## Math 100:V02 - WORKSHEET 4 CALCULATING DERIVATIVES

## 1. Definition of the derivative

Definition. $f(a+h) \approx f(a)+f^{\prime}(a) h\left(\right.$ or $\left.f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}\right)$
(1) Find $f^{\prime}(a)$ if
(a) $f(x)=x^{2}, a=3$.
(b) $f(x)=\frac{1}{x}$, any $a$.
(a) $f(x)=x^{3}-2 x$, any $a$ (you may use $\left.(a+h)^{3}=a^{3}+3 a^{2} h+3 a h^{2}+h^{3}\right)$.
(2) Express the limits as derivatives: $\lim _{h \rightarrow 0} \frac{\cos (5+h)-\cos 5}{h}, \lim _{x \rightarrow 0} \frac{\sin x}{x}$
(3) (Final, 2015, variant - gluing derivatives) Is the function

$$
f(x)= \begin{cases}x^{2} & x \leq 0 \\ x^{2} \cos \frac{1}{x} & x>0\end{cases}
$$

differentiable at $x=0$ ?

## 2. The tangent line

Definition. The line tangent to the graph $y=f(x)$ at $x=a$ is the line $y=f^{\prime}(a)(x-a)+f(a)$
(4) (Final, 2015) Find the equation of the line tangent to the function $f(x)=\sqrt{x}$ at $(4,2)$.
(5) (Final 2015) The line $y=4 x+2$ is tangent at $x=1$ to which function: $x^{3}+2 x^{2}+3 x, x^{2}+3 x+2$, $2 \sqrt{x+3}+2, x^{3}+x^{2}-x, x^{3}+x+2$, none of the above?
(6) Find the lines of slope 3 tangent to the curve $y=x^{3}+4 x^{2}-8 x+3$.
(7) The line $y=5 x+B$ is tangent to the curve $y=x^{3}+2 x$. What is $B$ ?

## 3. Linear approximation

Definition. $f(a+h) \approx f(a)+f^{\prime}(a) h$
(8) Estimate
(a) $\star \sqrt{1.2}$
(b) $\star($ Final, 2015) $\sqrt{8}$
(c) $\star($ Final, 2016$)(26)^{1 / 3}$
4. Arithmetic of derivatives

Fact. $(a f+b g)^{\prime}=a f^{\prime}+b g^{\prime}, \quad(f g)^{\prime}=f^{\prime} g+f g^{\prime}, \quad\left(\frac{f}{g}\right)^{\prime}=\frac{f^{\prime} g-f g^{\prime}}{g^{2}}$
$\frac{d}{d x} x^{n}=n x^{n-1}$.
(2) Differentiate
(a) $\star f(x)=6 x^{\pi}+2 x^{e}-x^{7 / 2}$
(b) $\star\left(\right.$ Final, 2016) $g(x)=x^{2} e^{x}$ (and then also $\left.x^{a} e^{x}\right)$
$(\mathrm{c}) \star($ Final 2016$) h(x)=\frac{x^{2}+3}{2 x-1}$
(d) $\star \frac{x^{2}+A}{\sqrt{x}}$
(3) $\star$ Let $f(x)=\frac{x}{\sqrt{x}+A}$. Given that $f^{\prime}(4)=\frac{3}{16}$, give a quadratic equation for $A$.
(4) Suppose that $f(1)=1, g(1)=2, f^{\prime}(1)=3, g^{\prime}(1)=4$.
(a) $\star$ What are the linear approximations to $f$ and $g$ at $x=1$ ? Use them to find the linear approximation to $f g$ at $x=1$.
(b) $\star$ Find $(f g)^{\prime}(1)$ and $\left(\frac{f}{g}\right)^{\prime}(1)$.
(5) Evaluate
(a) $\star(x \cdot x)^{\prime}$ and $\left(x^{\prime}\right) \cdot\left(x^{\prime}\right)$. What did we learn?
(b) $\star\left(\frac{x}{x}\right)^{\prime}$ and $\frac{\left(x^{\prime}\right)}{\left(x^{\prime}\right)}$. What did we learn?

