1. Logarithmic differentiation

Fact. $(f(g(x)))^{\prime}=f^{\prime}(g(x)) g^{\prime}(x)$ or $\frac{\mathrm{d}}{\mathrm{d} x}(f(g(x)))=\frac{d f}{d g} \cdot \frac{d g}{d x}$; also $\frac{d}{d x} \log x=\frac{1}{x}$.
$\log _{b}\left(b^{x}\right)=b^{\log _{b} x}=x \quad \log _{b}(x y)=\log _{b} x+\log _{b} y \quad \log _{b}\left(x^{y}\right)=y \log _{b} x \quad \log _{b} \frac{1}{x}=-\log _{b} x$
(1) Differentiate
(a) $\frac{\mathrm{d}(\log (a x))}{\mathrm{d} x}=\quad \frac{\mathrm{d}}{\mathrm{d} t} \log \left(t^{2}+3 t\right)=$
(b) $\frac{\mathrm{d}}{\mathrm{d} x} x^{2} \log \left(1+x^{2}\right)=$

(2) (Logarithmic differentiation) Use $\log (f g)=\log f+\log g$ to differentiate $y=\left(x^{2}+1\right) \cdot \sin x \cdot \frac{1}{\sqrt{x^{3}+3}} \cdot e^{\cos x}$.
(3) Differentiate using $f^{\prime}=f \times(\log f)^{\prime}$
(a) x^{n}
(b) x^{x}
(c) $(\log x)^{\cos x}$
(d) (Final, 2014) Let $y=x^{\log x}$. Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x only.
(4) Let $f(x)=g(x)^{h(x)}$. Find a formula for f^{\prime} in terms of g^{\prime} and h^{\prime}.

2. Inverse trig

(5) (evaluation)
(a) (Final 2014) Evaluate $\arcsin \left(-\frac{1}{2}\right) ;$ Find $\arcsin \left(\sin \left(\frac{31 \pi}{11}\right)\right)$.
(b) (Final 2015) Simplify $\sin (\arctan 4)$
(c) Find $\tan (\arccos (0.4))$
(6) Let $f(\theta)=\sin ^{2} \theta+\cos ^{2} \theta$. Find $\frac{d f}{d \theta}$ without using trigonometric identities. Evaluate $f(0)$ and conclude that $\sin ^{2} \theta+\cos ^{2} \theta=1$ for all θ.
(7) (Inverse functions)
(a) Suppose $g(x)=e^{x}, f(y)=\log y$. Show that $f(g(x))=x$ and conclude that $(\log y)^{\prime}=\frac{1}{y}$.
(b) Let $\theta=\arcsin x$. Find $\frac{d \theta}{d x}$. Hint: solve for x first.
(8) Differentiation
(a) Find $\frac{\mathrm{d}}{\mathrm{d} x}(\arcsin (2 x))$
(b) Find the line tangent to $y=\sqrt{1+(\arctan (x))^{2}}$ at the point where $x=1$.
(c) Find y^{\prime} if $y=\arcsin \left(e^{5 x}\right)$. What is the domain of the functions y, y^{\prime} ?

