Math 100:V02 – SOLUTIONS TO WORKSHEET 12 DIFFERENTIAL EQUATIONS

1. Differential equations

(1) For each equation: Is y = 3 a solution? Is y = 2 a solution? What are all the solutions?

$$y^2 = 4$$
 ; $y^2 = 3y$

Solution: Plugging in 2 we have $2^2 = 4$ in the first equation but $2^2 \neq 3 \cdot 2$. Plugging in 3 we have $3^2 \neq 4$ but $3^2 = 3 \cdot 3$. The solutions to the first equations are $\{\pm 2\}$, to the second $\{0,3\}$.

(2) For each equation: Is $y(x) = x^2$ a solution? Is $y(x) = e^x$ a solution?

$$\frac{dy}{dx} = y \qquad \qquad ; \qquad \qquad \left(\frac{dy}{dx}\right)^2 = 4y$$

Solution: Plugging in $y = x^2$ into the equations we have $2x \neq x^2$ but $(2x)^2 = 2 \cdot x^2$ is true. Plugging in e^x into the equations we see $e^x = e^x$ but $(e^x)^2 = e^{2x} \neq 4e^x$.

(3) Which of the following (if any) is a solution of $\frac{dz}{dt} + t^2 - 1 = z$ (challenge: find more solutions):

A.
$$z(t) = t^2$$
; B. $z(t) = t^2 + 2t + 1$

Solution: $2t + t^2 - 1 \neq t^2$ but $(2t + 2) + t^2 - 1 = t^2 + 2t + 1$ so only B is a solution. If w is another solution them we have

$$\frac{dw}{dt} + t^2 - 1 = w$$
$$\frac{dz}{dt} + t^2 - 1 = z$$

and subtracting the two equations we get $\frac{d(w-z)}{dt} = w - z$ so $w - z = Ce^t$ and $w(t) = Ce^t + t^2 + 2t + 1$ for any constant t.

(4) Which of the following (if any) is a solution of $\frac{dy}{dx} = \frac{x}{y}$

A.
$$y = -x$$
; B. $y = x + 5$ C. $y = \sqrt{x^2 + 5}$

A. y=-x; B. y=x+5 C. $y=\sqrt{x^2+5}$ Solution: $\frac{d(-x)}{dx}=-1=\frac{x}{(-x)}$ but $\frac{d(x+5)}{dx}=1\neq\frac{x}{x+5}$ and $\frac{d\sqrt{x^2+5}}{dx}=\frac{2x}{2\sqrt{x^2+5}}=\frac{x}{\sqrt{x^2+5}}$ so only A, C are solutions. for any constant t.

(5) The balance of a bank account satisfies the differential equation $\frac{dy}{dt} = 1.04y$ (this represents interest of 4% compounded continuously). Sketch the solutions to the differential equation. What is the solution for which y(0) = \$100?

Solution: The solutions are $Ce^{1.04t}$ for arbitrary C. The particular solution is $100e^{1.04t}$ dollars.

(6) Suppose $\frac{dy}{dx} = ay$, $\frac{dz}{dx} = bz$. Can you find a differential equation satisfied by $w = \frac{y}{z}$? Hint: calculate

Solution: $w' = \left(\frac{y}{z}\right)' = \frac{y'z - yz'}{z^2} = \frac{ayz - ybz}{z^2} = (a-b)\frac{y}{z} = (a-b)w$ so the equation is $\frac{dw}{dx} = (a-b)w$.

2. Solutions by massaging and ansatze

(7) For which value of the constant ω is $y(t) = \sin(\omega t)$ a solution of the oscillation equation $\frac{d^2y}{dt^2} + 4y = 0$? **Solution:** $(\sin(\omega t))' = \omega \cos \omega t$ so $(\sin(\omega t))'' = -\omega^2 \sin(\omega t)$ so

$$(\sin(\omega t))'' = -4(\sin(\omega t))$$

iff $\omega^2 = 4$, that is iff $\omega = \pm 2$.

(8) (The quantum harmonic oscillator) For which value of the constants A, B (with B > 0) does the function $f(x) = Axe^{-Bx^2}$ satisfy $-f'' + x^2f = 3f$? What if we also insist that f(1) = 1? **Solution:** $f' = Ae^{-Bx^2} - 2ABx^2e^{-Bx^2}$ so $f'' = -6ABxe^{-Bx^2} + 4AB^2x^3e^{-Bx^2}$ and

$$-f'' + x^{2}f = 6ABxe^{-Bx^{2}} + \left(Ax^{3}e^{-Bx^{2}} - 4AB^{2}x^{3}e^{-Bx^{2}}\right)$$
$$= 6ABxe^{-Bx^{2}} + A\left(1 - 4B^{2}\right)x^{3}e^{-Bx^{2}}$$

so

$$-f'' + x^2 f = (6B + (1 - 4B^2)x^2) Axe^{-Bx^2}$$

and we get a solution to our equation only if $1-4B^2=0$ that is if $B=\frac{1}{2}$ (and then 6B=3 as desired). Finally the solution has f'(1) = 1 if $Ae^{-1/2} = 1$ so $A = e^{1/2}$ and $f(x) = xe^{-\frac{1}{2}(x^2-1)}$.

- (9) Consider the equation $\frac{dy}{dt} = a(y b)$.
 - (a) Define a new function u(t) = y(t) b. What is the differential equation satisfied by u? Solution: u' = y' = a(y - b)' = au.
 - (b) What is the general solution for u(t)? **Solution:** $u(t) = Ce^{at}$ where C = u(0).
 - (c) What is the general solution for y(t)? Solution: $y(t) = u(t) + b = Ce^{at} + b$.
 - (d) Suppose a < 0. What is the asymptotic behaviour of the solution as $t \to \infty$? **Solution:** $y(t) \xrightarrow[r \to \infty]{} b$ and the convergence is exponential: y(t) - b decays exponentially.
 - (e) Suppose we are given the initial value y(0). What is C? What is the formula for y(t) using this?

Solution: We have $Ce^{a\cdot 0} + b = y(0)$ so C = y(0) - b and $y(t) = (y(0) - b)e^{at} + b$.

(10) Example: Newton's law of cooling. Suppose we place an object of temperature T(0) in an environment of temperature T_{env} . It turns out that a good model for the temperature T(t) of the object at time t is

$$\frac{dT}{dt} = -k\left(T - T_{\rm env}\right)$$

where k > 0 is a positive constant.

- (a) Suppose $T(t) > T_{\text{env}}$. Is T'(t) positive or negative? What if $T(t) < T_{\text{env}}$? Explain this in words. If $T(t) > T_{\text{env}}$ and $T - T_{\text{env}} > 0$ so $-k(T - T_{\text{env}}) < 0$. In other words, the temperature will decrease. If $T < T_{\rm env}$ we find T' > 0 and the temperature will increase. Either way the temperature tends towards T_{env} .
- (b) A body is found at 1:30am and its temperature is measured to be 32.5°C. At 2:30am its temperature is found to be 30.3°C. The temperature of the room in which the body was found is measured to be 20°C and we have no reason to believe the ambient temperature has changed. What was the time of death?

Solution: As we have seen above let $u(t) = T(t) - T_{\text{env}}$ and then the equation says the temperature difference decays exponentially: u'(t) = -ku(t) and hence $u(t) = u(0)e^{-kt}$. Measuring time in hours and letting t = 0 at 1:30am we have u(0) = 32.5 - 20 = 12.5 and u(1) = 30.3 - 20 = 10.3. We thus have

$$e^{-k} = \frac{u(1)}{u(0)} = \frac{10.3}{12.5}$$

and hence

$$k = \log \frac{12.5}{10.3} \,.$$

The question asks when $T(t) = 37^{\circ}$ C, that is when u(t) = 17. This reads

$$u(0)e^{-kt} = 17$$

$$t = \frac{1}{k} \log \frac{u(0)}{17} \approx -1.6h$$

$$= \frac{\log(12.5/17)}{\log(12.5/10.3)}$$

$$= -\frac{\log(17/12.5)}{\log(12.5/10.3)}$$

$$\approx -1.6h \approx 95 \text{min}$$

(11) A body falling through the air is at height y(t) at time t where y(t) satisfies the differential equation

$$\frac{d^2y}{dt^2} = -g + \kappa \left(\frac{dy}{dt}\right)^2.$$

Here g is the acceleration due to gravity and κ is the drag coefficient.

(a) Write the differential equation satisfied by the velocity $v = \frac{dy}{dt}$.

Solution: We have

$$\frac{dv}{dt} = -g + \kappa v^2.$$

(b) This differential equation has a fixed point (also known as a steady state): find the value u (called the "terminal velocity") such that the constant function $v(t) \equiv u$ is a solution.

Solution: If v is constant, $\frac{dv}{dt} = 0$ so we need to solve $\kappa u^2 - g = 0$ that is

$$u = \sqrt{\frac{g}{\kappa}} \,.$$

(c) Define the hyperbolic trigonometric functions $\cosh x = \frac{e^x + e^{-x}}{2}$, $\sinh x = \frac{e^x - e^{-x}}{2}$, and $\tanh x = \frac{\sinh x}{\cosh x}$. Check that $(\cosh x)' = \sinh x$, $(\sinh x)' = \cosh x$ and that $(\tanh x)' = 1 - \tanh^2 x$. **Solution:** We have

$$\frac{d}{dx}\cosh x = \frac{d}{dx}\left(\frac{e^x + e^{-x}}{2}\right) = \frac{1}{2}\left(e^x - e^{-x}\right) = \sinh x$$

$$\frac{d}{dx}\sinh x = \frac{d}{dx}\left(\frac{e^x - e^{-x}}{2}\right) = \frac{1}{2}\left(e^x + e^{-x}\right) = \cosh x$$

$$\frac{d}{dx}\tanh x = \frac{d}{dx}\left(\frac{\sinh x}{\cosh x}\right) = \frac{(\sinh x)'}{\cosh x} - \frac{\sinh x \cdot (\cosh x)'}{(\cosh x)^2}$$

$$= \frac{\cosh x}{\cosh x} - \frac{\sinh x \cdot \sinh x}{(\cosh x)^2} = 1 - \tanh^2 x.$$

(d) Find the values of A, α for which

$$v = -A \tanh (\alpha (t - t_0))$$

solves the differential equation.

Solution: We have

$$\frac{dv}{dt} = -\alpha A \left(1 - \tanh^2 \left(\alpha (t - t_0) \right) \right)$$
$$= -\alpha A + \frac{\alpha}{A} v^2$$

so we need $\alpha A=g$ and $\frac{\alpha}{A}=\kappa$. Multiplying the two we have $\alpha^2=g\kappa$ and dividing the two we get $A^2=\frac{g}{\kappa}$. We therefore have A=u and that the solution is

$$v(t) = -u \tanh\left(\sqrt{\kappa g}(t - t_0)\right)$$

(e) Show that $\lim_{x\to\infty} \tanh x = 1$ and conclude that v(t) indeed converges to the terminal velocity as $t\to\infty$.