Math 100:V02 - WORKSHEET 17 MULTIVARIABLE DIFFERENTIATION

1. Plotting in three dimensions

(1) \star Plot the points $(2,1,3),(-2,2,2)$ on the axes provided.
(2) Let $f(x, y)=e^{x^{2}+y^{2}}$.
(a) * What are $f(0,-1)$? $f(1,2)$? Plot the point $(0,1, f(0,1))$ on the axes provided.
(b) \star What is the domain of f (that is: for what (x, y) values does f make sense?
(c) * What is the range of f (that is: what values does it take)?

(3) $\star \star$ What would the graph of $z=\sqrt{1-x^{2}-y^{2}}$ look like?
(4) * Which plane is this?

(A) $x=3$
(B) $y=3$
(C) $z=3$
(D) none
(E) not sure

2. Partial derivatives

(5) (a) \star Let $f(x)=2 x^{2}-a^{2}-2$. What is $\frac{d f}{d x}$?
(b) \star Let $f(x)=2 x^{2}-y^{2}-2$ where y is a constant. What is $\frac{d f}{d x}$?
(c) \star Let $f(x, y)=2 x^{2}-y^{2}-2$. What is the rate of change of f as a function of x if we keep y constant?
(d) \star What is $\frac{\partial f}{\partial y}$?
(6) Find the partial derivatives with respect to both x, y of
(a) $\star g(x, y)=3 y^{2} \sin (x+3)$
(b) $\star h(x, y)=y e^{A x y}+B$
(7) The the gravitational potential due to a point mass M (equivalently the electrical potential due to a point charge M) is given by the formula $U(x, y, z)=-\frac{G M}{r}$ where $r=\sqrt{x^{2}+y^{2}+z^{2}}$. Here G is the universal gravitational constant (equivalently G is the Coulomb constant).
(a) \star The x-component of the field is given by the formula $F_{x}(x, y, z)=-\frac{\partial U}{\partial x}$. Find F_{x}
(b) \star The magnitude of the field is given by $|\vec{F}|=\sqrt{F_{x}^{2}+F_{y}^{2}+F_{z}^{2}}$. How does it decay as a function of r ?
(8) The entropy of an ideal gas of N molecules at temperature T and volume V is

$$
S(N, V, T)=N k \log \left[\frac{V T^{1 /(\gamma-1)}}{N \Phi}\right]
$$

where k is Boltzmann's constant and γ, Φ are constants that depend on the gas. (a) \star Find the heat capacity at constant volume $C_{V}=T \frac{\partial S}{\partial T}$.
(b) $\star \star \star$ Using the relation ("ideal gas law") $P V=N k T$ write S as a function of N, P, T instead. Differentiating with respect to T while keeping P constant determine the heat capacity at constant pressure $C_{P}=T \frac{\partial S}{\partial T}$.

Notations for the partial derivative include $\frac{\partial f}{\partial x}, \frac{\partial}{\partial x} f, \partial_{x} f, D_{x} f, f_{x}$.
(9) We can also compute second derivatives. For example $f_{x y}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial^{2}}{\partial y \partial x} f$. Evaluate:
(a) $\star h_{x x}=\frac{\partial^{2} h}{\partial x^{2}}=$
(b) $\star h_{x y}=\frac{\partial^{2} h}{\partial y \partial x}=$
(c) $\star h_{y x}=\frac{\partial^{2} h}{\partial x \partial y}=$
(d) $\star h_{y y}=\frac{\partial^{2} h}{\partial y^{2}}=$
$(10) \star$ Repeat this exercise for the function g from problem 2(a).
(11) You stand in the middle of a north-south street (say Health Sciences Mall). Let the x axis run along the street (say oriented toward the south), and let the y axis run across the street. Let $z=z(x, y)$ denote the height of the street surface above sea level.
(a) \star What does $\frac{\partial z}{\partial y}=0$ say about the street?
(b) \star What does $\frac{\partial z}{\partial x}=0.15$ say about the street?
(c) \star You want to follow the street downhill. Which way should you go?
(d) The intersection of Health Sciences Mall and Agronomy Road is a local maximum. What does that say about $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ there?

3. Bonus (nONEXAMINABLE!): MULTIVARIABLE LINEAR AND HIGHER APPROXIMATION

Definition 1. A function $f(x, y)$ is differentiable at x_{0}, y_{0} if we have a linear approximation $f(x, y)=$ $f\left(x_{0}, y_{0}\right)+A\left(x-x_{0}\right)+B\left(y-y_{0}\right)+$ small as $(x, y) \rightarrow\left(x_{0}, y_{0}\right)$. We then have $A=\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)$ and $B=\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)$. The definition for functions of more than two variables is analogous.
(12) Let $f(x)=\sqrt{2+x^{2}+y^{2}}$.
(a) Write the linear approximation to f about $(1,1)$ and use that to estimate $f(1.1,1.2)$.
(b) Write the linear approximation to f about $(3,5)$ and use that to estimate $f(2.8,4.9)$.

