Math 100:V02 — SOLUTIONS TO WORKSHEET 10
TAYLOR EXPANSION

1. TAYLOR EXPANSION

(1) (Review) Use linear approximations to estimate:

(a) log% and log % Combine the two for an estimate of log 2.
Solution: Let f( ) =logx so that f'(x) = <. Then f(1)
and f(1— %) —%. Then log2 = log 3/3 log% — log% ~
Takeaway: Stralghtforward linear approximation using f(z) ~ f(a) + f'(a)(z — a).
Common error: Writing f(z) ~ f(a) + f'(z)(z — a) (here: logz ~ L(z —1)).

Sanity check: is the expression we wrote a linear function?
(b) sin0.1 and cos0.1.
Solution: Let f(x) = sinz so that g(x) = f'(z) = cosx and ¢'(z) = —sinz. Then f(1) =0
and g(0) = f/(0) = cos0 = 1 while ¢’(0) = —sin0 = 0. So f(0.1) ~ 0+ 1-0.1 ~ 0.1 and
9(0.1) ~1—0-0.01 = 1.
Takeaway: Sometimes f’(a) = 0 and the linear approximation is constant.
(2) Let f(x) =e€”
)y
x

=0and f/(1)=1s0 f(1+3)~ 3
2
g-

(a) Find £(0), f'(0), f*)(0

(b) Find a polynomial Tp(x) such that T5(0 (0).
(c¢) Find a polynomial Tj(x) such that T3 (0 0) and T7(0) = f/(0).
(d) Find a polynomial T5(x) such that T5(0 (0), T5(0) = f'(0) and TQ(Q)(O) = £2)(0).
(e) Find a polynomial T3(x) such that T(k) 0 f(k) (0) for 0 < k < 3.

Solution:  f(z) = f'(v) = f(2)(as) <o =¢e"s0 f(0) = f(0) = f"(0) = --- = 1. Now
To(z) = 1 works, as does Ty(z) = 1+ 2. If To(x) = 1 + x + cx? then Ty () = 2¢ = 1 means
¢ =34 and Ty(x) = 1+ 2 + 322 Finally, T5(z) = 1 4 & + 32% + da® works if 6d = 1 so if d = 3.
Takeaway: To determine coefficients of 2, % we needed to calculate with them without
knowing their values, so we implement the problem-solving technique of giving names: by

)=
) =f(
) =1
(0) =

calling them ¢, d we could convert the statements T2(2) (0) =1 and T?Eg)(O) = 1 into equations
for ¢, d which we could solve.
(3) Do the same with f(z) = logz about = = 1.
Solution: f'(z) =1, f"(z)=—-%, f"(z)= Zso f(1)=0, f/(1) =1, f'(1) = -1, (1) = 2.
Try T3(z) = a + bz + cx? + da® (can truncate later). Need a = 0 to make T3(z) = 0. Diff we get
Tj(x) = b+ 2cx + 3dz?, setting © = 0 gives b = 1. Diff again gives T4 (z) = 2c + 6dx so 2¢ = —1
and ¢ = —1. Diff again give T}"(z) =6d =2sod =% and T3(z) = (z — 1) — 3 (z — 1)2 + 3 (z — 1)%.
Truncate this to get Ty, 11, T5.

)
Let ¢ = % The nth order Taylor expansion of f(z) about z = a is the polynomial

)
Tn(x):coJrcl(x—a)Jr “+ep(z—a)?
(4) Find the 4th order MacLaurm expansion of — (=Taylor expansmn about z = O)
Solution: f'(z) = (1_r)2, f(x) = (1_35)3, f )(z) = (1_35)47 B (z) = (1—95)5 f®)(0) = k! and
the Taylor expansion is 1 + = 4+ 2% 4+ 2% + 2*.
Takeaway: This is completely mechanical.
(5) ** Find the nth order expansion of cosz, and approximate cos0.1 using a 3rd order expansion
Solution: (cosz)’ = —sinz, (cos x)(z) = —cosz, (cos x)(3) = ginz, (cos a:)(4) (z) = cosz and
the pattern repeats. Plugging in zero we see that the derivatives at 0 (starting with the zeroeth) are
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1,0,—1,0,1,0,—1,0,... so the Taylor expansion is

co&x—l—%xQ—i— i'x4 éx6+-~-
In particular, cos0.1 ~ 1 — £(0.1)* = 0.995.
Takeaway: Again this is mechanical, but since the third derivative at x = 0 vanishes, we see that the
third-order approximation actually only requires terms up to z2, or equivalently that the quadratic
approximation actually gains a free order of approximation.
(Final, 2015)  Let T5(z) = 24+6(2—3) +12(z—3)?+4(z—3)? be the third-degree Taylor polynomial
of some function f, expanded about a = 3. What is f”(3)?

Solution: We have ¢; = f( =12s0 f® =24.

Takeaway: We can use the formula cr = % both forwards (to go from f to ¢x) and backwards
(to go from ¢, to f)(a)).

In special relativity we have the formula F = —-22<

Ve
Here m is the “rest mass” of the particle and c is the speed of light. Examine the behaviour of this
formula for small velocities by expanding it to second order in the small parameter x = v?/c*>. What
is the 4th order expansion of the energy? Do you recognize any of the terms?

Solution: We write the formula as E = mc?(1 — )~ /2. Letting f(z) = (1 — )~/ we have
(@) =3(1—2)"%% and f"(z) = 3(1 —2)=>% so f(0) =1, f'(0) = 1 and f"(0) = 2 giving the

expansion

for the kinetic energy of a moving particle.

correct to 4th order in v/c. In particular we the famous rest energy mc? and that for small velocities
the main contribution is the Newtonian kinetic energy %mvz. The first relativistic correction is
negative, and indeed is fairly small until £ gets close to 1.

Takeaway: Taylor expansion is a major workhorse of science.

2. NEW EXPANSIONS FROM OLD

Near u = 0: ﬁ=1+u+u2+u3+u4~-~ expu:1+%u+%u2+%u3+%u4+-~

(8)

(9)

* (Final, 2016) Use a 3rd order Taylor approximation to estimate sin0.01. Then find the 3rd order
Taylor expansion of (z + 1)sinz about x = 0.

Solution: Let f(z) = sinz. Then f/(z) = cosz, fP(z) = —sinz and f®)(z) = —cosz.
Thus f(0) = 0, f/(0) = 1, f/(0) = 0, f®)(0) = —1 and the third order expansion of sinz is
0+ 1,m+ 2,3: + & )m?’ =x— é[L’S. In particular sin0.1 ~ 0.1 —
third order, that

6000 We then also have, correct to

1 1 1 1
(x4 1)sinz =~ (z+1) (w—Gx?’) :x+x2—6x3—6x4wx+x2—6$3.

Takeaway: Rather than differentiate (x + 1)sinz (which is doable but harder) we differentiated
sin = by itself and then combined the resulting approximations. That z* is asymptotically negligible
when we work to 3rd order was discussed in Lecture 1.
Find the 3rd order Taylor expansion of \/x — fx about © = 4.
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Solution: Let f(z) = /x. Then f'(z) = ﬁ, fA(z) = — 57z and f®(z) = 22752 Thus
f)=2, f'(4) =13, fAA)=—%, fP(4) = ;2 and the third-order expansions are

3

~24 —(z—4)— ) R mp—— )
Vem2t (o —d) - o (=) o e —4)
1 1

—z~1+—(x—4

4x +4(a: )

so that

1 1 1
—rxl— —(x—4)% + ——(x —4)>.
N x (z )+512(x )

Takeaway: Here we added two expansion. We also rebased the polynomial ix to be centered at

r = 4.
(10) Find the 8th order expansion of f(z) = e®" — H% What is f(%)(0)?
Solution: To fourth order we have e* ~ 1+u+“72+%3+72‘—1+%50 s0 e*” a2 1+x2+“2—4+%+§

to 8th order. We also know that ﬁ ~1l+u+u?+udso 1+113 ~ 1 — 23 + 28 correct to 8th order.
We conclude that

1 xt x0 a8
z2 2 3 6
-——— (1 — 4+ —+ =] —(1-
e T <+m+2+6+24> (1—a°+a°%)
1 5 1
%$2—$3+§.’E4—6$6+QI8.

In particular, L@ = —3 g f<61>(0) — —720- 2 = —600.

(11) Find the quartic expansion of —=-
Solution: To 4th order we have cos3z ~ 1 — %zz + %x‘l =1—u where u = 222 — 28—7x4. Since

about z = 0.

2
u? is already a 6th order term we can truncate at the quadratic term of the geometric series:

1 1
cos 3z 1—wu
14 u+ u?

2
N 9 5 27 4 9 5 27 4
~1—|—<2x 8x)+(2x 8x

9., 27, 8,

Q

Q

%1—1—296 ga: +Z$
9 135
:1+§$2+?$4

correct to 4th order.
(12) (Change of variable/rebasing polynomials)
(a) Find the Taylor expansion of the polynomial 22 —x about a = 1 using the identity x = 1+ (z—1).
Solution: We have

P —r=(14@-1)) -1+ (x-1)
=143z -1 +3z-1)*+(@-1)°*-1-(z-1)
=2(x—1)+3(x—1)*+ (z —1)%.

(b) Expand e~ to third order about a = 1.
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Solution: By the previous problem we have

exp(a® — ) = exp (2(x — 1) +3(z — 1) + (z — 1)°)
~14 (2 —1)+3z -1+ (z—1)°
+%(2(x71)+3(x71 (z—1)%)°
o) 3@ -1 @ 1))

6

(no need to consider higher order terms because u = 2(z — 1) + 3(z — 1)? + (z — 1)? is a multiple
of (x — 1) so any part of the kth power of u has at least kth order in (x — 1). Expanding the
powers and retaining only terms up to third order we get

exp(2® —z) m 1+ (2(x—1)+3(x —1)* + (z — 1))
1

+ % (4(z — 1) +12(z — 1)%) + G (8(z — 1)%)

=1+2@—1)+5(x—1)>+ %( 1)?

correct to third order.
(13) Expand exp(cos 2x) to sixth order about = = 0.

o ° correct to sixth order. Setting 0 = 2x

f . ~ 6> 0
Solution: We already know that cos ~ 1 — %5 + 33 — 55

we get
exp(cos2z) ~ exp (1 —20% + 294 — igﬁ
3 45

2 4
=e- exp (—292 + 504 — 4596)

[ 2 4 1 2 4 \? 1 2 4 \°
~ o 2 “pnd 6 I 2 “pd T p6 i 2 “pnd T pb6
~51+<29+39 459)+2<29+39 450)+6<29+30 459>]

[ 2 4 1 8 8
_ _op2 . Zpd_ *pe L 4_ %96\ _ Op6
—e_l 20 +30 459 +2(46‘ 39) 66‘]

I 2 124
—e|l1-20%4+220* — eﬁ}

3

8e 1246
—e— 2.7+ gt 220
ezttt a5

correct to sixth order.
(14) Show that log § Hm ~ 2z + % + %5 + --+). Use this to -get a good approximation to log3 via a
careful choice of a:
Solution: Let f(z) = log(1 + x). Then f'(z) = H%’ fA(z) = —ﬁ, @ (z) = ﬁ,
f®(x) = _(11.4330.)3 and so on, so fF)(x) = (=1)F1. L=1! " We thus have that f(0) = 0 and for

(1Ta)F
k> 1 that f®)(0) = (=1)*"'(k — 1)! and % = # We conclude that
2?2 23 a2t
log(1 —r— 4T 4
og(l+z)==x 5 T 3 T
Plugging —x we get:
z? 23 2t
log(l — ) = —p — — — = _ S
og(l =) =—w——5 -5 -7
S0
log %~ log(1 + 2) — o (1fx)*2x+2x—3+2x—5+
1 8 8 - 3775
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In particular

togd—log LT oLy Ly L Y b L g
08T T T 2" 24 T 160 T T TR T

(15) (2023 Piazza @389) Find the asymptotics as  — oo
(a) Vat+ 323 — 22
Solution: Clearly as x — 0o vzt + 323 ~ vz ~ z2 so this is about the cancellation and we
need a more precise answer. Extracting the factor of 22 from the square root we see

3 3
\/a:4+3m3—m2:x21/1+7—x2:x2 (1/1—1——1) .
x x

To understand the behaviour of /1 + % — 1 we notice that % is a small parameter, and that
Vidtu=1+ %u — %uz correct to second order. We thus have

2. 2 13 19
\/m—x T (1+21_8x2_1>
3 9
~ 53& ~3
with further corrections being lower order. We conclude that this linear approximation would

have been sufficient and that

3
Vat 4323 — 2% ~ 2%

as r — 00.

(b) Va6 — % — x4f%z2

Solution: Both roots are asymptotically x?. Using the linear approximation we find

/ 1 11
b _pd — 223[1 _ ~ 2 _ -
T T x 1 = T (1 3x2>

and

ala—1)

which cancel exactly, so we need to go one order further. Since (1+u)® =~ 1+au+ == uZ -

as we can check by differentiation we see that as z — oo

1 1
Vituml+ —u—-u?

2 8
1 1
\3/1+u%1+§u—§u2

to second order, so

2 11 12 4
)6 — 4 42221 - - = ) - [(1-2= __-
L Ve x[( 322 9$4> < 2 322 8-9x4>}
!

T 1822

with further lower-order terms, so

as * — oo and in particular there is decay.
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a2
(16) Evaluate lim,_,o & reose

x4

Solution: We know that cosz =1 — ”32—2 + ---. Using the linear expansion e" ~ 1 4+ u we’d get
e~ /2 1 — g2 /2 which means the difference cancels to third order, so let’s expand to fourth order.
We get

2 2\ 2 2 4
—a?/2 2 1 (" T
¢ A SR
x?2 ot
~l——+—.
cosx 9 + o
Subtracting and dividing by z* we get
e=®/2 _cosx 1
zt 12

correct to Oth order, so this is the limit (expanding both functions to the next order would give the
next correction).



