Math 100:V02 – WORKSHEET 8 APPLICATIONS OF THE CHAIN RULE

1. Review

(1) Differentiate (a) $e^{\sqrt{\cos x}}$

(2) (Final, 2014) Let $y = x^{\log x}$. Find $\frac{dy}{dx}$ in terms of x only.

2. Implicit Differentiation

(3) Find the line tangent to the curve $y^2 = 4x^3 + 2x$ at the point (2,6).

(4) (Final, 2015) Let $xy^2 + x^2y = 2$. Find $\frac{dy}{dx}$ at the point (1, 1).

(5) (Final 2012) Find the slope of the line tangent to the curve $y + x \cos y = \cos x$ at the point (0, 1).

(6) Find y'' (in terms of x, y) along the curve $x^5 + y^5 = 10$ (ignore points where y = 0).

Date: 2/2/2024, Worksheet by Lior Silberman. This instructional material is excluded from the terms of UBC Policy 81.

3. Related Rates

- (5) A particle is moving along the curve $y^2 = x^3 + 2x$. When it passes the point $(1, \sqrt{3})$ we have $\frac{dy}{dt} = 1$. Find $\frac{dx}{dt}$.
- (6) The state of a quantity of gas in a piston must satisfy the *ideal gas law*

$$PV = nRT$$
,

where P is the pressure, V is the volume, n is the number of moles of gas, T is the (absolute) temperature and R is the ideal gas constant. Suppose P = 1 atm and V = 22.4L. How fast is the pressure of the gas changing when $\frac{dV}{dt} = 2.5 \frac{\text{L}}{\text{min}}$, if the expansion is *isothermal*, that is with T held constant?

4. PARTIAL DERIVATIVES

- (7) Returning to the equation PV = nRT now treat the temperature as a *function* of both pressure and volume.
 - (a) Suppose the volume is constant. What is the rate of change of temperature with respect to pressure?
 - (b) Suppose the pressure is constant. What is the rate of change of temperature with respect to pressure?
 - (c) What is the rate of change of the temperaure with respet to the number of moles of gas, pressure and volume being constant?