Math 100:V02 – WORKSHEET 17 MULTIVARIABLE DIFFERENTIATION

1. PLOTTING IN THREE DIMENSIONS

- (1) \star Plot the points (2,1,3), (-2,2,2) on the axes provided.
- (2) Let $f(x,y) = e^{x^2 + y^2}$.
 - (a) \star What are f(0,-1)? f(1,2)? Plot the point (0,1,f(0,1)) on the axes provided.
 - (b) \star What is the *domain* of f (that is: for what (x,y) values does f make sense?

- (c) \star What is the range of f (that is: what values does it take)?
- (3) ** What would the graph of $z = \sqrt{1 x^2 y^2}$ look like?
- (4) \star Which plane is this?

- (A) x = 3
- (B) y = 3
- (C) z = 3
- (D) none
- (E) not sure

2. Partial derivatives

(5) (a) * Let
$$f(x) = 2x^2 - a^2 - 2$$
. What is $\frac{df}{dx}$?

(b)
$$\star$$
 Let $f(x) = 2x^2 - y^2 - 2$ where y is a constant. What is $\frac{df}{dx}$?

(c)
$$\star$$
 Let $f(x,y) = 2x^2 - y^2 - 2$. What is the rate of change of f as a function of x if we keep y constant?

(d)
$$\star$$
 What is $\frac{\partial f}{\partial y}$?

(6) Find the partial derivatives with respect to both
$$x, y$$
 of (a) $\star g(x, y) = 3y^2 \sin(x + 3)$

(b)
$$\star h(x,y) = ye^{Axy} + B$$

(7) The the gravitational potential due to a point mass M (equivalently the electrical potential due to a point charge M) is given by the formula $U(x,y,z) = -\frac{GM}{r}$ where $r = \sqrt{x^2 + y^2 + z^2}$. Here G is the universal gravitational constant (equivalently G is the Coulomb constant). (a) * The x-component of the field is given by the formula $F_x(x,y,z) = -\frac{\partial U}{\partial x}$. Find F_x

(a) * The x-component of the field is given by the formula
$$F_x(x,y,z) = -\frac{\partial U}{\partial x}$$
. Find $F_x(z,y,z) = -\frac{\partial U}{\partial x}$.

(b)
$$\star$$
 The magnitude of the field is given by $\left| \vec{F} \right| = \sqrt{F_x^2 + F_y^2 + F_z^2}$. How does it decay as a function of r ?

(8) The entropy of an ideal gas of N molecules at temperature T and volume V is

$$S(N,V,T) = Nk \log \left\lceil \frac{VT^{1/(\gamma-1)}}{N\Phi} \right\rceil \, .$$

where k is $Boltzmann's\ constant$ and γ, Φ are constants that depend on the gas.

(a) \star Find the heat capacity at constant volume $C_V = T \frac{\partial S}{\partial T}$.

(b) $\star\star\star$ Using the relation ("ideal gas law") PV=NkT write S as a function of N,P,T instead. Differentiating with respect to T while keeping P constant determine the heat capacity at constant pressure $C_P=T\frac{\partial S}{\partial T}$.

Notations for the partial derivative include $\frac{\partial f}{\partial x}$, $\frac{\partial}{\partial x}f$, $\partial_x f$, $D_x f$, f_x .

(9) We can also compute second derivatives. For example $f_{xy} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2}{\partial y \partial x} f$. Evaluate:

(a)
$$\star h_{xx} = \frac{\partial^2 h}{\partial x^2} =$$

(b)
$$\star h_{xy} = \frac{\partial^2 h}{\partial y \partial x} =$$

(c)
$$\star h_{yx} = \frac{\partial^2 h}{\partial x \partial y} =$$

(d)
$$\star h_{yy} = \frac{\partial^2 h}{\partial y^2} =$$

(10) \star Repeat this exercise for the function g from problem 2(a).

- (11) You stand in the middle of a north-south street (say Health Sciences Mall). Let the x axis run along the street (say oriented toward the south), and let the y axis run across the street. Let z = z(x, y) denote the height of the street surface above sea level.
 - (a) \star What does $\frac{\partial z}{\partial y} = 0$ say about the street?
 - (b) \star What does $\frac{\partial z}{\partial x} = 0.15$ say about the street?
 - (c) ★ You want to follow the street downhill. Which way should you go?
 - (d) The intersection of Health Sciences Mall and Agronomy Road is a local maximum. What does that say about $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ there?
 - 3. Bonus ($\underline{\text{nonexaminable!}}$): multivariable linear and higher approximation

Definition 1. A function f(x,y) is differentiable at x_0, y_0 if we have a linear approximation $f(x,y) = f(x_0, y_0) + A(x - x_0) + B(y - y_0) + \text{small as } (x,y) \to (x_0, y_0)$. We then have $A = \frac{\partial f}{\partial x}(x_0, y_0)$ and $B = \frac{\partial f}{\partial y}(x_0, y_0)$. The definition for functions of more than two variables is analogous.

- (12) Let $f(x) = \sqrt{2 + x^2 + y^2}$.
 - (a) Write the linear approximation to f about (1,1) and use that to estimate f(1.1,1.2).

(b) Write the linear approximation to f about (3,5) and use that to estimate f(2.8,4.9).