Math 100:V02 - SOLUTIONS TO WORKSHEET 14 RELATED RATES

1. Related Rates

(1) (Final 2018)
(a) Particle A travels with a constant speed of 2 units per minute on the x-axis starting at the point $(4,0)$ and moving away from the origin, while particle B travels with a constant speed of 1 unit per minute on the y-axis starting at the point $(0,8)$ and moving towards the origin. Find the rate of change of the distance between the two particles when the distance between the two particles is exactly 10 units.
Solution: At time t the first particle is at $(4+2 t, 0)$ and the second is at $(0,8-t)$. The distance between them therefore satisfies

$$
\begin{aligned}
d(t)^{2} & =(4+2 t)^{2}+(8-t)^{2} \\
& =16+16 t+4 t^{2}+64-16 t+t^{2} \\
& =80+5 t^{2}
\end{aligned}
$$

First, $d(t)^{2}=100$ when $t=2$. Second at that time

$$
2 d \dot{d}=10 t=20
$$

so $\dot{d}(2)=1$.
(b) Same question, but swap the velocities of the particles (particle A moves along the y axis, particle B moves along the x-axis).
Solution: At time t the first particle is at $(4,-t)$ and the second is at $(2 t, 8)$ so the distance is now

$$
\begin{aligned}
d(t)^{2} & =(2 t-4)^{2}+(8+t)^{2} \\
& =80+5 t^{2}
\end{aligned}
$$

and from this point the question is the same.
(2) A closed rectangular box has sides of lengths $4,5,6 \mathrm{~cm}$. Suppose that the first and second sides are lengthening by $2 \frac{\mathrm{~cm}}{\mathrm{sec}}$ while the third side is shortening by $3 \frac{\mathrm{~cm}}{\mathrm{sec}}$.
(a) How fast is the volume changing?

Solution: Call the sides x, y, z. The volume is then $V(x, y, z)=x y z$. By the product rule

$$
\frac{d V}{d t}=\dot{x} y z+x \dot{y} z+x y \dot{z}
$$

so at the given time

$$
\begin{aligned}
\dot{V} & =2 \cdot 5 \cdot 6+4 \cdot 2 \cdot 6+4 \cdot 5 \cdot(-3) \\
& =48 \frac{\mathrm{~cm}^{3}}{\mathrm{sec}} .
\end{aligned}
$$

(b) How fast is the surface area changing?

Solution: The surface area is $A(x, y, z)=2 x y+2 y z+2 z x$. By the product rule

$$
\frac{d V}{d t}=2[\dot{x}(y+x)+\dot{y}(x+z)+\dot{z}(x+y)]
$$

so at the given time

$$
\begin{aligned}
\dot{A} & =2[2(5+6)+2(4+6)-3(4+5)] \\
& =30 \frac{\mathrm{~cm}^{2}}{\mathrm{sec}} .
\end{aligned}
$$

(c) How fast is the main diagonal changing?

Solution: The main diagonal's length satisfies $L^{2}=x^{2}+y^{2}+z^{2}$. Differentiating we get

$$
2 L \dot{L}=2 x \dot{x}+2 y \dot{y}+2 z \dot{z}
$$

At the given time $L=\sqrt{4^{2}+5^{2}+6^{2}}=\sqrt{77}$ and hence

$$
\begin{aligned}
\dot{L} & =\frac{1}{\sqrt{77}}[2 \cdot 4+2 \cdot 5-3 \cdot 6] \\
& =0 \frac{\mathrm{~cm}}{\mathrm{sec}} .
\end{aligned}
$$

(3) Baseball is played on a square $H A B C$ of side length 90 ft . A player runs from corner A to B. How fast is the player running, if when she is half-way between corners A, B their distance to corner C is decreasing at the rate of $3 \sqrt{5} \frac{\mathrm{ft}}{\mathrm{s}}$?

Solution: Let H be at the origin of the coordinates and let $A=(90,0), B=(90,90), C=(0,90)$. Let the runner be at position $(90, y(t))$ at time t. Then their distance from third base satisfies $d^{2}=90^{2}+(y-90)^{2}$. Differentiating with respect to y we find

$$
2 \dot{d} d=2(y-90) \dot{y} .
$$

Now at the given time we have $y=45$ and hence

$$
\begin{aligned}
d^{2} & =(2 \cdot 45)^{2}+(45)^{2} \\
& =45^{2}\left(2^{2}+1\right)=45^{2} \cdot 5
\end{aligned}
$$

so $d=45 \sqrt{5}$. We also have $\dot{d}=-3 \sqrt{5}$ and therefore

$$
\dot{y}=\frac{d \dot{d}}{y-90}=\frac{45 \sqrt{5} \cdot(-3 \sqrt{5})}{-45}=15 \frac{\mathrm{ft}}{\mathrm{~s}} .
$$

(4) (CLP notes problem 3.2.2.14) The minute hand of a clock is 10 cm long; the hour hand of the clock is 5 cm long. How fast is the distance between the tips of the hands decreasing at 4 o'clock?

Solution: Let L, ℓ be the lengths of the hands. Let μ, η be their angles with the vertical (increasing clockwise, naturally). Then the hands make angle $\eta-\mu$ with each other, so by the law of cosines the distance between their tips is ${ }^{1}$

$$
d^{2}=L^{2}+\ell^{2}-2 L \ell \cos (\eta-\mu)
$$

At $4: 00$ we have $\eta=\frac{4}{12} \cdot 2 \pi=\frac{2}{3} \pi$ and $\mu=0$ so

$$
\begin{aligned}
\cos (\eta-\mu) & =\cos \left(\frac{2}{3} \pi\right) \\
& =-\cos \left(\frac{1}{2} \pi+\frac{1}{6} \pi\right) \\
& =-\sin \left(\frac{1}{6} \pi\right)=-\frac{1}{2}
\end{aligned}
$$

and $d^{2}=10^{2}+5^{2}-100\left(-\frac{1}{2}\right)=175$ so $d=5 \sqrt{7}$. Taking the derivative we get

$$
2 \dot{d} d=2 L \ell \sin (\eta-\mu) \cdot(\dot{\eta}-\dot{\mu})
$$

[^0]So

$$
\dot{d}=\frac{L \ell}{d}(\dot{\eta}-\dot{\mu}) \sin (\eta-\mu)
$$

At the given time we have $\sin (\eta-\mu)=\sin \left(\frac{2}{3} \pi\right)=\sin \left(\frac{1}{3} \pi\right)=\frac{\sqrt{3}}{2}$. We have $\dot{\mu}=\frac{2 \pi}{\mathrm{~h}}$ and $\dot{\eta}=\frac{2 \pi}{12 \mathrm{~h}}$ so

$$
\begin{aligned}
\dot{d} & =\frac{50}{5 \sqrt{7}} \cdot \frac{2 \pi}{\mathrm{~h}}\left(\frac{1}{12}-1\right) \cdot \frac{\sqrt{3}}{2} \\
& =-\frac{55 \pi}{2 \sqrt{21}}
\end{aligned}
$$

so the distance is decreasing at the rate of $\frac{55 \pi}{2 \sqrt{21}} \frac{\mathrm{~cm}}{\mathrm{~h}}$.
(5) (Final, 2015, variant) A conical tank of water is 6 m tall and has radius 1 m at the top.
(a) The drain is clogged, and is filling up with rainwater at the rate of $5 \mathrm{~m}^{3} / \mathrm{min}$. How fast is the water rising when its height is 5 m ?
Solution: The water fills a conical volume inside the drain. Suppose that at time t the height of the water is $h(t)$ and the radius at the surface of the water is $r(t)$. Then by similar triangles

$$
\frac{r(t)}{h(t)}=\frac{1}{6}
$$

We therefore have $r(t)=\frac{h(t)}{6}$. The volume of the water is therefore

$$
V(t)=\frac{1}{3} \pi r^{2} h=\frac{\pi}{108} h^{3}(t)
$$

Differentiating we find

$$
\frac{\mathrm{d} V}{\mathrm{~d} t}=\frac{\pi}{36} h^{2}(t) \frac{\mathrm{d} h}{\mathrm{~d} t}
$$

In particular, if $\frac{\mathrm{d} V}{\mathrm{~d} t}=5 \mathrm{~m}^{3} / \mathrm{min}$ and $h=5 \mathrm{~m}$ then

$$
\frac{\mathrm{d} h}{\mathrm{~d} t}=\frac{36 \cdot 5}{\pi \cdot 5^{2}}=\frac{36}{5 \pi} \frac{\mathrm{~m}}{\mathrm{~min}}
$$

(b) The drain is unclogged and water begins to drain at the rate of $\left(5+\frac{\pi}{4}\right) \mathrm{m}^{3} / \mathrm{min}$ (but rain is still falling). At what height is the water falling at the rate of $1 \mathrm{~m} / \mathrm{min}$?
Solution: We are now given $\frac{d V}{\mathrm{~d} t}=-\frac{\pi}{4} \frac{\mathrm{~m}^{3}}{\mathrm{~min}}$ and $\frac{\mathrm{d} h}{\mathrm{~d} t}=-1 \frac{\mathrm{~m}}{\mathrm{~min}}$. Then

$$
h(t)=\sqrt{\frac{36 \frac{\mathrm{~d} V}{\mathrm{~d} t}}{\pi \frac{\mathrm{~d} h}{\mathrm{~d} t}}}=\sqrt{\frac{-36 \pi}{4 \pi(-1)}}=\sqrt{9}=3 \mathrm{~m}
$$

[^0]: ${ }^{1}$ This can also be computed by noting that the tips of the hand are at $L(\sin \mu, \cos \mu)$ and $\ell(\sin \eta, \cos) \eta$ by applying Pythagoras.

