Math 100:V02 – WORKSHEET 4 CALCULATING DERIVATIVES

1. Definition of the derivative

Definition. $f(a+h) \approx f(a) + f'(a)h$ (or $f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$)

(1) Find f'(a) if (a) $f(x) = x^2, a = 3.$

(b) $f(x) = \frac{1}{x}$, any *a*.

(a) $f(x) = x^3 - 2x$, any *a* (you may use $(a+h)^3 = a^3 + 3a^2h + 3ah^2 + h^3$).

(2) Express the limits as derivatives: $\lim_{h\to 0} \frac{\cos(5+h)-\cos 5}{h}$, $\lim_{x\to 0} \frac{\sin x}{x}$

(3) (Final, 2015, variant – gluing derivatives) Is the function

$$f(x) = \begin{cases} x^2 & x \le 0\\ x^2 \cos \frac{1}{x} & x > 0 \end{cases}$$

differentiable at x = 0?

Date: 23/1/2024, Worksheet by Lior Silberman. This instructional material is excluded from the terms of UBC Policy 81.

Definition. The line tangent to the graph y = f(x) at x = a is the line y = f'(a)(x - a) + f(a)

(4) (Final, 2015) Find the equation of the line tangent to the function $f(x) = \sqrt{x}$ at (4, 2).

(5) (Final 2015) The line y = 4x + 2 is tangent at x = 1 to which function: $x^3 + 2x^2 + 3x$, $x^2 + 3x + 2$, $2\sqrt{x+3} + 2$, $x^3 + x^2 - x$, $x^3 + x + 2$, none of the above?

(6) Find the lines of slope 3 tangent to the curve $y = x^3 + 4x^2 - 8x + 3$.

(7) The line y = 5x + B is tangent to the curve $y = x^3 + 2x$. What is B?

Definition. $f(a+h) \approx f(a) + f'(a)h$

(8) Estimate (a) $\star \sqrt{1.2}$

(b) \star (Final, 2015) $\sqrt{8}$

(c) \star (Final, 2016) (26)^{1/3}

4. Arithmetic of derivatives

Fact. $(af + bg)' = af' + bg', \quad (fg)' = f'g + fg', \quad \left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$ $\frac{d}{dx}x^n = nx^{n-1}.$

(2) Differentiate (a) $\star f(x) = 6x^{\pi} + 2x^{e} - x^{7/2}$

(b) \star (Final, 2016) $g(x) = x^2 e^x$ (and then also $x^a e^x$)

(c) \star (Final, 2016) $h(x) = \frac{x^2+3}{2x-1}$

(d) $\star \frac{x^2 + A}{\sqrt{x}}$

(3) * Let $f(x) = \frac{x}{\sqrt{x+A}}$. Given that $f'(4) = \frac{3}{16}$, give a quadratic equation for A.

(4) Suppose that f(1) = 1, g(1) = 2, f'(1) = 3, g'(1) = 4.

(a) \star What are the linear approximations to f and g at x = 1? Use them to find the linear approximation to fg at x = 1.

(b) \star Find (fg)'(1) and $\left(\frac{f}{g}\right)'(1)$.

(5) Evaluate (a) $\star (x \cdot x)'$ and $(x') \cdot (x')$. What did we learn?

(b) $\star \left(\frac{x}{x}\right)'$ and $\frac{(x')}{(x')}$. What did we learn?