Math 100:V02 - WORKSHEET 7 THE CHAIN RULE

1. The Chain Rule

(1) We know $\frac{d}{d y} \sin y=\cos y$.
(a) Expand $\sin (y+h)$ to linear order in h. Write down the linear approximation to $\sin y$ about $y=a$.
(b) Now let $F(x)=\sin (3 x)$. Expand $F(x+h)$ to linear order in h. What is the derivative of $\sin 3 x$?

Fact. $(f(g(x)))^{\prime}=f^{\prime}(g(x)) g^{\prime}(x)$ or $\frac{\mathrm{d}}{\mathrm{d} x}(f(g(x)))=\frac{d f}{d g} \cdot \frac{d g}{d x}$.
(2) Write each function as a composition and differentiate
(a) $e^{3 x}$
(b) $\sqrt{2 x+1}$
(c) (Final, 2015) $\sin \left(x^{2}\right)$
(d) $(7 x+\cos x)^{n}$.
(3) (Final, 2012) Let $f(x)=g(2 \sin x)$ where $g^{\prime}(\sqrt{2})=\sqrt{2}$. Find $f^{\prime}\left(\frac{\pi}{4}\right)$.
(4) Differentiate
(a) $7 x+\cos \left(x^{n}\right)$
(b) $e^{\sqrt{\cos x}}$
(c) $($ Final 2012$) e^{(\sin x)^{2}}$
(5) Suppose f, g are differentiable functions with $f(g(x))=x^{3}$. Suppose that $f^{\prime}(g(4))=5$. Find $g^{\prime}(4)$.
2. Differentiating logarithms

$$
\log _{b}\left(b^{x}\right)=b^{\log _{b} x}=x \quad \log _{b}(x y)=\log _{b} x+\log _{b} y \quad \log _{b}\left(x^{y}\right)=y \log _{b} x \quad \log _{b} \frac{1}{x}=-\log _{b} x
$$

Fact. $\frac{d}{d x} \log x=\frac{1}{x}$
(6) $\log \left(e^{10}\right)=$
$\log \left(2^{100}\right)=$
(in terms of $\log 2$)
(7) Differentiate
(a) $\frac{\mathrm{d}(\log (a x))}{\mathrm{d} x}=$
$\frac{\mathrm{d}}{\mathrm{d} t} \log \left(t^{2}+3 t\right)=$
(b) $\frac{\mathrm{d}}{\mathrm{d} x} x^{2} \log \left(1+x^{2}\right)=$

$$
\frac{\mathrm{d}}{\mathrm{~d} r} \frac{1}{\log (2+\sin r)}=
$$

(8) (Logarithmic differentiation) Use $\log (f g)=\log f+\log g$ to differentiate $y=\left(x^{2}+1\right) \cdot \sin x \cdot \frac{1}{\sqrt{x^{3}+3}} \cdot e^{\cos x}$.
(9) Differentiate using $f^{\prime}=f \times(\log f)^{\prime}$
(a) $\star x^{n}$
(b) x^{x}
(c) $(\log x)^{\cos x}$
(d) (Final, 2014) Let $y=x^{\log x}$. Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x only.

3. More problems

(10) Let $f(x)=g(x)^{h(x)}$. Find a formula for f^{\prime} in terms of g^{\prime} and h^{\prime}.
(11) Let $f(\theta)=\sin ^{2} \theta+\cos ^{2} \theta$. Find $\frac{d f}{d \theta}$ without using trigonometric identities. Evaluate $f(0)$ and conclude that $\sin ^{2} \theta+\cos ^{2} \theta=1$ for all θ.
(12) ("Inverse function rule") suppose $f(g(x))=x$ for all x.
(a) Show that $f^{\prime}(g(x))=\frac{1}{g^{\prime}(x)}$.
(b) Suppose $g(x)=e^{x}, f(y)=\log y$. Show that $f(g(x))=x$ and conclude that $(\log y)^{\prime}=\frac{1}{y}$.
(c) Suppose $g(\theta)=\sin \theta, f(x)=\arcsin x$ so that $f(g(\theta))=\theta$. Show that $f^{\prime}(x)=\frac{1}{\sqrt{1-x^{2}}}$.
(13) (Final, 2015) Let $x y^{2}+x^{2} y=2$. Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at the point $(1,1)$.

