Math 100:V02 – WORKSHEET 13 QUALITATIVE ASPECTS OF DIFFERENTIAL EQUATIONS

1. Fixed points

(1) (Review)

(a) For which value of ω is $y = A\sin(\omega t) + B\cos(\omega t)$ a solution of $\ddot{y} = -9y$?

- (b) Can you find the general solution of $\ddot{y} = 9y$?
- (2) (Steady states = fixed points = equilibria)
 - (a) Consider the Malthusian growth equation $\dot{y} = ry$, r > 0. Can you find a value *a* so that $y(t) \equiv a$ is a solution?

(b) What about the *logistic growth* model $\dot{y} = ry(1-y)$ with r > 0?

- (c) What about $\dot{y} = y^3 5y^2 + 6y$?
- (3) (Phase line)
 - (a) In the model $\dot{y} = ry$ with r > 0, what is the sign of \dot{y} when y < 0? when y > 0? What would the solution look like if we started with y_0 in each range? Draw the phase line.

Date: 5/3/2024, Worksheet by Lior Silberman. This instructional material is excluded from the terms of UBC Policy 81.

(b) What about the *logistic growth* model $\dot{y} = ry(1-y)$?

2. TAYLOR EXPANSION

(5) Consider the equation $\dot{y} = -\sin y$, $y(0) = \frac{\pi}{2}$. (a) What is $\dot{y}(0)$?

(b) What is $\ddot{y}(0)$?

(c) What is the third-order Taylor expansion of y about t = 0?

(d) What are the fixed points of this equation? Are the stable or unstable?