Math 100:V02 - WORKSHEET 12 DIFFERENTIAL EQUATIONS

1. Differential equations

(1) For each equation: Is $y=3$ a solution? Is $y=2$ a solution? What are all the solutions?

$$
y^{2}=4 \quad ; \quad y^{2}=3 y
$$

(2) For each equation: Is $y(x)=x^{2}$ a solution? Is $y(x)=e^{x}$ a solution?

$$
\frac{d y}{d x}=y \quad ; \quad\left(\frac{d y}{d x}\right)^{2}=4 y
$$

(3) Which of the following (if any) is a solution of $\frac{d z}{d t}+t^{2}-1=z$ (challenge: find more solutions):

$$
\begin{array}{ll}
\text { A. } z(t)=t^{2} ; & \text { B. } z(t)=t^{2}+2 t+1
\end{array}
$$

(4) Which of the following (if any) is a solution of $\frac{d y}{d x}=\frac{x}{y}$
A. $y=-x$;
B. $y=x+5$
C. $y=\sqrt{x^{2}+5}$
(5) The balance of a bank account satisfies the differential equation $\frac{d y}{d t}=1.04 y$ (this represents interest of 4% compounded continuously). Sketch the solutions to the differential equation. What is the solution for which $y(0)=\$ 100$?
(6) Suppose $\frac{d y}{d x}=a y, \frac{d z}{d x}=b z$. Can you find a differential equation satisfied by $w=\frac{y}{z}$? Hint: calculate $\frac{d w}{d x}$.

2. Solutions by massaging and ansatze

(7) For which value of the constant ω is $y(t)=\sin (\omega t)$ a solution of the oscillation equation $\frac{d^{2} y}{d t^{2}}+4 y=0$?
(8) (The quantum harmonic oscillator) For which value of the constants A, B (with $B>0$) does the function $f(x)=A x e^{-B x^{2}}$ satisfy $-f^{\prime \prime}+x^{2} f=3 f$? What if we also insist that $f(1)=1$?
(9) Consider the equation $\frac{d y}{d t}=a(y-b)$.
(a) Define a new function $u(t)=y(t)-b$. What is the differential equation satisfied by u ?
(b) What is the general solution for $u(t)$?
(c) What is the general solution for $y(t)$?
(d) Suppose $a<0$. What is the asymptotic behaviour of the solution as $t \rightarrow \infty$?
(e) Suppose we are given the initial value $y(0)$. What is C ? What is the formula for $y(t)$ using this?
(10) Example: Newton's law of cooling. Suppose we place an object of temperature $T(0)$ in an environment of temperature $T_{\text {env }}$. It turns out that a good model for the temperature $T(t)$ of the object at time t is

$$
\frac{d T}{d t}=-k\left(T-T_{\mathrm{env}}\right)
$$

where $k>0$ is a positive constant.
(a) Suppose $T(t)>T_{\text {env }}$. Is $T^{\prime}(t)$ positive or negative? What if $T(t)<T_{\text {env }}$? Explain this in words.
(b) A body is found at 1:30am and its temperature is measured to be $32.5^{\circ} \mathrm{C}$. At $2: 30 \mathrm{am}$ its temperature is found to be $30.3^{\circ} \mathrm{C}$. The temperature of the room in which the body was found is measured to be $20^{\circ} \mathrm{C}$ and we have no reason to believe the ambient temperature has changed. What was the time of death?
(11) A body falling through the air is at height $y(t)$ at time t where $y(t)$ satisfies the differential equation

$$
\frac{d^{2} y}{d t^{2}}=-g+\kappa\left(\frac{d y}{d t}\right)^{2}
$$

Here g is the acceleration due to gravity and κ is the drag coefficient.
(a) Write the differential equation satisfied by the velocity $v=\frac{d y}{d t}$.
(b) This differential equation has a fixed point (also known as a steady state): find the value u (called the "terminal velocity") such that the constant function $v(t) \equiv u$ is a solution.
(c) Define the hyperbolic trigonometric functions $\cosh x=\frac{e^{x}+e^{-x}}{2}, \sinh x=\frac{e^{x}-e^{-x}}{2}$, and $\tanh x=$ $\frac{\sinh x}{\cosh x}$. Check that $(\cosh x)^{\prime}=\sinh x,(\sinh x)^{\prime}=\cosh x$ and that $(\tanh x)^{\prime}=1-\tanh ^{2} x$.
(d) Find the values of A, α for which

$$
v=-A \tanh \left(\alpha\left(t-t_{0}\right)\right)
$$

solves the differential equation.
(e) Show that $\lim _{x \rightarrow \infty} \tanh x=1$ and conclude that $v(t)$ indeed converges to the terminal velocity as $t \rightarrow \infty$.

