
Math 100:V02 – SOLUTIONS TO WORKSHEET 15
OPTIMIZATION

1. Optimization of functions

(1) Let f(x) = x4 − 4x2 + 4.
(a) Find the absolute minimum and maximum of f on the interval [−5, 5].

Solution: f ′(x) = 4x3 − 8x is defined everywhere and vanishes at 0,±
√

2. We have f(±5) =

625− 100 + 4 = 529, f(±
√

2) = 4− 8 + 4 = 0 and f(0) = 4. The global maximum is therefore
529, attained at ±5 and the global minimum is 0, attained at ±

√
2.

Takeaway: straightforward application of the calculus: the global maximum/minimum must
either be at the end of the interval, or at the interior, and if in the interior must be at a critical
or singular point.

(b) Find the absolute minimum and maximum of f on the interval [−1, 1].
Solution: Now the only critical point is 0 (note that

√
2 > 1). We have f(±1) = 1−4+4 = 1

and f(0) = 4. The global maximum is now 4, attained at 0, while the global minimum is 1,
attained at ±1.
Takeaway: The interval matters. “Critical points”, “singular points” etc mean points in the
interval.

(c) Find the absolute minimum and maximum of f (if they exist) on the interval (−1, 1).
Solution: The function still has a local maximum at 0 where f(0) = 4 while f ′(x) < 0 on
(0, 1) and f ′(x) > 0 on (−1, 0) so this is also the global maximum. There is no global minimum
since f(x) > 1 = f(±1) for any x in the open interval (x can get close to ±1 but it can’t
actually equal them).
Takeaway: If the interval is open (does not include the endpoints) then there need not be a
global maximum/minimum and we need to analyze the function more carefully – usually by
finding the intervals where it’s increasing/decreasing.

(d) Find the absolute minimum and maximum of f (if they exist) on the real line.
Solution: Since as x → ±∞ we have f(x) ∼ x4 → ∞ there is no global maximum. It also
follows that outside some closed interval f(x) only takes large values, so to find the minimum
it’s enough to consider a big closed interval [−L,L]. The minimum won’t be at the endpoints
(the function is large there) but rather at a critical point. By part (a) we see that the global
minimum is 0 attained at ±

√
2.

Takeaway: On an open interval a contintinuous function can tend to infinity. We can use that
to not have to analyze it far enough away.
Solution: (Alternative) Since as x → ±∞ we have f(x) ∼ x4 → ∞ there is no global
maximum. Next, For x ≥ 5 we have f ′(x) = x(4x2 − 8) ≥ x(20− 8) ≥ 12x > 0 and for x ≤ −5
similarly 4x2 − 8 ≥ 12 so f(x) = x(4x2 − 8) ≤ 12x < 0 (if x ≤ −5 it’s negative). Thus f is
increasing if x ≥ 5 and decreasing if x ≤ −5. Thus it only take values smaller than f(±5) = 629
inside the interval [−5, 5] and the global minimum must be there.
Takeaway: We can make an explicit estimate on when f starts to be large (we use |x| ≥ 5 here
because in part (a) we analyzed what happens in [−5, 5]).

(2) Let f(x) = |x|. Find the absolute minimum and maximum of f on the interval [−1, 3].

Solution: We have f ′(x) =

{
1 x > 0

−1 x < 0
so there are no critical points but there is a singular

point at x = 0. We have f(−1) = 1, f(0) = 0, f(3) = 3 so the maximum of f on the interval is 3,
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attained at x = 3, and the minimum is 0, attained at x = 0.
Takeaway: Singular points matter too.

(3) Find the global extrema (if any) of f(x) = 1
x on the intervals (0, 5) and [1, 4].

Solution: Since f is defined and strictly decreasing on these intervals, there are no extrema
in the first case (and in fact limx→0+

1
x = ∞) but in the second case for any 1 ≤ x ≤ 4 we have

1 = f(1) ≥ f(x) ≥ f(4) = 1
4 so 1 is the global maximum and 1

4 is the global minimum.
Takeaway: can sometimes solve problems without calculus at all.
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2. Optimization problems

(4) A standard model for the interaction between two neutral molecules is the Lennard-Jones Potential
V (r) = ε

[(
r
R

)−12 − 2
(
r
R

)−6]. Here r is the distance between the molecules and R, ε > 0 are
parameters.
(a) What is the range of r values that makes sense?

Solution: Distances are non-negative numbers. Since the potential blows up at r = 0 the we
have r ∈ (0,∞).

(b) Physical systems tend to settle into a state of least energy. Find the minimum of this potential.
Solution: V ′(r) = ε

[
−12R12r−13 + 12R6r−7

]
= 12εR

12

r13

[(
r
R

)6 − 1
]
. We then see the poten-

tial decreasing for r
R ∈ (0, 1) and increasing for r

R ∈ (1,∞), so the unique minimum is at r = R
where V (R) = −ε.

(c) Expand the potential to second order about the minimum.
Solution: We have V ′′(r) = ε

[
156R12r−14 − 84R6r−8

]
so V ′′(R) = 72ε/R2. For r close to R

we therefore have

V (r) ≈ −ε+
36ε

R2
(r −R)2 = ε

[
−1 + 36

( r
R
− 1
)2]

.

Remark: this is the same potential as for a harmonic osciilator (e.g. spring) where 72ε plays
the role of the spring constant. One can thus compute the frequency of small oscillations about
the equilibrium position (see physics textbooks).

(5) Suppose we have 100m of fencing to enlose a rectangular area against a long, straight wall. What is
the largest area we can enclose?

Solution: (0) Picture

h

w

(1) Let the width of the rectangle be w, its height h, measured in metres.
(2) The total fencing used is then 2h+ w so we must have 2h+ w = 100.
(3) The area of the rectangle is then A = wh = h(100− 2h).
(4) We must have h ≥ 0 and since we have at most 100m of fencing we must have h ≤ 50, so we need
to optimize A(h) = h(100−2h) = 100h−2h2 on [0, 50]. We have A′(h) = 100−4h which vanishes at
h = 25. Since A(0) = A(50) = 0 (these are degenerate rectangles) and A(25) = 25 · 50 > 0 h = 25m
gives the maximum area.
(5) The maximum area we can enclose is 1250m2.

(6) (Final 2012) The right-angled triangle ∆ABP has the vertex A = (−1, 0), a vertex P on the semicircle
y =

√
1− x2, and another vertex B on the x-axis with the right angle at B. What is the largest

possible area of such a triangle?
Solution: (0) Picture

A
BO

P (x, y)

R

R x

y

(1) Put the coordinate system where the centre of the circle is at (0, 0) and the diameter is on the
x-axis. Let B be at (x, 0), P at (x, y).
(2) Since P is on the circle we have y =

√
1− x2. The area of the triangle is then A = 1

2 (base) ×
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(height) = 1
2 (1 + x)

√
1− x2 since the base of the triangle has length 1 + x.

(4) The function A(x) is continuous on [−1, 1] so we can find its minimum by differentiation. By the
product rule and chain rule,

A′(x) =
1

2

√
1− x2 +

1

2
(1 + x)

−2x

2
√

1− x2

=

(√
1− x2

)2
2
√

1− x2
− x(1 + x)

2
√

1− x2
=

1− x2 − x− x2

2
√

1− x2

=
1− x− 2x2

2
√

1− x2
.

This is defined on (−1, 1) and the critical points satisfy 2x2 + x− 1 = 0 so they are x = −1±
√
1+8

4 =
−1±3

4 = −1, 12 . The only critical point in the interior is then x = 1
2 . The area vanishes at the

endpoints (the triangle becomes degenerate) and

A

(
1

2

)
=

1

2
·

3

2
·
√

1− 1

22
=

3
√

3

8
.

It follows that the largest possible area is 3
√
3

8 .
(7) A ferry operator is trying to optimize profits. Before each ferry trip workers spend some time loading

cars after which the trip takes 1 hour. The ferry can carry up to 100 cars, each paying $50 for the
trip. Worker salaries total $500/hour and the fuel for the trip costs $250. The workers can load
N(t) = 100 t

t+1 cars in t hours.
(a) How much time should be devoted to loading to maximize profits per trip.

Solution: If we load cars for t hours, we have revenues (in dollars) of R(t) = 50N(t) =
5, 000 t

t+1 and costs C(t) = 250 + 500(1 + t) = 750 + 500t (the workers are paid for both loading
the cars and for the trip; note the combination of fixed and variable costs). The profits are then

P (t) = R(t)− C(t) = 5000
t

t+ 1
− 500t− 750 .

We note that P (0) = −750 (we lose money if we load no cars) and as t → ∞ we have P (t) ∼
−500t→ −∞ (revenue is capped at 5000 – the loading time shows diminishing returns). Since
P (1) = 2500−500−750 > 0 the maximum must be positive so somewhere in between, thus at a
critical or singular point. We have P (t) = 5000 t+1

t+1 −
5000
t+1 − 500t− 750 = 4250− 5000 1

t+1 − 500t

so P ′(t) = 5000 1
(1+t)2 − 500; this vanishes when (1 + t)2 = 10 so when t0 =

√
10 − 1 ≈ 2.16

hours. We can also check that P ′(t) > 0 if t < t0 and P ′(t) < 0 if t > t0 so this really is a
maximum.
Takeaway: If we are asked for the time there is no need to compute the precise profit at that
time.

(b) The ferry runs continuously. How much time should be devoted to loading to maximize profits
per hour?
Solution: If we load cars for t hours, our profits per hour are

Q(t) =
P (t)

t+ 1
= 5000

t

(t+ 1)2
− 500

t

t+ 1
− 750

t+ 1
.

=
5000t

(t+ 1)2
− 250

t+ 1
− 500

=
4750t− 250

(t+ 1)2
− 500

= 250
19t− 1

(t+ 1)2
− 500

We note that Q(0) = −750 (we still lose money if we load no cars) and as t → ∞ we have
Q(t) ∼ −500t2

t2 → −500 (if we load forever we just lose $500 per hour paying the workers and
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make nothing on the trips). The maximum must therefore be somewhere in between, so at a
critical or singular point. We have

Q′(t) = 250
19(t+ 1)2 − (19t− 1)2(t+ 1)

(t+ 1)4

= 250
19(t+ 1)− (38t− 2)

(t+ 1)3
= 250

21− 19t

(t+ 1)3
.

This vanishes when 21− 19t = 0 so at t0 = 21
19 ≈ 1.11 hours; again we can verify that this is a

maximum (e.g. by checking that Q′(0) = 250 · 9 > 0 or by computing Q(1) = 250 · 18
4 − 500 =

250 · 2 1
2 > 0).

Takeaway: Changing the goal of the optimization can change the point of maximum: the time
at which we maximize profits per hour is not the same as the time we maximize profits per
trip.

(8) (Final 2010) A river running east-west is 6km wide. City A is located on the shore of the river; city
B is located 8km to the east on the opposite bank. It costs $40/km to build a bridge across the river,
$20/km to build a road along it. What is the cheapest way to construct a path between the cities?

Solution: (0) Picture

A

B

8km

6km 6kmd

x 8− x

river

(1) Build a road of length x from A along the bank, then build a bridge of length d toward B.
(2) By Pythagoras, d =

√
62 + (8− x)2.

(3) The total cost is

C(x) = 20x+ 40
√

62 + (8− x)2 = 20x+ 40
√

62 + (x− 8)2 .

(4) The function C(x) is defined everywhere (62 + (8−x)2 ≥ 62 > 0) and continuous there. We have

C ′(x) = 20 + 40
2(x− 8)

2
√

62 + (x− 8)2
.

This exists everywhere (the denominator is everywhere positive by the same calculation). It’s enough
to consider 0 ≤ x ≤ 8 (no point in starting the bridge west of A or east of B). Looking for critical
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points we solve C ′(x) = 0 that is:

20 + 40
x− 8√

36 + (x− 8)2
= 0

20 = 40
8− x√

36 + (8− x)2√
36 + (8− x)2 = 2(8− x)

36 + (8− x)2 = 4(8− x)2

36 = 3(8− x)2

(8− x) =

√
36

3
=
√

12 = 2
√

3

(only the positive root since 0 ≤ x ≤ 8 forces 8− x ≥ 0) so

x = 8− 2
√

3 .

We then have C(0) = 40
√

62 + 82 = 40
√

100 = 400, C(8) = 20 · 8 + 40
√

62 = 160 + 240 = 400 and

C(8− 2
√

3) = 20
(

8− 2
√

3
)

+ 40

√
62 + (2

√
3)2 = 160− 40

√
3 + 40

√
36 + 12

= 160− 40
√

3 + 40
√

48 = 160− 40
√

3 + 40
√

16 · 3

= 160− 40
√

3 + 40 · 4
√

3 = 160 + 120
√

3 .

Now
√

3 <
√

4 = 2 so C(8 − 2
√

3) = 160 + 120
√

3 < 160 + 120 · 2 = 400 = C(0) = C(8) and we
conclude that C(8− 2

√
3) is the minimum.

(5) The cheapest way to construct a bridge is construct a road of length
(
8− 2

√
3
)
km along the

bank from A toward B, and then bridge from the end of the road to B.
(6) Sanity checks: 0 < 2

√
3 < 2 · 2 < 8 so the indeed the bridge starts somewhere betwen the cities.

Our answer is on the kilometer scale.
(9) (Final 2019) Among all rectangles inscribed in a given circle, which one has the largest perimeter?

Prove your answer.
Solution: (0) Picture

O

(x, y)

R

(1) We rotate the rectangle so that it’s aligned with the axes; suppose one corner is at (x, y). Call
the radius of the circle R and the perimeter of the rectangle P .
(2) We have x2 + y2 = R2 so y =

√
R2 − x2.

(3) The total perimeter is

P (x) = 2x+ 2y + 2x+ 2y = 4(x+ y) = 4(x+
√
R2 − x2)
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where 0 ≤ x ≤ R.
(4) The function P is defined and continuous on [0, R]. We have

P ′(x) = 4

(
1− 2x

2
√
R2 − x2

)
This exists everywhere except at the endpoint x = R where the denominator vanishes. There are
critical points where C ′(x) = 0 that is where

4

(
1− x√

R2 − x2

)
= 0

1 =
x√

R2 − x2√
R2 − x2 = x

R2 − x2 = x2

2x2 = R2

x =
1√
2
R .

We have P ( 1√
2
R) = 4

(
1√
2
R+

√
R2 − 1

2R
2
)

= 4
(

2√
2
R
)

= 4
√

2R while at the endpoints we have

P (0) = 4
(

0 +
√
R2
)

= 4R and P (R) = 4
(
R+
√

0
)

= 4R. It follows that the largest perimeter

occurs when x = 1√
2
R.

(5) This rectangle also has y =
√
R2 − x2 = 1√

2
R so the rectangle with the largest perimeter is the

square.
(10) Owners of a car rental company have determined that if they charge customers d dollars per day to

rent a car, the number of cars N they rent per day can be modelled by the function N(d) = A−Bd
where A,B > 0 are constants.
(a) What is the range of d for which this model makes sense?

Solution: The price should be positive, and the number of cars rented should be positive too,
so we need 0 ≤ d ≤ A

B .
Takeaway: Can sometimes determine the “sensible” range of the problem from the expressions.

(b) What price should they set to maximize their daily revenue?
Solution: The revenue for renting N(d) cars at d dollars per day is R(d) = N(d) · d =
(A − Bd)d = Ad − Bd2. This function is differentiable on

[
0, AB

]
were we have R(0) = 0 (if

we don’t charge rent we don’t make money) and R(A
B ) = 0 (if we rent no cars we don’t make

money). In between we have R′(d) = A − 2Bd which vanishes at d = A
2B . Since f is positive

in between the endpoints the maximum must be somewhere in the interval, and since there is
only one critical point it must be the maximum, so the recommended number of cars is about
A
2B . Alternative: evaluate f

(
A
2B

)
= A · A

2B −B · A2

4B2 = A2

4B > 0.
Takeaway: Can sometimes determine the “sensible” range of the problem from the expressions.
Solution: We have R(d) = Ad − Bd2 = A2

4B − B
(
d− A

2B

)2 so R(d) ≤ A2

4B for all d and we
achieve equality when d = A

2B exactly.
Takeaway: Can sometimes use algebra without any calculus.

(11) A car factory can produce up to 120 units per week. Find the (whole number) quantity q of units
which maximizes profit if the total revenue in dollars is R(q) = (750− 3q)q, the total cost in dollars
is C(q) = 10, 000 + 148q (observe the combination of fixed and variable costs).

Solution: The profits are the revenues minus the costs, so we need to maximize

P (q) = R(q)− C(q)

= 750q − 3q2 − 148q − 10, 000

= 602q − 3q2 − 10, 000 .
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This function is differentiable on the closed interval [0, 120] where P ′(q) = 602 − 6q achieving its
maximum on q0 = 602

6 = 100 1
3 . This is not an integer, so guess we need to round q0 either right

or left – but we need further analysis to decide which way. We look at the shape of the graph:
P ′(q) > 0 if q < q0 and P ′(q) < 0 if q > q0 so the function is increasing on

[
0, 100 1

3

]
and decreasing

on
[
100 1

3 , 120
]
. In particular the largest value on [0, 100] is at 100 and the largest value on [101, 120]

is at 101. Using a calculator we find P (100) = 22, 200 and P (101) = 22, 199 so the best choice is to
make 100 cars per week.
Takeaway: Can use the shape of the graph to round solutions (but watch out).
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