Math 100:V02 - SOLUTIONS TO WORKSHEET 10 TAYLOR EXPANSION

1. TAYLOR EXPANSION

(1) (Review) Use linear approximations to estimate:
(a) $\log \frac{4}{3}$ and $\log \frac{2}{3}$. Combine the two for an estimate of $\log 2$.

Solution: Let $f(x)=\log x$ so that $f^{\prime}(x)=\frac{1}{x}$. Then $f(1)=0$ and $f^{\prime}(1)=1$ so $f\left(1+\frac{1}{3}\right) \approx \frac{1}{3}$ and $f\left(1-\frac{1}{3}\right) \approx-\frac{1}{3}$. Then $\log 2=\log \frac{4}{3} / \frac{2}{3}=\log \frac{4}{3}-\log \frac{2}{3} \approx \frac{2}{3}$.
Takeaway: Straightforward linear approximation using $f(x) \approx f(a)+f^{\prime}(a)(x-a)$.
Common error: Writing $f(x) \approx f(a)+f^{\prime}(x)(x-a)$ (here: $\log x \approx \frac{1}{x}(x-1)$).
Sanity check: is the expression we wrote a linear function?
(b) $\sin 0.1$ and $\cos 0.1$.

Solution: Let $f(x)=\sin x$ so that $g(x)=f^{\prime}(x)=\cos x$ and $g^{\prime}(x)=-\sin x$. Then $f(1)=0$
and $g(0)=f^{\prime}(0)=\cos 0=1$ while $g^{\prime}(0)=-\sin 0=0$. So $f(0.1) \approx 0+1 \cdot 0.1 \approx 0.1$ and $g(0.1) \approx 1-0 \cdot 0.01=1$.
Takeaway: Sometimes $f^{\prime}(a)=0$ and the linear approximation is constant.
(2) Let $f(x)=e^{x}$
(a) Find $f(0), f^{\prime}(0), f^{(2)}(0), \cdots$
(b) Find a polynomial $T_{0}(x)$ such that $T_{0}(0)=f(0)$.
(c) Find a polynomial $T_{1}(x)$ such that $T_{1}(0)=f(0)$ and $T_{1}^{\prime}(0)=f^{\prime}(0)$.
(d) Find a polynomial $T_{2}(x)$ such that $T_{2}(0)=f(0), T_{2}^{\prime}(0)=f^{\prime}(0)$ and $T_{2}^{(2)}(0)=f^{(2)}(0)$.
(e) Find a polynomial $T_{3}(x)$ such that $T_{3}^{(k)}(0)=f^{(k)}(0)$ for $0 \leq k \leq 3$.

Solution: $\quad f(x)=f^{\prime}(x)=f^{(2)}(x)=\cdots=e^{x}$ so $f(0)=f^{\prime}(0)=f^{\prime \prime}(0)=\cdots=1$. Now $T_{0}(x)=1$ works, as does $T_{1}(x)=1+x$. If $T_{2}(x)=1+x+c x^{2}$ then $T_{2}^{\prime \prime}(x)=2 c=1$ means $c=\frac{1}{2}$ and $T_{2}(x)=1+x+\frac{1}{2} x^{2}$. Finally, $T_{3}(x)=1+x+\frac{1}{2} x^{2}+d x^{3}$ works if $6 d=1$ so if $d=\frac{1}{6}$.
Takeaway: To determine coefficients of x^{2}, x^{3} we needed to calculate with them without knowing their values, so we implement the problem-solving technique of giving names: by calling them c, d we could convert the statements $T_{2}^{(2)}(0)=1$ and $T_{3}^{(3)}(0)=1$ into equations for c, d which we could solve.
(3) Do the same with $f(x)=\log x$ about $x=1$.

Solution: $\quad f^{\prime}(x)=\frac{1}{x}, f^{\prime \prime}(x)=-\frac{1}{x^{2}}, f^{\prime \prime \prime}(x)=\frac{2}{x^{3}}$ so $f(1)=0, f^{\prime}(1)=1, f^{\prime \prime}(1)=-1, f^{\prime \prime \prime}(1)=2$. Try $T_{3}(x)=a+b x+c x^{2}+d x^{3}$ (can truncate later). Need $a=0$ to make $T_{3}(x)=0$. Diff we get $T_{3}^{\prime}(x)=b+2 c x+3 d x^{2}$, setting $x=0$ gives $b=1$. Diff again gives $T_{3}^{\prime \prime}(x)=2 c+6 d x$ so $2 c=-1$ and $c=-\frac{1}{2}$. Diff again give $T_{3}^{\prime \prime \prime}(x)=6 d=2$ so $d=\frac{1}{3}$ and $T_{3}(x)=(x-1)-\frac{1}{2}(x-1)^{2}+\frac{1}{3}(x-1)^{3}$. Truncate this to get T_{0}, T_{1}, T_{2}.
Let $c_{k}=\frac{f^{(k)}(a)}{k!}$. The nth order Taylor expansion of $f(x)$ about $x=a$ is the polynomial

$$
T_{n}(x)=c_{0}+c_{1}(x-a)+\cdots+c_{n}(x-a)^{n}
$$

(4) Find the 4th order MacLaurin expansion of $\frac{1}{1-x}$ (=Taylor expansion about $x=0$)

Solution: $\quad f^{\prime}(x)=\frac{1}{(1-x)^{2}}, f^{\prime \prime}(x)=\frac{2}{(1-x)^{3}}, f^{(3)}(x)=\frac{6}{(1-x)^{4}}, f^{(4)}(x)=\frac{24}{(1-x)^{5}} f^{(k)}(0)=k!$ and the Taylor expansion is $1+x+x^{2}+x^{3}+x^{4}$.
Takeaway: This is completely mechanical.
(5) $\star \star$ Find the nth order expansion of $\cos x$, and approximate $\cos 0.1$ using a 3rd order expansion

Solution: $\quad(\cos x)^{\prime}=-\sin x,(\cos x)^{(2)}=-\cos x,(\cos x)^{(3)}=\sin x,(\cos x)^{(4)}(x)=\cos x$ and the pattern repeats. Plugging in zero we see that the derivatives at 0 (starting with the zeroeth) are
$1,0,-1,0,1,0,-1,0, \ldots$ so the Taylor expansion is

$$
\cos x=1-\frac{1}{2!} x^{2}+\frac{1}{4!} x^{4}-\frac{1}{6!} x^{6}+\cdots
$$

In particular, $\cos 0.1 \approx 1-\frac{1}{2}(0.1)^{2}=0.995$.
Takeaway: Again this is mechanical, but since the third derivative at $x=0$ vanishes, we see that the third-order approximation actually only requires terms up to x^{2}, or equivalently that the quadratic approximation actually gains a free order of approximation.
(6) (Final, 2015) \star Let $T_{3}(x)=24+6(x-3)+12(x-3)^{2}+4(x-3)^{3}$ be the third-degree Taylor polynomial of some function f, expanded about $a=3$. What is $f^{\prime \prime}(3)$?

Solution: We have $c_{2}=\frac{f^{(2)}}{2!}=12$ so $f^{(2)}=24$.
Takeaway: We can use the formula $c_{k}=\frac{f^{(k)}(a)}{k!}$ both forwards (to go from f to c_{k}) and backwards (to go from c_{k} to $\left.f^{(k)}(a)\right)$.
(7) In special relativity we have the formula $E=\frac{m c^{2}}{\sqrt{1-v^{2} / c^{2}}}$ for the kinetic energy of a moving particle.

Here m is the "rest mass" of the particle and c is the speed of light. Examine the behaviour of this formula for small velocities by expanding it to second order in the small parameter $x=v^{2} / c^{2}$. What is the 4 th order expansion of the energy? Do you recognize any of the terms?

Solution: We write the formula as $E=m c^{2}(1-x)^{-1 / 2}$. Letting $f(x)=(1-x)^{-1 / 2}$ we have $f^{\prime}(x)=\frac{1}{2}(1-x)^{-3 / 2}$ and $f^{\prime \prime}(x)=\frac{3}{4}(1-x)^{-5 / 2}$ so $f(0)=1, f^{\prime}(0)=\frac{1}{2}$ and $f^{\prime \prime}(0)=\frac{3}{4}$ giving the expansion

$$
\begin{aligned}
E & \approx m c^{2}\left(1+\frac{1}{2} x+\frac{1}{2!} \cdot \frac{3}{4} x^{2}\right) \\
& =m c^{2}\left(1+\frac{1}{2} \frac{v^{2}}{c^{2}}+\frac{3}{8} \frac{v^{4}}{c^{4}}\right) \\
& =m c^{2}+\frac{1}{2} m v^{2}+\frac{3}{8}\left(\frac{v^{2}}{c^{2}}\right) m v^{2}
\end{aligned}
$$

correct to 4 th order in v / c. In particular we the famous rest energy $m c^{2}$ and that for small velocities the main contribution is the Newtonian kinetic energy $\frac{1}{2} m v^{2}$. The first relativistic correction is negative, and indeed is fairly small until $\frac{v}{c}$ gets close to 1 .
Takeaway: Taylor expansion is a major workhorse of science.

2. NEW EXPANSIONS FROM OLD

Near $u=0: \quad \frac{1}{1-u}=1+u+u^{2}+u^{3}+u^{4} \cdots \quad \exp u=1+\frac{1}{1!} u+\frac{1}{2!} u^{2}+\frac{1}{3!} u^{3}+\frac{1}{4!} u^{4}+\cdots$
(8) \star (Final, 2016) Use a 3 rd order Taylor approximation to estimate $\sin 0.01$. Then find the 3 rd order Taylor expansion of $(x+1) \sin x$ about $x=0$.

Solution: Let $f(x)=\sin x$. Then $f^{\prime}(x)=\cos x, f^{(2)}(x)=-\sin x$ and $f^{(3)}(x)=-\cos x$. Thus $f(0)=0, f^{\prime}(0)=1, f^{\prime \prime}(0)=0, f^{(3)}(0)=-1$ and the third-order expansion of $\sin x$ is $0+\frac{1}{1!} x+\frac{0}{2!} x^{2}+\frac{(-1)}{3!} x^{3}=x-\frac{1}{6} x^{3}$. In particular $\sin 0.1 \approx 0.1-\frac{1}{6000}$. We then also have, correct to third order, that

$$
(x+1) \sin x \approx(x+1)\left(x-\frac{1}{6} x^{3}\right)=x+x^{2}-\frac{1}{6} x^{3}-\frac{1}{6} x^{4} \approx x+x^{2}-\frac{1}{6} x^{3}
$$

Takeaway: Rather than differentiate $(x+1) \sin x$ (which is doable but harder) we differentiated $\sin x$ by itself and then combined the resulting approximations. That x^{4} is asymptotically negligible when we work to 3rd order was discussed in Lecture 1.
(9) Find the 3rd order Taylor expansion of $\sqrt{x}-\frac{1}{4} x$ about $x=4$.

Solution: Let $f(x)=\sqrt{x}$. Then $f^{\prime}(x)=\frac{1}{2 \sqrt{x}}, f^{(2)}(x)=-\frac{1}{4 x^{3 / 2}}$ and $f^{(3)}(x)=\frac{3}{8} x^{-5 / 2}$. Thus $f(4)=2, f^{\prime}(4)=\frac{1}{4}, f^{(2)}(4)=-\frac{1}{32}, f^{(3)}(4)=\frac{3}{256}$ and the third-order expansions are

$$
\begin{aligned}
& \sqrt{x} \approx 2+\frac{1}{4}(x-4)-\frac{1}{32 \cdot 2!}(x-4)^{3}+\frac{3}{256 \cdot 3!}(x-4)^{3} \\
& \frac{1}{4} x \approx 1+\frac{1}{4}(x-4)
\end{aligned}
$$

so that

$$
\sqrt{x}-\frac{1}{4} x \approx 1-\frac{1}{64}(x-4)^{2}+\frac{1}{512}(x-4)^{3} .
$$

Takeaway: Here we added two expansion. We also rebased the polynomial $\frac{1}{4} x$ to be centered at $x=4$.
(10) Find the 8 th order expansion of $f(x)=e^{x^{2}}-\frac{1}{1+x^{3}}$. What is $f^{(6)}(0)$?

Solution: To fourth order we have $e^{u} \approx 1+u+\frac{u^{2}}{2}+\frac{u^{3}}{6}+\frac{u^{4}}{24}+\frac{u^{5}}{120}$ so $e^{x^{2}} \approx 1+x^{2}+\frac{x^{4}}{2}+\frac{x^{6}}{6}+\frac{x^{8}}{24}$ to 8 th order. We also know that $\frac{1}{1-u} \approx 1+u+u^{2}+u^{3}$ so $\frac{1^{4}}{1+x^{3}} \approx 1-x^{3}+x^{6}$ correct to 8 th order. We conclude that

$$
\begin{aligned}
e^{x^{2}}-\frac{1}{1+x^{3}} & \approx\left(1+x^{2}+\frac{x^{4}}{2}+\frac{x^{6}}{6}+\frac{x^{8}}{24}\right)-\left(1-x^{3}+x^{6}\right) \\
& \approx x^{2}-x^{3}+\frac{1}{2} x^{4}-\frac{5}{6} x^{6}+\frac{1}{24} x^{8}
\end{aligned}
$$

In particular, $\frac{f^{(6)}(0)}{6!}=-\frac{5}{6}$ so $f^{(6)}(0)=-720 \cdot \frac{5}{6}=-600$.
(11) Find the quartic expansion of $\frac{1}{\cos 3 x}$ about $x=0$.

Solution: To 4th order we have $\cos 3 x \approx 1-\frac{9}{2} x^{2}+\frac{27}{8} x^{4}=1-u$ where $u=\frac{9}{2} x^{2}-\frac{27}{8} x^{4}$. Since u^{3} is already a 6 th order term we can truncate at the quadratic term of the geometric series:

$$
\begin{aligned}
\frac{1}{\cos 3 x} & \approx \frac{1}{1-u} \\
& \approx 1+u+u^{2} \\
& \approx 1+\left(\frac{9}{2} x^{2}-\frac{27}{8} x^{4}\right)+\left(\frac{9}{2} x^{2}-\frac{27}{8} x^{4}\right)^{2} \\
& \approx 1+\frac{9}{2} x^{2}-\frac{27}{8} x^{4}+\frac{81}{4} x^{4} \\
& =1+\frac{9}{2} x^{2}+\frac{135}{8} x^{4}
\end{aligned}
$$

correct to 4th order.
(12) (Change of variable/rebasing polynomials)
(a) Find the Taylor expansion of the polynomial $x^{3}-x$ about $a=1$ using the identity $x=1+(x-1)$.

Solution: We have

$$
\begin{aligned}
x^{3}-x & =(1+(x-1))^{3}-(1+(x-1)) \\
& =1+3(x-1)+3(x-1)^{2}+(x-1)^{3}-1-(x-1) \\
& =2(x-1)+3(x-1)^{2}+(x-1)^{3} .
\end{aligned}
$$

(b) Expand $e^{x^{3}-x}$ to third order about $a=1$.

Solution: By the previous problem we have

$$
\begin{aligned}
\exp \left(x^{3}-x\right) & =\exp \left(2(x-1)+3(x-1)^{2}+(x-1)^{3}\right) \\
& \approx 1+\left(2(x-1)+3(x-1)^{2}+(x-1)^{3}\right) \\
& +\frac{1}{2}\left(2(x-1)+3(x-1)^{2}+(x-1)^{3}\right)^{2} \\
& +\frac{1}{6}\left(2(x-1)+3(x-1)^{2}+(x-1)^{3}\right)^{3}
\end{aligned}
$$

(no need to consider higher order terms because $u=2(x-1)+3(x-1)^{2}+(x-1)^{3}$ is a multiple of $(x-1)$ so any part of the k th power of u has at least k th order in $(x-1)$. Expanding the powers and retaining only terms up to third order we get

$$
\begin{aligned}
\exp \left(x^{3}-x\right) & \approx 1+\left(2(x-1)+3(x-1)^{2}+(x-1)^{3}\right) \\
& +\frac{1}{2}\left(4(x-1)^{2}+12(x-1)^{3}\right)+\frac{1}{6}\left(8(x-1)^{3}\right) \\
& =1+2(x-1)+5(x-1)^{2}+8 \frac{1}{3}(x-1)^{3}
\end{aligned}
$$

correct to third order.
(13) Expand $\exp (\cos 2 x)$ to sixth order about $x=0$.

Solution: We already know that $\cos \theta \approx 1-\frac{\theta^{2}}{2}+\frac{\theta^{4}}{24}-\frac{\theta^{6}}{720}$ correct to sixth order. Setting $\theta=2 x$ we get

$$
\begin{aligned}
\exp (\cos 2 x) & \approx \exp \left(1-2 \theta^{2}+\frac{2}{3} \theta^{4}-\frac{4}{45} \theta^{6}\right) \\
& =e \cdot \exp \left(-2 \theta^{2}+\frac{2}{3} \theta^{4}-\frac{4}{45} \theta^{6}\right) \\
& \approx e\left[1+\left(-2 \theta^{2}+\frac{2}{3} \theta^{4}-\frac{4}{45} \theta^{6}\right)+\frac{1}{2}\left(-2 \theta^{2}+\frac{2}{3} \theta^{4}-\frac{4}{45} \theta^{6}\right)^{2}+\frac{1}{6}\left(-2 \theta^{2}+\frac{2}{3} \theta^{4}-\frac{4}{45} \theta^{6}\right)^{3}\right] \\
& =e\left[1-2 \theta^{2}+\frac{2}{3} \theta^{4}-\frac{4}{45} \theta^{6}+\frac{1}{2}\left(4 \theta^{4}-\frac{8}{3} \theta^{6}\right)-\frac{8}{6} \theta^{6}\right] \\
& =e\left[1-2 \theta^{2}+2 \frac{2}{3} \theta^{4}-\frac{124}{45} \theta^{6}\right] \\
& =e-2 e \cdot \theta^{2}+\frac{8 e}{3} \theta^{4}-\frac{124 e}{45} \theta^{6}
\end{aligned}
$$

correct to sixth order.
(14) Show that $\log \frac{1+x}{1-x} \approx 2\left(x+\frac{x^{3}}{3}+\frac{x^{5}}{5}+\cdots\right)$. Use this to -get a good approximation to $\log 3$ via a careful choice of x.

Solution: Let $f(x)=\log (1+x)$. Then $f^{\prime}(x)=\frac{1}{1+x}, f^{(2)}(x)=-\frac{1}{(1+x)^{2}}, f^{(3)}(x)=\frac{1 \cdot 2}{(1+x)^{3}}$, $f^{(4)}(x)=-\frac{1 \cdot 2 \cdot 3}{(1+x)^{4}}$ and so on, so $f^{(k)}(x)=(-1)^{k-1} \cdot \frac{(k-1)!}{(1+x)^{k}}$. We thus have that $f(0)=0$ and for $k \geq 1$ that $f^{(k)}(0)=(-1)^{k-1}(k-1)!$ and $\frac{f^{(k)}(0)}{k!}=\frac{(-1)^{k-1}}{k}$. We conclude that

$$
\log (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots
$$

Plugging $-x$ we get:

$$
\log (1-x)=-x-\frac{x^{2}}{2}-\frac{x^{3}}{3}-\frac{x^{4}}{4} \cdots
$$

so

$$
\log \frac{1+x}{1-x}=\log (1+x)-\log (1-x)=2 x+2 \frac{x^{3}}{3}+2 \frac{x^{5}}{5}+\cdots
$$

In particular

$$
\log 3=\log \frac{1+\frac{1}{2}}{1-\frac{1}{2}}=2\left(\frac{1}{2}+\frac{1}{24}+\frac{1}{160}+\cdots\right)=1+\frac{1}{12}+\frac{1}{80}+\cdots \approx 1.096
$$

(15) (2023 Piazza @389) Find the asymptotics as $x \rightarrow \infty$
(a) $\sqrt{x^{4}+3 x^{3}}-x^{2}$

Solution: Clearly as $x \rightarrow \infty \sqrt{x^{4}+3 x^{3}} \sim \sqrt{x^{4}} \sim x^{2}$ so this is about the cancellation and we need a more precise answer. Extracting the factor of x^{2} from the square root we see

$$
\sqrt{x^{4}+3 x^{3}}-x^{2}=x^{2} \sqrt{1+\frac{3}{x}}-x^{2}=x^{2}\left(\sqrt{1+\frac{3}{x}}-1\right)
$$

To understand the behaviour of $\sqrt{1+\frac{3}{x}}-1$ we notice that $\frac{3}{x}$ is a small parameter, and that $\sqrt{1+u} \approx 1+\frac{1}{2} u-\frac{1}{8} u^{2}$ correct to second order. We thus have

$$
\begin{aligned}
\sqrt{x^{4}+3 x^{3}}-x^{2} & \approx x^{2}\left(1+\frac{1}{2} \frac{3}{x}-\frac{1}{8} \frac{9}{x^{2}}-1\right) \\
& \approx \frac{3}{2} x-\frac{9}{8}
\end{aligned}
$$

with further corrections being lower order. We conclude that this linear approximation would have been sufficient and that

$$
\sqrt{x^{4}+3 x^{3}}-x^{2} \sim \frac{3}{2} x
$$

as $x \rightarrow \infty$.
(b) $\sqrt[3]{x^{6}-x^{4}}-\sqrt{x^{4}-\frac{2}{3} x^{2}}$

Solution: Both roots are asymptotically x^{2}. Using the linear approximation we find

$$
\sqrt[3]{x^{6}-x^{4}}=x^{2} \sqrt[3]{1-\frac{1}{x^{2}}} \approx x^{2}\left(1-\frac{1}{3} \frac{1}{x^{2}}\right)
$$

and

$$
\sqrt{x^{4}-\frac{2}{3} x^{2}} \approx x^{2}\left(1-\frac{1}{2} \cdot \frac{2}{3} \cdot \frac{1}{x^{2}}\right)
$$

which cancel exactly, so we need to go one order further. Since $(1+u)^{\alpha} \approx 1+\alpha u+\frac{\alpha(\alpha-1)}{2} u^{2}+\cdots$ as we can check by differentiation we see that as $x \rightarrow \infty$

$$
\begin{aligned}
& \sqrt{1+u} \approx 1+\frac{1}{2} u-\frac{1}{8} u^{2} \\
& \sqrt[3]{1+u} \approx 1+\frac{1}{3} u-\frac{1}{9} u^{2}
\end{aligned}
$$

to second order, so

$$
\begin{aligned}
\sqrt[3]{x^{6}-x^{4}}-\sqrt{x^{4}-\frac{2}{3} x^{2}} & \approx x^{2}\left[\left(1-\frac{1}{3 x^{2}}-\frac{1}{9 x^{4}}\right)-\left(1-\frac{1}{2} \frac{2}{3 x^{2}}-\frac{4}{8 \cdot 9 x^{4}}\right)\right] \\
& \approx-\frac{1}{18 x^{2}}
\end{aligned}
$$

with further lower-order terms, so

$$
\sqrt[3]{x^{6}-x^{4}}-\sqrt{x^{4}-\frac{2}{3} x^{2}} \sim-\frac{1}{18 x^{2}}
$$

as $x \rightarrow \infty$ and in particular there is decay.
(16) Evaluate $\lim _{x \rightarrow 0} \frac{e^{-x^{2} / 2}-\cos x}{x^{4}}$.

Solution: We know that $\cos x=1-\frac{x^{2}}{2}+\cdots$. Using the linear expansion $e^{u} \approx 1+u$ we'd get $e^{-x^{2} / 2} \approx 1-x^{2} / 2$ which means the difference cancels to third order, so let's expand to fourth order. We get

$$
\begin{aligned}
e^{-x^{2} / 2} & \approx 1-\frac{x^{2}}{2}+\frac{1}{2}\left(\frac{x^{2}}{2}\right)^{2}=1-\frac{x^{2}}{2}+\frac{x^{4}}{8} \\
\cos x & \approx 1-\frac{x^{2}}{2}+\frac{x^{4}}{24}
\end{aligned}
$$

Subtracting and dividing by x^{4} we get

$$
\frac{e^{-x^{2} / 2}-\cos x}{x^{4}}=\frac{1}{12}
$$

correct to 0th order, so this is the limit (expanding both functions to the next order would give the next correction).

