
Math 100:V02 – SOLUTIONS TO WORKSHEET 10
TAYLOR EXPANSION

1. Taylor expansion

(1) (Review) Use linear approximations to estimate:
(a) log 4

3 and log 2
3 . Combine the two for an estimate of log 2.

Solution: Let f(x) = log x so that f ′(x) = 1
x . Then f(1) = 0 and f ′(1) = 1 so f(1 + 1

3 ) ≈
1
3

and f(1− 1
3 ) ≈ −

1
3 . Then log 2 = log 4

3

/
2
3 = log 4

3 − log 2
3 ≈

2
3 .

Takeaway: Straightforward linear approximation using f(x) ≈ f(a) + f ′(a)(x− a).
Common error: Writing f(x) ≈ f(a) + f ′(x)(x− a) (here: log x ≈ 1

x (x− 1) ).
Sanity check: is the expression we wrote a linear function?

(b) sin 0.1 and cos 0.1.
Solution: Let f(x) = sinx so that g(x) = f ′(x) = cosx and g′(x) = − sinx. Then f(1) = 0
and g(0) = f ′(0) = cos 0 = 1 while g′(0) = − sin 0 = 0. So f(0.1) ≈ 0 + 1 · 0.1 ≈ 0.1 and
g(0.1) ≈ 1− 0 · 0.01 = 1.
Takeaway: Sometimes f ′(a) = 0 and the linear approximation is constant.

(2) Let f(x) = ex

(a) Find f(0), f ′(0), f (2)(0), · · ·
(b) Find a polynomial T0(x) such that T0(0) = f(0).
(c) Find a polynomial T1(x) such that T1(0) = f(0) and T ′1(0) = f ′(0).
(d) Find a polynomial T2(x) such that T2(0) = f(0), T ′2(0) = f ′(0) and T (2)

2 (0) = f (2)(0).
(e) Find a polynomial T3(x) such that T (k)

3 (0) = f (k)(0) for 0 ≤ k ≤ 3.
Solution: f(x) = f ′(x) = f (2)(x) = · · · = ex so f(0) = f ′(0) = f ′′(0) = · · · = 1. Now
T0(x) = 1 works, as does T1(x) = 1 + x. If T2(x) = 1 + x + cx2 then T ′′2 (x) = 2c = 1 means
c = 1

2 and T2(x) = 1 + x+ 1
2x

2. Finally, T3(x) = 1 + x+ 1
2x

2 + dx3 works if 6d = 1 so if d = 1
6 .

Takeaway: To determine coefficients of x2, x3 we needed to calculate with them without
knowing their values, so we implement the problem-solving technique of giving names: by
calling them c, d we could convert the statements T (2)

2 (0) = 1 and T
(3)
3 (0) = 1 into equations

for c, d which we could solve.
(3) Do the same with f(x) = log x about x = 1.

Solution: f ′(x) = 1
x , f

′′(x) = − 1
x2 , f ′′′(x) = 2

x3 so f(1) = 0, f ′(1) = 1, f ′′(1) = −1, f ′′′(1) = 2.
Try T3(x) = a + bx + cx2 + dx3 (can truncate later). Need a = 0 to make T3(x) = 0. Diff we get
T ′3(x) = b + 2cx + 3dx2, setting x = 0 gives b = 1. Diff again gives T ′′3 (x) = 2c + 6dx so 2c = −1
and c = − 1

2 . Diff again give T ′′′3 (x) = 6d = 2 so d = 1
3 and T3(x) = (x− 1)− 1

2 (x− 1)2 + 1
3 (x− 1)3.

Truncate this to get T0, T1, T2.

Let ck = f(k)(a)
k! . The nth order Taylor expansion of f(x) about x = a is the polynomial

Tn(x) = c0 + c1(x− a) + · · ·+ cn(x− a)n

(4) Find the 4th order MacLaurin expansion of 1
1−x (=Taylor expansion about x = 0)

Solution: f ′(x) = 1
(1−x)2 , f

′′(x) = 2
(1−x)3 , f

(3)(x) = 6
(1−x)4 , f

(4)(x) = 24
(1−x)5 f

(k)(0) = k! and
the Taylor expansion is 1 + x+ x2 + x3 + x4.
Takeaway: This is completely mechanical.

(5) ?? Find the nth order expansion of cosx, and approximate cos 0.1 using a 3rd order expansion
Solution: (cosx)

′
= − sinx, (cosx)(2) = − cosx, (cosx)(3) = sinx, (cosx)(4) (x) = cosx and

the pattern repeats. Plugging in zero we see that the derivatives at 0 (starting with the zeroeth) are
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1, 0,−1, 0, 1, 0,−1, 0, . . . so the Taylor expansion is

cosx = 1− 1

2!
x2 +

1

4!
x4 − 1

6!
x6 + · · ·

In particular, cos 0.1 ≈ 1− 1
2 (0.1)

2 = 0.995.
Takeaway: Again this is mechanical, but since the third derivative at x = 0 vanishes, we see that the
third-order approximation actually only requires terms up to x2, or equivalently that the quadratic
approximation actually gains a free order of approximation.

(6) (Final, 2015) ? Let T3(x) = 24+6(x−3)+12(x−3)2+4(x−3)3 be the third-degree Taylor polynomial
of some function f , expanded about a = 3. What is f ′′(3)?

Solution: We have c2 = f(2)

2! = 12 so f (2) = 24.

Takeaway: We can use the formula ck = f(k)(a)
k! both forwards (to go from f to ck) and backwards

(to go from ck to f (k)(a)).
(7) In special relativity we have the formula E = mc2√

1−v2/c2
for the kinetic energy of a moving particle.

Here m is the “rest mass” of the particle and c is the speed of light. Examine the behaviour of this
formula for small velocities by expanding it to second order in the small parameter x = v2/c2. What
is the 4th order expansion of the energy? Do you recognize any of the terms?

Solution: We write the formula as E = mc2(1 − x)−1/2. Letting f(x) = (1 − x)−1/2 we have
f ′(x) = 1

2 (1 − x)
−3/2 and f ′′(x) = 3

4 (1 − x)
−5/2 so f(0) = 1, f ′(0) = 1

2 and f ′′(0) = 3
4 giving the

expansion

E ≈ mc2
(
1 +

1

2
x+

1

2!
·
3

4
x2
)

= mc2
(
1 +

1

2

v2

c2
+

3

8

v4

c4

)
= mc2 +

1

2
mv2 +

3

8

(
v2

c2

)
mv2

correct to 4th order in v/c. In particular we the famous rest energy mc2 and that for small velocities
the main contribution is the Newtonian kinetic energy 1

2mv
2. The first relativistic correction is

negative, and indeed is fairly small until vc gets close to 1.
Takeaway: Taylor expansion is a major workhorse of science.

2. New expansions from old

Near u = 0: 1
1−u = 1 + u+ u2 + u3 + u4 · · · expu = 1 + 1

1!u+ 1
2!u

2 + 1
3!u

3 + 1
4!u

4 + · · ·

(8) ? (Final, 2016) Use a 3rd order Taylor approximation to estimate sin 0.01. Then find the 3rd order
Taylor expansion of (x+ 1) sinx about x = 0.

Solution: Let f(x) = sinx. Then f ′(x) = cosx, f (2)(x) = − sinx and f (3)(x) = − cosx.
Thus f(0) = 0, f ′(0) = 1, f ′′(0) = 0, f (3)(0) = −1 and the third-order expansion of sinx is
0 + 1

1!x+
0
2!x

2 + (−1)
3! x

3 = x− 1
6x

3. In particular sin 0.1 ≈ 0.1− 1
6000 . We then also have, correct to

third order, that

(x+ 1) sinx ≈ (x+ 1)

(
x− 1

6
x3
)

= x+ x2 − 1

6
x3 − 1

6
x4 ≈ x+ x2 − 1

6
x3 .

Takeaway: Rather than differentiate (x + 1) sinx (which is doable but harder) we differentiated
sinx by itself and then combined the resulting approximations. That x4 is asymptotically negligible
when we work to 3rd order was discussed in Lecture 1.

(9) Find the 3rd order Taylor expansion of
√
x− 1

4x about x = 4.
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Solution: Let f(x) =
√
x. Then f ′(x) = 1

2
√
x
, f (2)(x) = − 1

4x3/2 and f (3)(x) = 3
8x
−5/2. Thus

f(4) = 2, f ′(4) = 1
4 , f

(2)(4) = − 1
32 , f

(3)(4) = 3
256 and the third-order expansions are

√
x ≈ 2 +

1

4
(x− 4)− 1

32 · 2!
(x− 4)

3
+

3

256 · 3!
(x− 4)3

1

4
x ≈ 1 +

1

4
(x− 4)

so that

√
x− 1

4
x ≈ 1− 1

64
(x− 4)2 +

1

512
(x− 4)3 .

Takeaway: Here we added two expansion. We also rebased the polynomial 1
4x to be centered at

x = 4.
(10) Find the 8th order expansion of f(x) = ex

2 − 1
1+x3 . What is f (6)(0)?

Solution: To fourth order we have eu ≈ 1+u+ u2

2 + u3

6 + u4

24 +
u5

120 so ex
2 ≈ 1+x2+ x4

2 + x6

6 + x8

24

to 8th order. We also know that 1
1−u ≈ 1 + u+ u2 + u3 so 1

1+x3 ≈ 1− x3 + x6 correct to 8th order.
We conclude that

ex
2

− 1

1 + x3
≈
(
1 + x2 +

x4

2
+
x6

6
+
x8

24

)
−
(
1− x3 + x6

)
≈ x2 − x3 + 1

2
x4 − 5

6
x6 +

1

24
x8 .

In particular, f
(6)(0)
6! = − 5

6 so f (6)(0) = −720 · 5
6 = −600.

(11) Find the quartic expansion of 1
cos 3x about x = 0.

Solution: To 4th order we have cos 3x ≈ 1− 9
2x

2 + 27
8 x

4 = 1− u where u = 9
2x

2 − 27
8 x

4. Since
u3 is already a 6th order term we can truncate at the quadratic term of the geometric series:

1

cos 3x
≈ 1

1− u
≈ 1 + u+ u2

≈ 1 +

(
9

2
x2 − 27

8
x4
)
+

(
9

2
x2 − 27

8
x4
)2

≈ 1 +
9

2
x2 − 27

8
x4 +

81

4
x4

= 1 +
9

2
x2 +

135

8
x4 .

correct to 4th order.
(12) (Change of variable/rebasing polynomials)

(a) Find the Taylor expansion of the polynomial x3−x about a = 1 using the identity x = 1+(x−1).
Solution: We have

x3 − x = (1 + (x− 1))
3 − (1 + (x− 1))

= 1 + 3(x− 1) + 3(x− 1)2 + (x− 1)3 − 1− (x− 1)

= 2(x− 1) + 3(x− 1)2 + (x− 1)3 .

(b) Expand ex
3−x to third order about a = 1.
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Solution: By the previous problem we have

exp(x3 − x) = exp
(
2(x− 1) + 3(x− 1)2 + (x− 1)3

)
≈ 1 +

(
2(x− 1) + 3(x− 1)2 + (x− 1)3

)
+

1

2

(
2(x− 1) + 3(x− 1)2 + (x− 1)3

)2
+

1

6

(
2(x− 1) + 3(x− 1)2 + (x− 1)3

)3
(no need to consider higher order terms because u = 2(x−1)+3(x−1)2+(x−1)3 is a multiple
of (x − 1) so any part of the kth power of u has at least kth order in (x − 1). Expanding the
powers and retaining only terms up to third order we get

exp
(
x3 − x

)
≈ 1 +

(
2(x− 1) + 3(x− 1)2 + (x− 1)3

)
+

1

2

(
4(x− 1)2 + 12(x− 1)3

)
+

1

6

(
8(x− 1)3

)
= 1 + 2(x− 1) + 5(x− 1)2 + 8

1

3
(x− 1)3

correct to third order.
(13) Expand exp(cos 2x) to sixth order about x = 0.

Solution: We already know that cos θ ≈ 1− θ2

2 + θ4

24 −
θ6

720 correct to sixth order. Setting θ = 2x
we get

exp(cos 2x) ≈ exp

(
1− 2θ2 +

2

3
θ4 − 4

45
θ6
)

= e · exp
(
−2θ2 + 2

3
θ4 − 4

45
θ6
)

≈ e

[
1 +

(
−2θ2 + 2

3
θ4 − 4

45
θ6
)
+

1

2

(
−2θ2 + 2

3
θ4 − 4

45
θ6
)2

+
1

6

(
−2θ2 + 2

3
θ4 − 4

45
θ6
)3
]

= e

[
1− 2θ2 +

2

3
θ4 − 4

45
θ6 +

1

2

(
4θ4 − 8

3
θ6
)
− 8

6
θ6
]

= e

[
1− 2θ2 + 2

2

3
θ4 − 124

45
θ6
]

= e− 2e · θ2 +
8e

3
θ4 − 124e

45
θ6 ,

correct to sixth order.
(14) Show that log 1+x

1−x ≈ 2(x + x3

3 + x5

5 + · · · ). Use this to -get a good approximation to log 3 via a
careful choice of x.

Solution: Let f(x) = log(1 + x). Then f ′(x) = 1
1+x , f

(2)(x) = − 1
(1+x)2 , f

(3)(x) = 1 · 2
(1+x)3 ,

f (4)(x) = − 1 · 2 · 3
(1+x)4 and so on, so f (k)(x) = (−1)k−1 · (k−1)!

(1+x)k
. We thus have that f(0) = 0 and for

k ≥ 1 that f (k)(0) = (−1)k−1(k − 1)! and f(k)(0)
k! = (−1)k−1

k . We conclude that

log(1 + x) = x− x2

2
+
x3

3
− x4

4
+ · · · .

Plugging −x we get:

log(1− x) = −x− x2

2
− x3

3
− x4

4
· · ·

so

log
1 + x

1− x
= log(1 + x)− log(1− x) = 2x+ 2

x3

3
+ 2

x5

5
+ · · · .
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In particular

log 3 = log
1 + 1

2

1− 1
2

= 2

(
1

2
+

1

24
+

1

160
+ · · ·

)
= 1 +

1

12
+

1

80
+ · · · ≈ 1.096

(15) (2023 Piazza @389) Find the asymptotics as x→∞
(a)
√
x4 + 3x3 − x2

Solution: Clearly as x→∞
√
x4 + 3x3 ∼

√
x4 ∼ x2 so this is about the cancellation and we

need a more precise answer. Extracting the factor of x2 from the square root we see√
x4 + 3x3 − x2 = x2

√
1 +

3

x
− x2 = x2

(√
1 +

3

x
− 1

)
.

To understand the behaviour of
√

1 + 3
x − 1 we notice that 3

x is a small parameter, and that
√
1 + u ≈ 1 + 1

2u−
1
8u

2 correct to second order. We thus have√
x4 + 3x3 − x2 ≈ x2

(
1 +

1

2

3

x
− 1

8

9

x2
− 1

)
≈ 3

2
x− 9

8

with further corrections being lower order. We conclude that this linear approximation would
have been sufficient and that √

x4 + 3x3 − x2 ∼ 3

2
x

as x→∞.
(b) 3
√
x6 − x4 −

√
x4 − 2

3x
2

Solution: Both roots are asymptotically x2. Using the linear approximation we find

3
√
x6 − x4 = x2

3

√
1− 1

x2
≈ x2

(
1− 1

3

1

x2

)
and √

x4 − 2

3
x2 ≈ x2

(
1− 1

2
·
2

3
·
1

x2

)
which cancel exactly, so we need to go one order further. Since (1+u)α ≈ 1+αu+ α(α−1)

2 u2+· · ·
as we can check by differentiation we see that as x→∞

√
1 + u ≈ 1 +

1

2
u− 1

8
u2

3
√
1 + u ≈ 1 +

1

3
u− 1

9
u2

to second order, so

3
√
x6 − x4 −

√
x4 − 2

3
x2 ≈ x2

[(
1− 1

3x2
− 1

9x4

)
−
(
1− 1

2

2

3x2
− 4

8 · 9x4

)]
≈ − 1

18x2

with further lower-order terms, so

3
√
x6 − x4 −

√
x4 − 2

3
x2 ∼ − 1

18x2

as x→∞ and in particular there is decay.
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(16) Evaluate limx→0
e−x2/2−cos x

x4 .
Solution: We know that cosx = 1− x2

2 + · · · . Using the linear expansion eu ≈ 1 + u we’d get
e−x

2/2 ≈ 1−x2/2 which means the difference cancels to third order, so let’s expand to fourth order.
We get

e−x
2/2 ≈ 1− x2

2
+

1

2

(
x2

2

)2

= 1− x2

2
+
x4

8

cosx ≈ 1− x2

2
+
x4

24
.

Subtracting and dividing by x4 we get

e−x
2/2 − cosx

x4
=

1

12

correct to 0th order, so this is the limit (expanding both functions to the next order would give the
next correction).
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