Math 100:V02 - SOLUTIONS TO WORKSHEET 9 CURVE SKETCHING

1. Partial derivatives

(1) Let $f(x,y) = x^3 + 3y^3 + 5xy^2$. Evaluate: (a) $\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} = \frac{\partial f}{\partial y}$ **Solution:** Holding y constant we have $\frac{\partial f}{\partial x} = 3x^2 + 5y^2$ and holding x constant we have $\begin{array}{l} \frac{\partial f}{\partial y} = \boxed{9y^2 + 10xy}.\\ \text{(b)} \quad \frac{\partial^2 f}{\partial x^2} = & \frac{\partial^2 f}{\partial x \partial y} = & \frac{\partial^2 f}{\partial x \partial y} = \\ \text{Solution:} \quad \text{We have } \quad \frac{\partial^2 f}{\partial x^2} = \left(\frac{\partial}{\partial x}\right) \left(\frac{\partial f}{\partial x}\right) = \left(\frac{\partial}{\partial x}\right) \left(3x^2 + 5y^2\right) = \boxed{6x}, \quad \frac{\partial^2 f}{\partial x \partial y} = \left(\frac{\partial}{\partial x}\right) \left(\frac{\partial f}{\partial y}\right) = \\ \left(\frac{\partial}{\partial x}\right) \left(9y^2 + 10xy\right) = \boxed{10y}, \quad \frac{\partial^2 f}{\partial y^2} = \left(\frac{\partial}{\partial y}\right) \left(\frac{\partial f}{\partial y}\right) = \left(\frac{\partial}{\partial y}\right) \left(9y^2 + 10xy\right) = \boxed{18y + 10x}. \end{array}$

2. Convexity and Concavity

- (2) Consider the curve $y = x^3 x$.
 - (a) Find the line tangent to the curve at x = 1.

Solution: $\frac{dy}{dx} = 3x^2 - 1$ so the derivative at x = 1 is 2. Since y(1) = 0 the line is Y = 2(X-1). (b) Near x = 1, is the line above or below the curve? Hint: how does the slope of the curve behave to the right and left of the point?

Solution: Since x > 0 the slope is increasing near x = 1, so to the right the function grows faster than the line, to the right is decreases slower than the line, and the line is below.

Solution: We have $x^3 - x - 2(x-1) = (x-1)(x^2 + x - 2) = (x-1)^2(x+2) = 3(x-1)^2 + (x-1)^3$ which is positive for x close enough to 1. In next week's lecture we'll talk more about the representation $x^3 - x = 2(x - 1) + 3(x - 1)^2 + (x - 1)^3$.

(3) For each curve find its domain; where is it concave up or down? Where are the inflection points.

(a)
$$y = x \log x - \frac{1}{2}x^2$$

Solution: This is defined on $(0,\infty)$. We have $y' = \log x - 1 - x$ so $y'' = \frac{1}{x} - 1$. Thus y'' > 0if x < 1, y'' < 0 if x > 1, and the function is concave up on (0, 1), concave down on $(1, \infty)$ and has an inflection point at x = 1.

(b) $y = \sqrt[3]{x}$.

Solution: This is an odd root, which is defined (and continuous) on the entire line. We have $y' = \frac{1}{2}x^{-2/3}$ which is defined for $x \neq 0$ (the tangent line at x = 0 is vertical, as we can see by switching to the representation $x = y^3$). We then have $y'' = -\frac{2}{9}x^{-5/3}$ which is positive when x < 0and positive when x > 0, so the function changes convacity at x = 0 and that is an inflection point.

3. Curve sketching

- (4) Let f(x) = x²/x²+1 for which f'(x) = 2x/(x²+1)² and f''(x) = 2(1-3x²)/(x²+1)³.
 (a) What are the domain and intercepts of f? What are the asymptotics at ±∞? Are there any
 - vertical asymptotes? What are the asymptotices there? **Solution:** The function is defined for all x (always have $x^2 + 1 > 0$). We have f(0) = 0 and conversely if f(x) = 0 then $x^2 = 0$ so x = 0. As $x \to \pm \infty$ we have

$$\frac{x^2}{x^2 + 1} \sim \frac{x^2}{x^2} = 1$$

Date: 6/2/2024, Worksheet by Lior Silberman. This instructional material is excluded from the terms of UBC Policy 81.

so we have the horizontal asymptote y = 1 in both ends.

- (b) What are the intervals of increase/decrease? The local and global extrema?
 Solution: Since ²/_{(x²+1)²} is always positive, f'(x) > 0 when x > 0 and f'(x) < 0 when x < 0. Thus f is decreasing on (-∞, 0), increasing on (0, ∞) and has a local (and global) minimum at x = 0.
- (c) What are the intervals of concavity? Any inflection points? **Solution:** Since $\frac{2}{(x^2+1)^3}$ is always positive, the sign of f''(x) is the same as that of $1 - 3x^2$. In particular f''(x) > 0 when $1 - 3x^2 > 0$, that is when $3x^2 < 1$ so when $|x| < \frac{1}{\sqrt{3}}$. Conversely f''(x) < 0 when $1 - 3x^2 < 0$ that is when $|x| > \frac{1}{\sqrt{3}}$ or when $x \in \left(-\infty, -\frac{1}{\sqrt{3}}\right) \cup \left(\frac{1}{\sqrt{3}}, \infty\right)$. We thus have inflection points at $\pm \frac{1}{\sqrt{3}}$.
- (d) Sketch a graph of f(x).

- vertical asymptotes? What are the asymptotices there?
 Solution: The function is defined for all x and is always positive. We have f(0) = 1/√2πσ². For large x the function will decay rapidly (morally like e^{-x²/2σ²} even if that's not the correct asymptotics), so we have the horizontal asymptote y = 0 on both sides.
 (b) What are the intervals of increase/decrease? The local and global extrema?
 - **Solution:** Since $\frac{1}{\sqrt{2\pi\sigma^6}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$ is always positive, f'(x) > 0 when $x < \mu$ and f'(x) < 0 when $x > \mu$. Thus f is increasing on $(-\infty, \mu)$, decreasing on (μ, ∞) and has a local (and global) maximum at $x = \mu$.

(c) What are the intervals of concavity? Any inflection points?

Solution: Since $\frac{1}{\sqrt{2\pi\sigma^{10}}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$ is always positive, the sign of f''(x) is the same as that of $((x-\mu)^2-\sigma^2)$. In particular f''(x) > 0 when $|x-\mu| > \sigma$, that is on on $(-\infty, \mu - \sigma) \cup (\mu + \sigma, \infty)$. Conversely f''(x) < 0 when $|x-\mu| < \sigma$, that is on $(\mu - \sigma, \mu + \sigma)$. Finally we see there are inflection points at $\mu \pm \sigma$.

(d) Sketch a graph of f(x).

- (6) (Final, December 2007) ****** Let $f(x) = x\sqrt{3-x}$.
 - (a) Find its domain, intercepts, and asymptotics at the endpoints. **Solution:** The function is defined for if $3 - x \ge 0$ that is for $x \le 3$. It is positive if x > 0, so if 0 < x < 3 and negative if x < 0, and thus crosses the axis at x = 0. As $x \to -\infty$ we have $x\sqrt{3-x} \sim x\sqrt{-x} \sim -|x|^{3/2}$. As $x \to 3$ we have $x \sim 3(3-x)^{1/2}$.
 - (b) What are the intervals of increase/decrease? The local and global extrema? **Solution:** We have $f'(x) = \sqrt{3-x} - \frac{x}{2\sqrt{3-x}} = \frac{2(3-x)-x}{2\sqrt{3-x}} = \frac{6-3x}{2\sqrt{3-x}} = \frac{3}{2} \cdot \frac{2-x}{\sqrt{3-x}}$. Since $\frac{3}{2\sqrt{3-x}}$ is always positive, the sign of f'(x) is determined by 2 - x. Thus f' is increasing on x < 2, decreasing for 2 < x < 3 and has its unique local maximum at x = 2.
 - (c) Given $f''(x) = \frac{3x-12}{4}(3-x)^{-3/2}$, what are the intervals of concavity? Any inflection points? **Solution:** We have $f''(x) = \frac{3(x-4)}{4(3-x)^{-3/2}}$ is always positive. Now the domain of the function is x < 3 so x - 4 < -1 < 0 on the entire domain and f''(x) < 0 for all x – so the function is concave down and has no inflection points.

