Math 100:V02 – WORKSHEET 6 EXPONENTIAL AND TRIG FUNCTIONS

1. Review: Arithmetic of derivatives

Fact. $(af + bg)' = af' + bg', \quad (fg)' = f'g + fg', \quad \left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$ $\frac{d}{dx}x^n = nx^{n-1}, \ \frac{d}{dx}e^x = e^x$

(1) Differentiate

(a) (Final, 2016) $g(x) = x^2 e^x$ (and then also $x^a e^x$)

(b) (Final, 2016)
$$h(x) = \frac{x^2+3}{2x-1}$$

(2) Let $f(x) = \frac{x}{\sqrt{x+A}}$. Given that $f'(4) = \frac{3}{16}$, give a quadratic equation for A.

(3) Suppose that f(1) = 1, g(1) = 2, f'(1) = 3, g'(1) = 4.
(a) What are the linear approximations to f and g at x = 1? Use them to find the linear approximation to fg at x = 1.

(b) Find (fg)'(1) and $\left(\frac{f}{g}\right)'(1)$.

(4) Evaluate (a) $(x \cdot x)'$ and $(x') \cdot (x')$. What did we learn?

(b) $\left(\frac{x}{x}\right)'$ and $\frac{(x')}{(x')}$. What did we learn?

Date: 25/1/2024, Worksheet by Lior Silberman. This instructional material is excluded from the terms of UBC Policy 81.

2. Exponentials

- (5) Simplify (a) $(e^5)^3$, $(2^{1/3})^{12}$, 7^{3-5} .
 - (b) $\log(10e^5)$, $\log(3^7)$.
- (6) Differentiate: (a) 10^x
 - (b) $\frac{5 \cdot 10^x + x^2}{3^x + 1}$

3. TRIGONOMETRIC FUNCTIONS

Fact.	When x i	$s \ measured$	$in \ \boldsymbol{radians},$	we have	$(\sin x)^{t}$	$x' = \cos x,$	$(\cos x)'$	$=-\sin x$
-------	------------	----------------	------------------------------	---------	----------------	----------------	-------------	------------

- (7) (Special values) What is $\sin \frac{\pi}{3}$? What is $\cos \frac{5\pi}{2}$?
- (8) Derivatives of trig functions (a) Interpret $\lim_{h\to 0} \frac{\sin h}{h}$ as a derivative and find its value.
 - (b) Differentiate $\tan \theta = \frac{\sin \theta}{\cos \theta}$.

(9) What is the equation of the line tangent the graph $y = T \sin x + \cos x$ at the point where $x = \frac{\pi}{4}$?