Math 100:V02 - SOLUTIONS TO WORKSHEET 7 THE CHAIN RULE

1. The Chain Rule

(1) We know $\frac{d}{d y} \sin y=\cos y$.
(a) Expand $\sin (y+h)$ to linear order in h. Write down the linear approximation to $\sin y$ about $y=a$.
Solution: $\sin (y+h) \approx \sin y+h \cos y$ and $\sin y \approx \sin a+(y-a) \cos a$.
(b) Now let $F(x)=\sin (3 x)$. Expand $F(x+h)$ to linear order in h. What is the derivative of $\sin 3 x$? Solution: $\quad F(x+h)=\sin (3(x+h)=\sin (3 x+3 h)$ so we use $y=3 x$ in the previous example to get

$$
\begin{aligned}
F(x+h) & =\sin (3(x+h)) \\
& =\sin (3 x+3 h) \\
& \approx \sin (3 x)+(3 h) \cos (3 x) \\
& =\sin (3 x)+(3 \cos (3 x)) h
\end{aligned}
$$

so the derivative is $3 \cos (3 x)$.
(2) Write each function as a composition and differentiate
(a) $e^{3 x}$

Solution: This is $f(g(x))$ where $g(x)=3 x$ and $f(y)=e^{y}$. The derivative is thus

$$
e^{3 x} \cdot \frac{\mathrm{~d}(3 x)}{\mathrm{d} x}=3 e^{3 x}
$$

(b) $\sqrt{2 x+1}$

Solution: This is $f(g(x))$ where $g(x)=2 x+1$ and $f(y)=\sqrt{y}$. Thus

$$
\frac{\mathrm{d} f(g(x))}{\mathrm{d} x}=f^{\prime}(g(x)) g^{\prime}(x)=\frac{1}{2 \sqrt{g}} \cdot 2=\frac{1}{\sqrt{2 x+1}}
$$

(c) (Final, 2015) $\sin \left(x^{2}\right)$

Solution: This is $f(g(x))$ where $g(x)=x^{2}$ and $f(y)=y^{2}$. The derivative is then

$$
\cos \left(x^{2}\right) \cdot 2 x=2 x \cos \left(x^{2}\right)
$$

(d) $(7 x+\cos x)^{n}$.

Solution: This is $f(g(x))$ where $g(x)=7 x+\cos x$ and $f(y)=y^{n}$. The derivative is thus

$$
n(7 x+\cos x)^{n-1} \cdot(7-\sin x)
$$

(3) (Final, 2012) Let $f(x)=g(2 \sin x)$ where $g^{\prime}(\sqrt{2})=\sqrt{2}$. Find $f^{\prime}\left(\frac{\pi}{4}\right)$.

Solution: By the chain rule, $f^{\prime}(x)=g^{\prime}(2 \sin x) \cdot \frac{\mathrm{d}}{\mathrm{d} x}(2 \sin x)=2 g^{\prime}(2 \sin x) \cos x$. In particular,

$$
\begin{aligned}
f^{\prime}\left(\frac{\pi}{4}\right) & =2 g^{\prime}\left(2 \sin \frac{\pi}{4}\right) \cos \frac{\pi}{4}=2 g^{\prime}\left(2 \frac{\sqrt{2}}{2}\right) \cdot \frac{\sqrt{2}}{2} \\
& =2 \sqrt{2} \cdot \frac{\sqrt{2}}{2}=2
\end{aligned}
$$

(4) Differentiate
(a) $7 x+\cos \left(x^{n}\right)$

Solution: We apply linearity and then the chain rule:

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}\left(7 x+\cos \left(x^{n}\right)\right) & =\frac{\mathrm{d}(7 x)}{\mathrm{d} x}+\frac{\mathrm{d} \cos \left(x^{n}\right)}{\mathrm{d} x} \\
& =7+\frac{\mathrm{d} \cos \left(x^{n}\right)}{\mathrm{d}\left(x^{n}\right)} \cdot \frac{\mathrm{d}\left(x^{n}\right)}{\mathrm{d} x} \\
& =7-\sin \left(x^{n}\right) \cdot n x^{n-1}
\end{aligned}
$$

(b) $e^{\sqrt{\cos x}}$

Solution: We repeatedly apply the chain rule:

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} e^{\sqrt{\cos x}} & =e^{\sqrt{\cos x}} \frac{\mathrm{~d}}{\mathrm{~d} x} \sqrt{\cos x} \\
& =e^{\sqrt{\cos x}} \frac{1}{2 \sqrt{\cos x}} \frac{\mathrm{~d}}{\mathrm{~d} x} \cos x \\
& =-e^{\sqrt{\cos x}} \frac{\sin x}{2 \sqrt{\cos x}}
\end{aligned}
$$

(c) (Final 2012) $e^{(\sin x)^{2}}$

Solution: By the chain rule:

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}\left(e^{(\sin x)^{2}}\right) & =e^{(\sin x)^{2}} \frac{\mathrm{~d}}{\mathrm{~d} x}\left((\sin x)^{2}\right) \\
& =e^{(\sin x)^{2}} 2 \sin x \frac{\mathrm{~d}}{\mathrm{~d} x} \sin x \\
& =e^{(\sin x)^{2}} 2 \sin x \cos x \\
& =e^{(\sin x)^{2}} \sin (2 x)
\end{aligned}
$$

(5) Suppose f, g are differentiable functions with $f(g(x))=x^{3}$. Suppose that $f^{\prime}(g(4))=5$. Find $g^{\prime}(4)$.

Solution: Applying the chain rule we have $f^{\prime}(g(x)) \cdot g^{\prime}(x)=3 x^{2}$. Plugging in $x=4$ we get $5 g^{\prime}(4)=3 \cdot 4^{2}$ and hence $g^{\prime}(4)=\frac{48}{5}$.

2. Differentiating logarithms

(6) $\log \left(e^{10}\right)=$

$$
\log \left(2^{100}\right)=
$$

Solution: $\quad \log e^{10}=10$ while $\log \left(2^{100}\right)=100 \log 2$.
(7) Differentiate
(a) $\frac{\mathrm{d}(\log (a x))}{\mathrm{d} x}=$

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \log \left(t^{2}+3 t\right)=
$$

Solution: By the chain rule, the derivatives are: $\frac{1}{a x} \cdot a=\frac{1}{x}$ and $\frac{1}{t^{2}+3 t} \cdot(2 t+3)=\frac{2 t+t}{t^{2}+3 t}$. We can also use the $\operatorname{logarithm~laws~first:~} \log (a x)=\log a+\log x$ so $\frac{\mathrm{d}}{\mathrm{d} x}(\log a x)=\frac{\mathrm{d}}{\mathrm{d} x}(\log a)+\frac{\mathrm{d}}{\mathrm{d} x}(\log x)=\frac{1}{x}$ since $\log a$ is constant if a is. Similarly, $\log \left(t^{2}+3 t\right)=\log t+\log (t+3)$ so its derivative is $\frac{1}{t}+\frac{1}{t+3}$.
(b) $\frac{\mathrm{d}}{\mathrm{d} x} x^{2} \log \left(1+x^{2}\right)=$

$$
\frac{\mathrm{d}}{\mathrm{~d} r} \frac{1}{\log (2+\sin r)}=
$$

Solution: Applying the product rule and then the chain rule we get: $\frac{\mathrm{d}}{\mathrm{d} x}\left(x^{2} \log \left(1+x^{2}\right)\right)=$ $2 x \log \left(1+x^{2}\right)+x^{2} \frac{1}{1+x^{2}} \cdot 2 x=2 x \log \left(1+x^{2}\right)+\frac{2 x^{3}}{1+x^{2}}$. Using the quotient rule and the chain rule we get

$$
\frac{\mathrm{d}}{\mathrm{~d} r} \frac{1}{\log (2+\sin r)}=-\frac{1}{\log ^{2}(2+\sin r)} \cdot \frac{1}{2+\sin r} \cdot \cos r=-\frac{\cos r}{(2+\sin r) \log ^{2}(2+\sin r)} .
$$

(8) (Logarithmic differentiation) differentiate $y=\left(x^{2}+1\right) \cdot \sin x \cdot \frac{1}{\sqrt{x^{3}+3}} \cdot e^{\cos x}$.

Solution: We have

$$
\begin{aligned}
\log y & =\log \left(x^{2}+1\right)+\log (\sin x)+\log \left(\frac{1}{\sqrt{x^{3}+3}}\right)+\log \left(e^{\cos x}\right) \\
& =\log \left(x^{2}+1\right)+\log (\sin x)-\frac{1}{2} \log \left(x^{3}+3\right)+\cos x
\end{aligned}
$$

Differentiating with respect to x gives:

$$
\frac{y^{\prime}}{y}=\frac{2 x}{x^{2}+1}+\frac{\cos x}{\sin x}-\frac{1}{2} \frac{3 x^{2}}{x^{3}+3}-\sin x
$$

and solving for y^{\prime} finally gives

$$
y^{\prime}=\left(\frac{2 x}{x^{2}+1}+\frac{\cos x}{\sin x}-\frac{3 x}{2\left(x^{3}+3\right)}-\sin x\right) \cdot\left(x^{2}+1\right) \cdot \sin x \cdot \frac{1}{\sqrt{x^{3}+3}} \cdot e^{\cos x}
$$

(9) Differentiate using $f^{\prime}=f \times(\log f)^{\prime}$
(a) $\star x^{n}$

Solution: If $y=x^{n}$ then $\log y=n \log x$. Differentiating with respect to x gives $\frac{1}{y} y^{\prime}=\frac{n}{x}$ so $y^{\prime}=y \frac{n}{x}=n x^{n-1}$.
Solution: By the rule, $\frac{\mathrm{d}}{\mathrm{d} x}\left(x^{n}\right)=x^{n} \frac{\mathrm{~d}}{\mathrm{~d} x}\left(\log \left(x^{n}\right)\right)=x^{n}\left(\frac{n}{x}\right)=n x^{n-1}$.
(b) x^{x}

Solution: If $y=x^{x}$ then $\log y=x \log x$. Differentiating with respect to x gives $\frac{1}{y} y^{\prime}=$ $\log x+x \cdot \frac{1}{x}=\log x+1$ so $y^{\prime}=y(\log x+1)=x^{x}(\log x+1)$.
Solution: By the rule, $\frac{\mathrm{d}}{\mathrm{d} x}\left(x^{x}\right)=x^{x} \frac{\mathrm{~d}}{\mathrm{~d} x}\left(\log \left(x^{x}\right)\right)=x^{x}(\log x+1)$.
Solution: We have $x^{x}=\left(e^{\log x}\right)^{x}=e^{x \log x}$. Applying the chain rule we now get $\left(x^{x}\right)^{\prime}=$ $e^{x \log x}(\log x+1)=x^{x}(\log x+1)$.
(c) $(\log x)^{\cos x}$

Solution: By the logarithmic differentiation rule we have

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\log x)^{\cos x} & =(\log x)^{\cos x} \cdot \frac{\mathrm{~d}}{\mathrm{~d} x}(\cos x \log (\log x)) \\
& =-\sin x \log \log x(\log x)^{\cos x}+(\log x)^{\cos x} \cos x \frac{1}{\log x} \frac{1}{x} \\
& =-\sin x \log \log x(\log x)^{\cos x}+\cos x(\log x)^{\cos x-1} \frac{1}{x}
\end{aligned}
$$

(d) (Final, 2014) Let $y=x^{\log x}$. Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x only.

Solution: By the logarithmic differentiation rule we have

$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =y \frac{\mathrm{~d} \log y}{\mathrm{~d} x}=x^{\log x} \frac{\mathrm{~d}}{\mathrm{~d} x}(\log x \cdot \log x) \\
& =x^{\log x}\left(2 \log x \cdot \frac{1}{x}\right)=2 \log x \cdot x^{\log x-1}
\end{aligned}
$$

3. More problems

(10) Let $f(x)=g(x)^{h(x)}$. Find a formula for f^{\prime} in terms of g^{\prime} and h^{\prime}.

Solution: By the logarithmic differentiation rule we have

$$
\begin{aligned}
f^{\prime} & =f \cdot(h \log g)^{\prime} \\
& =f\left(h^{\prime} \log g+\frac{h}{g} g^{\prime}\right) \\
& =h \cdot g^{h-1} \cdot g^{\prime}+g^{h} \log g \cdot h^{\prime}
\end{aligned}
$$

Observe that this is the sum of what we'd get by applying the power law rule and the exponential rule.
(11) Let $f(\theta)=\sin ^{2} \theta+\cos ^{2} \theta$. Find $\frac{d f}{d \theta}$ without using trigonometric identities. Evaluate $f(0)$ and conclude that $\sin ^{2} \theta+\cos ^{2} \theta=1$ for all θ.

Solution: By the chain rule $\frac{d}{d \theta}(\sin \theta)^{2}=2 \sin \theta \cos \theta$ and $\frac{d}{d \theta}(\cos \theta)^{2}=2 \cos \theta(-\sin \theta)$ so

$$
\frac{d f}{d \theta}=2 \sin \theta \cos \theta-2 \sin \theta \cos \theta=0
$$

It follows that f is constant; since $f(0)=(\sin 0)^{2}+(\cos 0)^{2}=1$ we have $f(\theta)=1$ for all θ, which is the claim.
(12) ("Inverse function rule") suppose $f(g(x))=x$ for all x.
(a) Show that $f^{\prime}(g(x))=\frac{1}{g^{\prime}(x)}$.

Solution: Applying the chain rule we have $f^{\prime}(g(x)) \cdot g^{\prime}(x)=1$.
(b) Suppose $g(x)=e^{x}, f(y)=\log y$. Show that $f(g(x))=x$ and conclude that $(\log y)^{\prime}=\frac{1}{y}$.

Solution: $\quad f(g(x))=\log \left(e^{x}\right)=x$. We then have $f^{\prime}\left(e^{x}\right)=\frac{1}{g^{\prime}(x)}=\frac{1}{e^{x}}$ so $f^{\prime}(y)=\frac{1}{y}$ for all $y>0$.
(c) Suppose $g(\theta)=\sin \theta, f(x)=\arcsin x$ so that $f(g(\theta))=\theta$. Show that $f^{\prime}(x)=\frac{1}{\sqrt{1-x^{2}}}$.

Solution: We have $f^{\prime}(\sin \theta)=\frac{1}{\cos \theta}=\frac{1}{\sqrt{1-\sin ^{2} \theta}}$ so $f^{\prime}(x)=\frac{1}{\sqrt{1-x^{2}}}$ for $-1<x<1$.
(13) (Final, 2015) Let $x y^{2}+x^{2} y=2$. Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at the point $(1,1)$.

Solution: Differentiating with respect to x we find $y^{2}+2 x y \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 x y+x^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0$ along the curve. Setting $x=y=1$ we find that, at the indicated point,

$$
3+\left.3 \frac{\mathrm{~d} y}{\mathrm{~d} x}\right|_{(1,1)}=0
$$

So

$$
\left.\frac{\mathrm{d} y}{\mathrm{~d} x}\right|_{(1,1)}=-1
$$

