Math 100:V02 – WORKSHEET 11 INVERSE TRIG; LOGARITHMIC DIFFERENTIATION

$$1. \text{ LOGARITHMIC DIFFERENTIATION}$$
Fact. $(f(g(x)))' = f'(g(x)) g'(x) \text{ or } \frac{d}{dx} (f(g(x))) = \frac{df}{dg} \cdot \frac{dg}{dx}; \text{ also } \frac{d}{dx} \log x = \frac{1}{x}.$

$$\boxed{\log_b(b^x) = b^{\log_b x} = x} \qquad \boxed{\log_b(xy) = \log_b x + \log_b y} \qquad \boxed{\log_b(x^y) = y \log_b x} \qquad \boxed{\log_b \frac{1}{x} = -\log_b x}$$
(1) Differentiate
(a) $\frac{d(\log(ax))}{dx} = \qquad \frac{d}{dt} \log (t^2 + 3t) =$
(b) $\frac{d}{dx} x^2 \log(1 + x^2) = \qquad \frac{d}{dt} \frac{1}{\log(2 + \sin r)} =$

- (2) (Logarithmic differentiation) Use $\log(fg) = \log f + \log g$ to differentiate $y = (x^2 + 1) \cdot \sin x \cdot \frac{1}{\sqrt{x^3 + 3}} \cdot e^{\cos x}$.
- (3) Differentiate using $f' = f \times (\log f)'$ (a) x^n

(b) x^x

Date: 27/11/2024, Worksheet by Lior Silberman. This instructional material is excluded from the terms of UBC Policy 81.

(c) $(\log x)^{\cos x}$

(d) (Final, 2014) Let $y = x^{\log x}$. Find $\frac{dy}{dx}$ in terms of x only.

(4) Let $f(x) = g(x)^{h(x)}$. Find a formula for f' in terms of g' and h'.

2. Inverse trig

(5) (evaluation)
(a) (Final 2014) Evaluate arcsin (-¹/₂); Find arcsin (sin (^{31π}/₁₁)).

(b) (Final 2015) Simplify sin(arctan 4)

(c) Find $\tan(\arccos(0.4))$

(6) Let $f(\theta) = \sin^2 \theta + \cos^2 \theta$. Find $\frac{df}{d\theta}$ without using trigonometric identities. Evaluate f(0) and conclude that $\sin^2 \theta + \cos^2 \theta = 1$ for all θ .

(7) (Inverse functions)

(a) Suppose $g(x) = e^x$, $f(y) = \log y$. Show that f(g(x)) = x and conclude that $(\log y)' = \frac{1}{y}$.

(b) Let $\theta = \arcsin x$. Find $\frac{d\theta}{dx}$. *Hint*: solve for x first.

(8) Differentiation (a) Find $\frac{d}{dx} (\arcsin(2x))$

(b) Find the line tangent to $y = \sqrt{1 + (\arctan(x))^2}$ at the point where x = 1.

(c) Find y' if $y = \arcsin(e^{5x})$. What is the domain of the functions y, y'?