Math 100:V02 - SOLUTIONS TO WORKSHEET 13 QUALITATIVE ASPECTS OF DIFFERENTIAL EQUATIONS

1. Fixed points

(1) (Review)
(a) For which value of ω is $y=A \sin (\omega t)+B \cos (\omega t)$ a solution of $\ddot{y}=-9 y$?

Solution: $\frac{d}{d t}(\sin (\omega t))=\omega \cos \omega t$ and $\frac{d}{d t}(\cos (\omega t))=-\omega \sin \omega t$ so

$$
\frac{d^{2}}{d t^{2}}(A \sin (\omega t)+B \cos (\omega t))=-\omega^{2}(A \sin (\omega t)+B \cos (\omega t))
$$

and we get a solution iff $\omega^{2}=9$ that is if $\omega= \pm 3$. Since $\sin (-3 t)=-\sin (3 t)$ and $\cos (-3 t)=$ $\cos (3 t)$ might as well just take $\omega=3$.
(b) Can you find the general solution of $\ddot{y}=9 y$?

Solution: Since $\frac{d}{d t}\left(e^{r t}\right)=r e^{r t}$ we have $\frac{d^{2}}{d t^{2}}\left(e^{r t}\right)=r^{2} e^{r t}$ so we get a solution if $r^{2}=9$ so if $r= \pm 3$ so $A e^{3 t}+B e^{-3 t}$ is a solution.
(2) (Steady states $=$ fixed points $=$ equilibria)
(a) Consider the Malthusian growth equation $\dot{y}=r y, r>0$. Can you find a value a so that $y(t) \equiv a$ is a solution?
Solution: The constant function $y \equiv a$ has derivative zero, so we need $0=a r$ so $a=0$.
(b) What about the logistic growth model $\dot{y}=r y(1-y)$ with $r>0$?

Solution: The constant function $y \equiv a$ has derivative zero, so we need $0=r a(1-a)$ so either $a=0$ or $a=1$.
(c) What about $\dot{y}=y^{3}-5 y^{2}+6 y$?

Solution: We have $\dot{y}=y(y-2)(y-3)$ so the fixed points are at $0,2,3$.
(3) (Phase line)
(a) In the model $\dot{y}=r y$ with $r>0$, what is the sign of \dot{y} when $y<0$? when $y>0$? What would the solution look like if we started with y_{0} in each range? Draw the phase line.
Solution: When $y>0$ we have $\dot{y}>0$ so y will keep increasing forever (tending to infinity since the solution is exponential)). When $y<0$ we have $\dot{y}<0$ and y will descrease forever (tending to negative infinity).

(b) What about the logistic growth model $\dot{y}=r y(1-y)$?

Solution: When $y<0$ we have $\dot{y}<0$ so y will decrease (to infinity since once $y<1$ we have $\dot{y}<2 r y$. When $0<y<1$ we have $\dot{y}>0$ so y will increase, tending toward $y=1$. When

[^0]
(c) What about $\dot{y}=y^{3}-5 y^{2}+6 y$?

Solution: The fixed points are $0,2,3$. For $y<0$ we have $y^{\prime}<0$, for $0<y<2$ we have $\dot{y}>0$, for $2<y<3$ we have $\dot{y}<0$, for $y>3$ we have $\dot{y}>0$.

(4) Analyze $\frac{d y}{d t}=-2 y^{3}+9 y^{2}-12 y$

2. TAYLOR EXPANSION

(5) Consider the equation $\dot{y}=-\sin y, y(0)=\frac{\pi}{2}$.
(a) What is $\dot{y}(0)$?

Solution: We have $\dot{y}(0)=-\sin (y(0))=-\sin \left(\frac{\pi}{2}\right)=-1$.
(b) What is $\ddot{y}(0)$?

Solution: We have $\frac{d}{d t} \dot{y}=-(\cos y) \dot{y}=\cos y \sin y$ so $\ddot{y}(0)=0$.
(c) What is the third-order Taylor expansion of y about $t=0$?

Solution: We have $y^{(3)}(t)=-\ddot{y} \cos y+(\dot{y})^{2} \sin y$. At $t=0$ we have $\ddot{y}(0)=0$ and $\dot{y}(0)=-1$ so $y^{(3)}(0)=1$. The expansion is therefore

$$
y(t) \approx \frac{\pi}{2}-t+\frac{t^{3}}{6}
$$

(d) What are the fixed points of this equation? Are the stable or unstable?

Solution: $\quad \sin y=0$ whenever $y=\pi k$ for some $k \in \mathbb{Z}$. For $(2 m-1) \pi<y<(2 m) \pi$ we have $\sin y<0$ and hence $\dot{y}>0$ and for $(2 m) \pi<y<(2 m+1) \pi$ we have $\sin y>0$ so $\dot{y}<0$. It follows that the points $2 m \pi$ are attractive and the point $(2 m+1) \pi$ are repulsive.

[^0]: Date: $5 / 3 / 2024$, Worksheet by Lior Silberman. This instructional material is excluded from the terms of UBC Policy 81.

