanishes at + = 1. The maximum is then at
2 = 1 where the value is % If z =0 we get f(0,y) = (3y + 2y?)e™¥ with derivative (3 + 4y — 3y —
2y%)e™¥ = — (2y®> — y — 3) e~¥. This vanishes at y = % =3,—1,s0at y = 3. Since f(0,0) =0,
f(o, %) =9¢3/2 > 0 and f(0,y) is negative for large y, the maximum on this boundary is at 9e=3/2,
Finally the function tends to 0 if z — 0o or y — oo (the exponential always wins) so there will be a
maximum which, if it occurs at the interior, must occur at a critical point. We already saw that the
only critical point is at (%, 1), and evaluation gives f (%, 1) =7e97 < % The maximum is therefore
at the larger of the boundary values. Now

7,9 P Te 492
el e3/2) 92 81
SO g is the largest value, hence the maximum. (With a calculator we could also check that g ~ 2.58,
=z ~ 2.01, and 7 ~ 1.94).
A company can make widgets of varying quality. The cost of making ¢ widgets of quality ¢ is
C = 3t? +\/t-q. At price p the company can sell ¢ = t_?p widgets.
(a) Write an expression for the profit function f(g,t).
Solution: To sell ¢ widgets the price must be p = t—3¢, so the revenue will be R = gp = tq—3¢>
and the profit will be

flg,t) =R—C =tq—3¢> - 3t>+t-q.
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(9)

(10)

(b) How many widgets of what quality should the company make to maximize profits?
Solution: We need to maximize

flg,t) =tq—3¢> —3t>+Vt-q.
Now g—g =t — 6q + /t while %{ =q (1 + 2%/%) — 6t. From the first equation we find that at
fixed quality we maximize profits at ¢ = L(;/Z. Ast v o0 qn~ % SO

fla,t) Y 2—3t2+x/%E
@ 6 6 6

1

so there is a limit to the qualities at which we will make a profit. Conversely at quality 0 we have

f(g,0) = —3¢® < 0 so we must have some positive quality to make a profit, and the maximum
will occur at a critical point. Plugging ¢ = # into %{ = 0 we get the equation

%(Hx/i) (1—1—2\1/%)—615:0

3 1
t 2Vt 4+ = = 36t
+2\f+2

that is

or
2
70(\/£) —3VEi-1=0
which has the solution

Vi 3EVOFAT 3289

t 2.70 140
20 1
T 140 7
since we must have v/t > 0. At this value we have ¢ = ;2 = ﬁ and f(q,t) = ﬁ =
3_7%,)43 > 0, so this is indeed the maximum.
Find the maximum and minimum values of f(z,y) = —2% + 8y in the disc R = {m2 +y? < 25}.
Solution: % = —2z and g—i = 8, so f has no critical points in the interior of the disc (or

anywhere, for that matter), and the minimum and maximum must occur on the boundary, where
22 +y? =25, so —2? = %2 — 25 and (only there)

flzy) =y> +8y —25=(y+4)> —41.

The minimum is therefore at the point(s) where y is closest to —4 and the maximum is where they
are furthest away. Since (4+3,—4) are on the circle 2 4+ y? = 5 the minimum is —41 attained at
(£3, —4). On the circle we have —5 < y < 5 so the maximum of (y + 4)* is where y = 5 (and z = 0).
Thus the maximum is 40 attained at (0, 5).
(MATH 105 final, 2015) Find the maximum and minimum values of f(z,y) = (z — 1)* + (y + 1)2 in
the disc R = {a:2 +942 < 4}.

Solution: We have % =2(zx—1) and % = 2(y + 1) so the only critical point is (1, —1) where
f(1,-1) = 0. Since f(x,y) > 0 for all ,y this must be the global minimum. The maximum must
therefore occur on the boundary where 22 + y? = 4. There

flay) =2 +y* — 20 +14+2y+1=6—22+2y.

Now along the curve x2 4 3% = 4 we have Qy% 42z =0s0 % = —f. Along that curve we thus have



From the point of view of optimization on the boundary we then have a critical point where % =-1

that is # = —y and a singular point where y = 0. Now = —y means 22 = y? = 2 so the points are
(\f, —\/5) and (—\/5, \/5) When y = 0 we have x = £2. We now evaluate f at these points:
f(=2,0) =10 f(2,0)=2

F(V2,—v2) =6-4v3 F(-v2.v2) =6+4v3

and since v/2 > 1 we see that the maximum is 6 + 4v/2 at (—\/§, \/5)
(11) (The inequality of the means) We calculate the maximum of f(z,y, z) = zyz on the domain z4y+z =

1, z,y,2 > 0.

(a) Explain why it’s enough to find the maximum of g(x,y) = ay(l — x — y) on the domain
z>0,y>0,z+y < 1.

(b) Find the critical points of g in the interior of the domain, and the values of g at those points.
Solution: We have % =yl—-—z—y)—zy=y(1—2z—1y) so % = z(1 — 2y — z). Since
x,y # 0 inside the domain the critical points are the solutions of

2r+y =1
z4+2y =1
and it’s easy to check that the only solution is x =y = % where ¢ (%, %) =
(c) What is the boundary of the domain of g7 What is the maximum there?
Solution: The edges of the triangle are £ = 0,0 <y < 1, y = 0,0 < y < 1, and the line
x4y =1 and on all of them we have g = 0 so the maximum is 0.
(d) What is the maximum of g7
Solution: The largest value is 2%, attained at (%, %)
(e) Show that for all X,Y,Z > 0 we have (XYZ)l/3 < XEXEZ (the “inequality of the means”).

Hint: define z = X+);+Z7 y= X+§/,+Z, z= X+1Z/+Z and apply the previous result.

1
27"

3. LAGRANGE MULTIPLIERS (MATH 100C)

(11) (MATH 105 final, 2017) Use the mConstrained optimizationethod of Lagrange Multipliers to find the
maximum value of the utility function U = f(z,y) = 1627y, subject to the constraint G(z,y) =
50x 4+ 100y — 500,000 = 0, where z > 0 and y > 0.
Solution: If z =0 or y = 0 we have f(z,y) = 0 while if z,y > 0 we have f(z,y) > 0 so the
maximum must be in the interior of the domain (and occur at a critical point). By the method of
Lagrange Multipliers the maximum occurs at a point x,y where

434374 = 50
1221 /4y=1/4 = 100\
50z + 100y — 500,000 = 0.

If A = 0 then either z = 0 or y = 0 by the first two equations, Constrained optimizationwhich isn’t
the case, so A # 0 and we can divide the second equation by the first. We get:

3% — 9,
)
that is 3z = 2y. Writing the equation of the constraint as x + 2y = 10,000 we see that we must
have 4z = 10,000 so x = 2,500 and y = 37” = 3,750. Since this is the only solution it must be the
maximum, and the value is

1 4N 1/4 1 4N 3/4
£(2500,3750) = 16 - <2> <3(8)>

— 242 103 .33/4.9-9/4 — 1p*.9% . 33/4
V2
= 20,000 x 21/433/4 .
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(12) Labour-Leisure model: a person can choose to spend L hours a day not working (“leisure”), working
24 — L hours with way w. Suppose their fixed income is V' dollars per day. Their consumption of
goods is them C' = w(24 — L) + V, equivalenly C + wL = 24w + V (here C, L are variables while
w, V are constants). If their utility function is U = U(C, L) find a system of equations for maximum
utility.

Solution: We need to maximize U(C, L) subject to the budget constraint C + wL = 24w +V,
so we get the system

ou _

ac =A
ou _

oL = A’LU

CH+wL =24w+V.



