Math 100:V02 - WORKSHEET 10
 TAYLOR EXPANSION

1. TAYLOR EXPANSION

(1) (Review) Use linear approximations to estimate:
(a) $\log \frac{4}{3}$ and $\log \frac{2}{3}$. Combine the two for an estimate of $\log 2$.
(b) $\sin 0.1$ and $\cos 0.1$.
(2) Let $f(x)=e^{x}$
(a) Find $f(0), f^{\prime}(0), f^{(2)}(0), \cdots$
(b) Find a polynomial $T_{0}(x)$ such that $T_{0}(0)=f(0)$.
(c) Find a polynomial $T_{1}(x)$ such that $T_{1}(0)=f(0)$ and $T_{1}^{\prime}(0)=f^{\prime}(0)$.
(d) Find a polynomial $T_{2}(x)$ such that $T_{2}(0)=f(0), T_{2}^{\prime}(0)=f^{\prime}(0)$ and $T_{2}^{(2)}(0)=f^{(2)}(0)$.
(e) Find a polynomial $T_{3}(x)$ such that $T_{3}^{(k)}(0)=f^{(k)}(0)$ for $0 \leq k \leq 3$.
(3) Do the same with $f(x)=\log x$ about $x=1$.

Let $c_{k}=\frac{f^{(k)}(a)}{k!}$. The nth order Taylor expansion of $f(x)$ about $x=a$ is the polynomial $T_{n}(x)=c_{0}+c_{1}(x-a)+\cdots+c_{n}(x-a)^{n}$
(4) Find the 4th order MacLaurin expansion of $\frac{1}{1-x}$ (=Taylor expansion about $x=0$)
(5) $\star \star$ Find the nth order expansion of $\cos x$, and approximate $\cos 0.1$ using a 3 rd order expansion
(6) (Final, 2015) \star Let $T_{3}(x)=24+6(x-3)+12(x-3)^{2}+4(x-3)^{3}$ be the third-degree Taylor polynomial of some function f, expanded about $a=3$. What is $f^{\prime \prime}(3)$?
(7) In special relativity we have the formula $E=\frac{m c^{2}}{\sqrt{1-v^{2} / c^{2}}}$ for the kinetic energy of a moving particle. Here m is the "rest mass" of the particle and c is the speed of light. Examine the behaviour of this formula for small velocities by expanding it to second order in the small parameter $x=v^{2} / c^{2}$. What is the 4 th order expansion of the energy? Do you recognize any of the terms?
2. NEW EXPANSIONS FROM OLD

Near $u=0: \quad \frac{1}{1-u}=1+u+u^{2}+u^{3}+u^{4} \cdots \quad \exp u=1+\frac{1}{1!} u+\frac{1}{2!} u^{2}+\frac{1}{3!} u^{3}+\frac{1}{4!} u^{4}+\cdots$
(8) \star (Final, 2016) Use a 3rd order Taylor approximation to estimate sin 0.01 . Then find the 3rd order Taylor expansion of $(x+1) \sin x$ about $x=0$.
(9) Find the 3rd order Taylor expansion of $\sqrt{x}-\frac{1}{4} x$ about $x=4$.
(10) Find the 8 th order expansion of $f(x)=e^{x^{2}}-\frac{1}{1+x^{3}}$. What is $f^{(6)}(0)$?
(11) Find the quartic expansion of $\frac{1}{\cos 3 x}$ about $x=0$.
(12) (Change of variable/rebasing polynomials)
(a) Find the Taylor expansion of the polynomial $x^{3}-x$ about $a=1$ using the identity $x=1+(x-1)$.
(b) Expand $e^{x^{3}-x}$ to third order about $a=1$.
(13) Expand $\exp (\cos 2 x)$ to sixth order about $x=0$.
(14) Show that $\log \frac{1+x}{1-x} \approx 2\left(x+\frac{x^{3}}{3}+\frac{x^{5}}{5}+\cdots\right)$. Use this to -get a good approximation to $\log 3$ via a careful choice of x.
(15) (2023 Piazza @389) Find the asymptotics as $x \rightarrow \infty$
(a) $\sqrt{x^{4}+3 x^{3}}-x^{2}$
(b) $\sqrt[3]{x^{6}-x^{4}}-\sqrt{x^{4}-\frac{2}{3} x^{2}}$
(16) Evaluate $\lim _{x \rightarrow 0} \frac{e^{-x^{2} / 2}-\cos x}{x^{4}}$.

