Math 100:V02 - WORKSHEET 13 QUALITATIVE ASPECTS OF DIFFERENTIAL EQUATIONS

1. Fixed points

(1) (Review)
(a) For which value of ω is $y=A \sin (\omega t)+B \cos (\omega t)$ a solution of $\ddot{y}=-9 y$?
(b) Can you find the general solution of $\ddot{y}=9 y$?
(2) (Steady states $=$ fixed points $=$ equilibria)
(a) Consider the Malthusian growth equation $\dot{y}=r y, r>0$. Can you find a value a so that $y(t) \equiv a$ is a solution?
(b) What about the logistic growth model $\dot{y}=r y(1-y)$ with $r>0$?
(c) What about $\dot{y}=y^{3}-5 y^{2}+6 y$?
(3) (Phase line)
(a) In the model $\dot{y}=r y$ with $r>0$, what is the sign of \dot{y} when $y<0$? when $y>0$? What would the solution look like if we started with y_{0} in each range? Draw the phase line.

(b) What about the logistic growth model $\dot{y}=r y(1-y)$?

(c) What about $\dot{y}=y^{3}-5 y^{2}+6 y$?

(4) Analyze $\frac{d y}{d t}=-2 y^{3}+9 y^{2}-12 y$

2. TAYLOR EXPANSION

(5) Consider the equation $\dot{y}=-\sin y, y(0)=\frac{\pi}{2}$.
(a) What is $\dot{y}(0)$?
(b) What is $\ddot{y}(0)$?
(c) What is the third-order Taylor expansion of y about $t=0$?
(d) What are the fixed points of this equation? Are the stable or unstable?

