Math 100:V02 - SOLUTIONS TO WORKSHEET 6 EXPONENTIAL AND TRIG FUNCTIONS

1. Review: Arithmetic of derivatives

(1) Differentiate
(a) (Final, 2016) $g(x)=x^{2} e^{x}$ (and then also $x^{a} e^{x}$)

Solution: Applying the product rule we get $\frac{d g}{d x}=\frac{d\left(x^{2}\right)}{d x} \cdot e^{x}+x^{2} \cdot \frac{d\left(e^{x}\right)}{d x}=\left(2 x+x^{2}\right) e^{x}=$ $x(x+2) e^{x}$, and in general

$$
\frac{d}{d x}\left(x^{a} e^{x}\right)=a x^{a-1} e^{x}+x^{a} e^{x}=x^{a-1}(x+a) e^{x}
$$

(b) (Final, 2016) $h(x)=\frac{x^{2}+3}{2 x-1}$

Solution: Applying the quotient rule the derivative is $\frac{2 x \cdot(2 x-1)-\left(x^{2}+3\right) \cdot 2}{(2 x-1)^{2}}=\frac{4 x^{2}-2 x-2 x^{2}-6}{(2 x-1)^{2}}=$ $2 \frac{x^{2}-x-3}{(2 x-1)^{2}}$.
(2) Let $f(x)=\frac{x}{\sqrt{x}+A}$. Given that $f^{\prime}(4)=\frac{3}{16}$, give a quadratic equation for A.

Solution: $\quad f^{\prime}(x)=\frac{1 \cdot(\sqrt{x}+A)-x\left(\frac{1}{2} x^{-1 / 2}\right)}{(\sqrt{x}+A)^{2}}=\frac{\sqrt{x}+A-\frac{1}{2} \sqrt{x}}{(\sqrt{x}+A)^{2}}=\frac{\frac{1}{2} \sqrt{x}+A}{(\sqrt{x}+A)^{2}}$. Plugging in $x=4$ we have

$$
\frac{3}{16}=f^{\prime}(4)=\frac{1+A}{(2+A)^{2}}
$$

so we have

$$
3(2+A)^{2}=16(1+A)
$$

that is

$$
3 A^{2}+12 A+12=16+16 A
$$

that is

$$
3 A^{2}-4 A-4=0
$$

In fact this gives $A=-\frac{2}{3}, 2$.
(3) Suppose that $f(1)=1, g(1)=2, f^{\prime}(1)=3, g^{\prime}(1)=4$.
(a) What are the linear approximations to f and g at $x=1$? Use them to find the linear approximation to $f g$ at $x=1$.
Solution: We have

$$
\begin{aligned}
& f(x) \approx f(1)+f^{\prime}(1)(x-1)=1+3(x-1) \\
& g(x) \approx g(1)+g^{\prime}(1)(x-1)=2+4(x-1)
\end{aligned}
$$

multiplying them we have

$$
\begin{aligned}
(f g)(x) & \approx(1+3(x-1))(2+4(x-1)) \\
& =2+1 \cdot 4(x-1)+2 \cdot 3(x-1)+12(x-1)^{2} \\
& \approx 2+10(x-1)
\end{aligned}
$$

to first order.
(b) Find $(f g)^{\prime}(1)$ and $\left(\frac{f}{g}\right)^{\prime}(1)$.

Solution: $\quad(f g)^{\prime}(1)=f^{\prime}(1) g(1)+f(1) g^{\prime}(1)=3 \cdot 2+1 \cdot 4=10$.

$$
\left(\frac{f}{g}\right)^{\prime}(1)=\frac{f^{\prime}(1) g(1)-f(1) g^{\prime}(1)}{(g(1))^{2}}=\frac{3 \cdot 2-1 \cdot 4}{2^{2}}=\frac{1}{2}
$$

(4) Evaluate
(a) $(x \cdot x)^{\prime}$ and $\left(x^{\prime}\right) \cdot\left(x^{\prime}\right)$. What did we learn?

Solution: $(x \cdot x)^{\prime}=\left(x^{2}\right)^{\prime}=2 x$ while $\left(x^{\prime}\right) \cdot\left(x^{\prime}\right)=1 \cdot 1=1-$ the "rule" $(f g)^{\prime}=f^{\prime} g^{\prime}$ is wrong.
(b) $\left(\frac{x}{x}\right)^{\prime}$ and $\frac{\left(x^{\prime}\right)}{\left(x^{\prime}\right)}$. What did we learn?

Solution: $\left(\frac{x}{x}\right)^{\prime}=(1)^{\prime}=0$ while $\frac{\left(x^{\prime}\right)}{\left(x^{\prime}\right)}=\frac{1}{1}=1-$ the "rule" $\left(\frac{f}{g}\right)^{\prime}=\frac{f^{\prime}}{g^{\prime}}$ is wrong.

2. Exponentials

(5) Simplify
(a) $\left(e^{5}\right)^{3},\left(2^{1 / 3}\right)^{12}, 7^{3-5}$.

Solution: $\left(e^{5}\right)^{3}=e^{5 \cdot 3}=e^{15},\left(2^{1 / 3}\right)^{12}=2^{\frac{1}{3} \cdot 12}=2^{4}=16,7^{3-5}=7^{-2}=\frac{1}{49}$.
(b) $\log \left(10 e^{5}\right), \log \left(3^{7}\right)$.

Solution: $\log \left(10 e^{5}\right)=\log (10)+5 \log (e)=\log (10)+5, \log \left(3^{7}\right)=7 \log 3$.
(6) Differentiate:
(a) 10^{x}

Solution: This is $(\log 10) \cdot 10^{x}$.
(b) $\frac{5 \cdot 10^{x}+x^{2}}{3^{x}+1}$

Solution: By the quotient rule this is

$$
\frac{\left(5 \log 10 \cdot 10^{x}+2 x\right)\left(3^{x}+1\right)-\left(5 \cdot 10^{x}+x^{2}\right) \log 3 \cdot 3^{x}}{\left(3^{x}+1\right)^{2}}
$$

3. TRIGONOMETRIC FUNCTIONS

(7) (Special values) What is $\sin \frac{\pi}{3}$? What is $\cos \frac{5 \pi}{2}$?

Solution: $\sin \frac{\pi}{3}=\frac{\sqrt{3}}{2}, \cos \left(\frac{5 \pi}{2}\right)=\cos \left(\frac{\pi}{2}+2 \pi\right)=\cos \left(\frac{\pi}{2}\right)=0$.
(8) Derivatives of trig functions
(a) Interpret $\lim _{h \rightarrow 0} \frac{\sin h}{h}$ as a derivative and find its value.

Solution: This is $\lim _{h \rightarrow 0} \frac{\sin (0+h)-\sin 0}{h}=\left.\frac{d \sin x}{d x}\right|_{x=0}=\cos 0=1$.
(b) Differentiate $\tan \theta=\frac{\sin \theta}{\cos \theta}$.

Solution: Applying the quotient rule we get

$$
\begin{aligned}
\frac{\mathrm{d} \tan \theta}{\mathrm{~d} \theta} & =\frac{\cos \theta \cdot \cos \theta-\sin \theta \cdot(-\cos \theta)}{\cos ^{2} \theta} \\
& =\frac{\cos ^{2} \theta+\sin ^{2} \theta}{\cos ^{2} \theta}=\frac{1}{\cos ^{2} \theta}
\end{aligned}
$$

We also have

$$
\frac{\mathrm{d} \tan \theta}{\mathrm{~d} \theta}=\frac{\cos ^{2} \theta+\sin ^{2} \theta}{\cos ^{2} \theta}=1+\tan ^{2} \theta
$$

which is sometimes useful.
(9) What is the equation of the line tangent the graph $y=T \sin x+\cos x$ at the point where $x=\frac{\pi}{4}$?

Solution: We have $y\left(\frac{\pi}{4}\right)=\frac{T}{\sqrt{2}}+\frac{1}{\sqrt{2}}=\frac{T+1}{\sqrt{2}}$. Also, $\frac{\mathrm{d} y}{\mathrm{~d} x}=T \cos x-\sin x$ so $\left.\frac{\mathrm{d} y}{\mathrm{~d} x}\right|_{x=\frac{\pi}{4}}=\frac{T}{\sqrt{2}}-\frac{1}{\sqrt{2}}=$ $\frac{T-1}{\sqrt{2}}$. So the line is

$$
y=\frac{T-1}{\sqrt{2}}\left(x-\frac{\pi}{4}\right)+\frac{T+1}{\sqrt{2}}
$$

