Math 100:V02 - SOLUTIONS TO WORKSHEET 8 APPLICATIONS OF THE CHAIN RULE

\author{

1. Review
}
(1) Differentiate
(a) $e^{\sqrt{\cos x}}$

Solution: We repeatedly apply the chain rule:

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} e^{\sqrt{\cos x}} & =e^{\sqrt{\cos x}} \frac{\mathrm{~d}}{\mathrm{~d} x} \sqrt{\cos x} \\
& =e^{\sqrt{\cos x}} \frac{1}{2 \sqrt{\cos x}} \frac{\mathrm{~d}}{\mathrm{~d} x} \cos x \\
& =-e^{\sqrt{\cos x}} \frac{\sin x}{2 \sqrt{\cos x}}
\end{aligned}
$$

(2) (Final, 2014) Let $y=x^{\log x}$. Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x only.

Solution: Take the logarithm of both sides to get

$$
\begin{aligned}
\log y & =\log \left(x^{\log x}\right) \\
& =\log x \cdot \log x=(\log x)^{2}
\end{aligned}
$$

Differentiating both sides we find

$$
\frac{1}{y} \frac{d y}{d x}=2(\log x) \frac{1}{x}
$$

so solving for the derivatives we find

$$
\frac{d y}{d x}=2 y \frac{\log x}{x}=2 x^{\log x-1} \log x
$$

2. Implicit Differentiation

(3) Find the line tangent to the curve $y^{2}=4 x^{3}+2 x$ at the point $(2,6)$.

Solution: Differentiating with respect to x we find $2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=12 x^{2}+2$, so that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{6 x^{2}+1}{y}$. In particular at the point $(2,6)$ the slope is $\frac{25}{6}$ and the line is

$$
y=\frac{25}{6}(x-2)+6
$$

(4) (Final, 2015) Let $x y^{2}+x^{2} y=2$. Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at the point $(1,1)$.

Solution: Differentiating with respect to x we find $y^{2}+2 x y \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 x y+x^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0$ along the curve. Setting $x=y=1$ we find that, at the indicated point,

$$
3+\left.3 \frac{\mathrm{~d} y}{\mathrm{~d} x}\right|_{(1,1)}=0
$$

so

$$
\left.\frac{\mathrm{d} y}{\mathrm{~d} x}\right|_{(1,1)}=-1
$$

(5) (Final 2012) Find the slope of the line tangent to the curve $y+x \cos y=\cos x$ at the point $(0,1)$.

Solution: Differentiating with respect to x we find $y^{\prime}+\cos y-x \sin y \cdot y^{\prime}=-\sin x$, so that $y^{\prime}=-\frac{\sin x+\cos y}{1-x \sin y}=\frac{\sin x+\cos y}{x \sin y-1}$. Setting $x=0, y=1$ we get that at that point $y^{\prime}=\frac{\cos 1}{-1}=-\cos 1$.
(6) Find $y^{\prime \prime}$ (in terms of x, y) along the curve $x^{5}+y^{5}=10$ (ignore points where $y=0$).

Solution: Differentiating with respect to x we find $5 x^{4}+5 y^{4} y^{\prime}=0$, so that $y^{\prime}=-\frac{x^{4}}{y^{4}}$. Differentiating again we find

$$
y^{\prime \prime}=-\frac{4 x^{3}}{y^{4}}+\frac{4 x^{4} y^{\prime}}{y^{5}}=-\frac{4 x^{3}}{y^{4}}-\frac{4 x^{8}}{y^{9}}
$$

3. Related Rates

(5) A particle is moving along the curve $y^{2}=x^{3}+2 x$. When it passes the point $(1, \sqrt{3})$ we have $\frac{\mathrm{d} y}{\mathrm{~d} t}=1$. Find $\frac{\mathrm{d} x}{\mathrm{~d} t}$.

Solution: We differentiate along the curve with respect to time, finding

$$
2 y \frac{\mathrm{~d} y}{\mathrm{~d} t}=3 x^{2} \frac{\mathrm{~d} x}{\mathrm{~d} t}+2 \frac{\mathrm{~d} x}{\mathrm{~d} t} .
$$

Plugging in $\frac{\mathrm{d} y}{\mathrm{~d} t}=1, x=1, y=\sqrt{3}$ we find: $2 \sqrt{3}=5 \frac{\mathrm{~d} x}{\mathrm{~d} t}$ so at that time we have

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{2 \sqrt{3}}{5}
$$

(6) The state of a quantity of gas in a piston must satisfy the ideal gas law

$$
P V=n R T
$$

where P is the pressure, V is the volume, n is the number of moles of gas, T is the (absolute) temperature and R is the ideal gas constant. Suppose $P=1 \mathrm{~atm}$ and $V=22.4 \mathrm{~L}$. How fast is the pressure of the gas changing when $\frac{d V}{d t}=2.5 \frac{\mathrm{~L}}{\min }$, if the expansion is isothermal, that is with T held constant?

Solution: We differentiate along the curve with respect to time, finding

$$
\frac{d P}{d t} V+P \frac{d V}{d t}=n R \frac{d T}{d t}=0
$$

This gives

$$
\begin{aligned}
\frac{d P}{d t} & =-\frac{P}{V} \frac{d V}{d t} \\
& =-\frac{2.5}{22.4} \frac{\mathrm{~atm}}{\mathrm{~min}} .
\end{aligned}
$$

4. Partial derivatives

(7) Returning to the equation $P V=n R T$ now treat the temperature as a function of both pressure and volume.
(a) Suppose the volume is constant. What is the rate of change of temperature with respect to pressure?
Solution: We have $T=\frac{P V}{n R}$ which is linear in P so $\frac{\partial T}{\partial P}=\frac{V}{n R}$
(b) Suppose the pressure is constant. What is the rate of change of temperature with respect to pressure?
Solution: For the same reason $\frac{\partial T}{\partial V}=\frac{P}{n R}$
(c) What is the rate of change of the temperaure with respet to the number of moles of gas, pressure and volume being constant?
Solution: Now $T=\frac{P V}{R} \cdot n^{-1}$ so $\frac{\partial T}{\partial n}=-\frac{P V}{n^{2} R}$.

