Math 100:V02 - SOLUTIONS TO WORKSHEET 11 INVERSE TRIG; LOGARITHMIC DIFFERENTIATION

1. Logarithmic differentiation

(1) Differentiate

(a)
$$\frac{d(\log(ax))}{dx} = \frac{d}{dt} \log \left(\frac{d}{dt} \log (\frac{d}{dt} \log \left(\frac{d}{dt} \log (\frac{d}{dt} \log (\frac{d} \log (\frac{d}{dt} \log (\frac{d}{dt} \log (\frac{d}{dt} \log (\frac{d}{dt} \log (\frac{d}{dt} \log$$

Formula (a) $\frac{d(\log(ax))}{dx} = \frac{\frac{d}{dt}\log(t^2+3t)}{\frac{1}{ax}\cdot a = \frac{1}{x}}$ and $\frac{1}{t^2+3t}\cdot (2t+3) = \frac{2t+t}{t^2+3t}$. We can also use the logarithm laws first: $\log(ax) = \log a + \log x$ so $\frac{d}{dx}(\log ax) = \frac{d}{dx}(\log a) + \frac{d}{dx}(\log x) = \frac{1}{x}$ since $\log a$ is constant if a is. Similarly, $\log(t^2+3t) = \log t + \log(t+3)$ so its derivative is $\frac{1}{t} + \frac{1}{t+3}$.

(b)
$$\frac{\mathrm{d}}{\mathrm{d}x}x^2\log(1+x^2) = \frac{\mathrm{d}}{\mathrm{d}r}\frac{1}{\log(2+\sin r)} =$$

 $\frac{\mathrm{d}}{\mathrm{d}x}x^2\log(1+x^2) = \frac{\mathrm{d}}{\mathrm{d}r}\frac{1}{\log(2+\sin r)} =$ **Solution:** Applying the product rule and then the chain rule we get: $\frac{\mathrm{d}}{\mathrm{d}x}\left(x^2\log(1+x^2)\right) =$ $2x \log(1+x^2) + x^2 \frac{1}{1+x^2} \cdot 2x = 2x \log(1+x^2) + \frac{2x^3}{1+x^2}$. Using the quotient rule and the chain rule

$$\frac{\mathrm{d}}{\mathrm{d}r} \frac{1}{\log(2 + \sin r)} = -\frac{1}{\log^2(2 + \sin r)} \cdot \frac{1}{2 + \sin r} \cdot \cos r = -\frac{\cos r}{(2 + \sin r)\log^2(2 + \sin r)}.$$

(2) (Logarithmic differentiation) differentiate

$$y = (x^2 + 1) \cdot \sin x \cdot \frac{1}{\sqrt{x^3 + 3}} \cdot e^{\cos x}.$$

Solution: We have

$$\log y = \log (x^2 + 1) + \log(\sin x) + \log \left(\frac{1}{\sqrt{x^3 + 3}}\right) + \log (e^{\cos x})$$
$$= \log (x^2 + 1) + \log (\sin x) - \frac{1}{2} \log (x^3 + 3) + \cos x.$$

Differentiating with respect to x gives:

$$\frac{y'}{y} = \frac{2x}{x^2 + 1} + \frac{\cos x}{\sin x} - \frac{1}{2} \frac{3x^2}{x^3 + 3} - \sin x$$

and solving for y' finally give

$$y' = \left(\frac{2x}{x^2 + 1} + \frac{\cos x}{\sin x} - \frac{3x}{2(x^3 + 3)} - \sin x\right) \cdot (x^2 + 1) \cdot \sin x \cdot \frac{1}{\sqrt{x^3 + 3}} \cdot e^{\cos x}.$$

(3) Differentiate using $f' = f \times (\log f)'$

(a)
$$x^n$$

Solution: If $y = x^n$ then $\log y = n \log x$. Differentiating with respect to x gives $\frac{1}{y}y' = \frac{n}{x}$ so $y' = y \frac{n}{x} = nx^{n-1}.$

Solution: By the rule, $\frac{d}{dx}(x^n) = x^n \frac{d}{dx}(\log(x^n)) = x^n \left(\frac{n}{x}\right) = nx^{n-1}$.

(b)
$$x^x$$

If $y = x^x$ then $\log y = x \log x$. Differentiating with respect to x gives $\frac{1}{y}y' =$ $\log x + x \cdot \frac{1}{x} = \log x + 1$ so $y' = y (\log x + 1) = x^x (\log x + 1)$. **Solution:** By the rule, $\frac{d}{dx}(x^x) = x^x \frac{d}{dx}(\log(x^x)) = x^x (\log x + 1)$. **Solution:** We have $x^x = \left(e^{\log x}\right)^x = e^{x \log x}$. Applying the chain rule we now get $(x^x)' = x^x \log x$.

 $e^{x \log x} (\log x + 1) = x^x (\log x + 1).$

(c) $(\log x)^{\cos x}$

Solution: By the logarithmic differentiation rule we have

$$\frac{\mathrm{d}}{\mathrm{d}x} (\log x)^{\cos x} = (\log x)^{\cos x} \cdot \frac{\mathrm{d}}{\mathrm{d}x} (\cos x \log(\log x))$$

$$= -\sin x \log\log x (\log x)^{\cos x} + (\log x)^{\cos x} \cos x \frac{1}{\log x} \frac{1}{x}$$

$$= -\sin x \log\log x (\log x)^{\cos x} + \cos x (\log x)^{\cos x - 1} \frac{1}{x}.$$

(d) (Final, 2014) Let $y = x^{\log x}$. Find $\frac{dy}{dx}$ in terms of x only.

Solution: By the logarithmic differentiation rule we have

$$\begin{split} \frac{\mathrm{d}y}{\mathrm{d}x} &= y \frac{\mathrm{d}\log y}{\mathrm{d}x} = x^{\log x} \frac{\mathrm{d}}{\mathrm{d}x} \left(\log x \cdot \log x\right) \\ &= x^{\log x} \left(2\log x \cdot \frac{1}{x}\right) = 2\log x \cdot x^{\log x - 1} \,. \end{split}$$

(4) Let $f(x) = g(x)^{h(x)}$. Find a formula for f' in terms of g' and h'.

Solution: By the logarithmic differentiation rule we have

$$f' = f \cdot (h \log g)'$$

$$= f \left(h' \log g + \frac{h}{g} g' \right)$$

$$= h \cdot q^{h-1} \cdot q' + q^h \log q \cdot h'.$$

Observe that this is the sum of what we'd get by applying the power law rule and the exponential rule.

2. Inverse trig

- (5) (evaluation)
 - (a) (Final 2014) Evaluate $\arcsin\left(-\frac{1}{2}\right)$; Find $\arcsin\left(\sin\left(\frac{31\pi}{11}\right)\right)$.

Solution: $\sin\left(\frac{\pi}{6}\right) = \frac{1}{2}$ so $\arcsin\left(-\frac{1}{2}\right) = -\frac{\pi}{6}$. Also $\sin\left(\frac{31\pi}{11}\right) = \sin\left(\frac{31\pi}{11} - 2\pi\right) = \sin\left(\frac{9\pi}{11}\right) = \sin\left(\frac{-9\pi}{11}\right) = \sin\left(\frac{2\pi}{11}\right)$ and $\frac{2\pi}{11} \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ so $\arcsin\left(\sin\left(\frac{31\pi}{11}\right)\right) = \frac{2\pi}{11}$. (b) (Final 2015) Simplify $\sin(\arctan 4)$

Solution: Consider the right-angled triangle with sides 4, 1 and hypotenuse $\sqrt{1+4^2} = \sqrt{17}$. Let θ be the angle opposite the side of length 4. Then $\tan \theta = 4$ and $\sin \theta = \frac{4}{\sqrt{17}}$ so $\sin(\arctan 4) = \sin \theta = \frac{4}{\sqrt{17}}$.

(c) Find $\tan(\arccos(0.4))$

Solution: Consider the right-angled triangle with sides 0.4, $\sqrt{1-0.4^2}$ and hypotenuse 1. Let θ be the angle between the side of length 0.4 and the hypotenuse. Then $\cos \theta = \frac{0.4}{1} = 0.4$ and $\tan \theta = \frac{\sqrt{1 - 0.4^2}}{0.4} = \frac{\sqrt{0.84}}{0.4} = \sqrt{\frac{0.84}{0.16}} = \sqrt{5.25}.$

(6) Let $f(\theta) = \sin^2 \theta + \cos^2 \theta$. Find $\frac{d\dot{f}}{d\theta}$ without using trigonometric identities. Evaluate f(0) and conclude that $\sin^2 \theta + \cos^2 \theta = 1$ for all θ .

Solution: By the chain rule $\frac{d}{d\theta} (\sin \theta)^2 = 2 \sin \theta \cos \theta$ and $\frac{d}{d\theta} (\cos \theta)^2 = 2 \cos \theta (-\sin \theta)$ so

$$\frac{df}{d\theta} = 2\sin\theta\cos\theta - 2\sin\theta\cos\theta = 0,$$

It follows that f is constant; since $f(0) = (\sin 0)^2 + (\cos 0)^2 = 1$ we have $f(\theta) = 1$ for all θ , which is the claim.

- (7) (Inverse functions)
 - (a) Suppose $g(x) = e^x$, $f(y) = \log y$. Show that f(g(x)) = x and conclude that $(\log y)' = \frac{1}{n}$. **Solution:** $f(g(x)) = \log(e^x) = x$. We then have $f'(e^x) = \frac{1}{g'(x)} = \frac{1}{e^x}$ so $f'(y) = \frac{1}{y}$ for all y > 0.

(b) Let $\theta = \arcsin x$. Find $\frac{d\theta}{dx}$. Hint: solve for x first.

Solution: We have $x = \sin \theta$ so $1 = \cos \theta \frac{d\theta}{dx}$ so

$$\frac{dx}{d\theta} = \frac{1}{\cos \theta} = \frac{1}{\sqrt{1 - \sin^2 \theta}} = \frac{1}{\sqrt{1 - x^2}}.$$

(8) Differentiation

(a) Find $\frac{d}{dx} (\arcsin(2x))$ **Solution:** Since $\frac{d}{dx} \arcsin(x) = \frac{1}{\sqrt{1-x^2}}$, the chain rule gives

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(\arcsin\left(2x\right)\right) = \frac{2}{\sqrt{1-4x^2}}.$$

Alternatively, let $\theta = \arcsin 2x$, so that $\sin \theta = 2x$. Differentiating both sides we get

$$\cos\theta \cdot \frac{\mathrm{d}\theta}{\mathrm{d}x} = 2$$

so that

$$\frac{\mathrm{d}\theta}{\mathrm{d}x} = \frac{2}{\cos\theta} = \frac{2}{\sqrt{1-\sin^2\theta}} = \frac{2}{\sqrt{1-4x^2}}.$$

(b) Find the line tangent to $y = \sqrt{1 + (\arctan(x))^2}$ at the point where x = 1.

Solution: Since $\frac{d}{dx} \arctan(x) = \frac{1}{1+x^2}$, the chain rule gives

$$\frac{\mathrm{d}}{\mathrm{d}x}\sqrt{1 + (\arctan(x))^2} = \frac{1}{2\sqrt{1 + (\arctan(x))^2}} \cdot 2\arctan(x) \cdot \frac{1}{1 + x^2}$$
$$= \frac{\arctan x}{(1 + x^2)\sqrt{1 + (\arctan(x))^2}}.$$

Now $\arctan 1 = \frac{\pi}{4}$ so the line is

$$y = \frac{\pi}{8\sqrt{1 + \frac{\pi^2}{16}}} (x - 1) + \sqrt{1 + \frac{\pi^2}{16}}.$$

(c) Find y' if $y = \arcsin(e^{5x})$. What is the domain of the functions y, y'?

Solution: From the chain rule we get

$$\frac{\mathrm{d}}{\mathrm{d}x}\arcsin\left(e^{5x}\right) = \frac{1}{\sqrt{1-e^{10x}}}5e^{5x} = \frac{5e^{5x}}{\sqrt{1-e^{10x}}}\,.$$

The function y itself is defined when $-1 \le e^{5x} \le 1$, that is when $5x \le 0$, that is when $x \le 0$. The derivative is defined when $-1 < e^{10x} < 1$, that is when x < 0. The point is that since $\sin \theta$ has horizontal tangents at $\pm \frac{\pi}{2}$, $\arcsin x$ has vertical tangents at ± 1 .

Solution: We can write the identity as $\sin y = e^{5x}$ and differentiate both sides to get $y' \cos y =$ $5e^{5x}$ so that

$$y' = \frac{5e^{5x}}{\cos y} = \frac{5e^{5x}}{\sqrt{1 - \sin^2 y}} = \frac{5e^{5x}}{\sqrt{1 - e^{10x}}}.$$