Math 100:V02 - SOLUTIONS TO WORKSHEET 4 CALCULATING DERIVATIVES

1. Definition of the derivative

Definition. $f(a+h) \approx f(a)+f^{\prime}(a) h\left(\right.$ or $\left.f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}\right)$
(1) Find $f^{\prime}(a)$ if
(a) $f(x)=x^{2}, a=3$.

Solution: $(3+h)^{2}=3+6 h+h^{2} \approx 3+6 h$ to first order so $f^{\prime}(3)=6$.
Solution: $\lim _{h \rightarrow 0} \frac{(3+h)^{2}-(3)^{2}}{h}=\lim _{h \rightarrow 0} \frac{9+6 h+h^{2}-9}{h}=\lim _{h \rightarrow 0} \frac{6 h+h^{2}}{h}=\lim _{h \rightarrow 0}(6+h)=6$.
(b) $f(x)=\frac{1}{x}$, any a.

Solution: $\quad \frac{1}{a+h}-\frac{1}{a}=\frac{a}{a(a+h)}-\frac{a+h}{a(a+h)}=-\frac{h}{a(a+h)} \sim-\frac{h}{a^{2}}$ so $f^{\prime}(a)=-\frac{1}{a^{2}}$.
Solution: $\quad \lim _{h \rightarrow 0} \frac{\frac{1}{a+h}-\frac{1}{a}}{h}=\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{a-(a+h)}{a(a+h)}\right)=\lim _{h \rightarrow 0} \frac{-h}{h \cdot a(a+h)}=-\lim _{h \rightarrow 0} \frac{1}{a(a+h)}=$ $-\frac{1}{a^{2}}$
(a) $f(x)=x^{3}-2 x$, any a (you may use $(a+h)^{3}=a^{3}+3 a^{2} h+3 a h^{2}+h^{3}$).

Solution: We have

$$
\begin{aligned}
(a+h)^{3}-2(a+h) & =a^{3}+3 a^{2} h+3 a h^{2}+h^{3}-2 a-2 h \\
& =\left(a^{3}-2 a\right)+\left(3 a^{2}-2\right) h+3 a h^{2}+h^{3} \\
& \approx\left(a^{3}-2 a\right)+\left(3 a^{2}-2\right) h
\end{aligned}
$$

to first order in h so the derivative is $3 a^{2}-2$.
Solution: We have

$$
\begin{aligned}
\frac{(a+h)^{3}-2(a+h)-a^{3}+2 a}{h} & =\frac{a^{3}+3 a^{2} h+3 a h^{2}+h^{3}-2 a-2 h-a^{3}+2 a}{h} \\
& =\frac{3 a^{2} h+3 a h^{2}+h^{3}-2 h}{h} \\
& =3 a^{2}-2+3 a h+h^{2} \xrightarrow[h \rightarrow 0]{ } 3 a^{2}-2 .
\end{aligned}
$$

(2) Express the limits as derivatives: $\lim _{h \rightarrow 0} \frac{\cos (5+h)-\cos 5}{h}, \lim _{x \rightarrow 0} \frac{\sin x}{x}$

Solution: These are the derivative of $f(x)=\cos x$ at the point $a=5$ and of $g(x)=\sin x$ at the point $a=0$.
(3) (Final, 2015, variant - gluing derivatives) Is the function

$$
f(x)= \begin{cases}x^{2} & x \leq 0 \\ x^{2} \cos \frac{1}{x} & x>0\end{cases}
$$

differentiable at $x=0$?
Solution: We have $f(0)=0$, so we'd have $f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x}=\lim _{x \rightarrow 0} \frac{f(x)}{x}$ provided the limit exists, and since we have different expresions for $f(x)$ on both sides of 0 we compute the limit as two one-sided limits. On the left we have

$$
\lim _{x \rightarrow 0^{-}} \frac{f(x)}{x}=\lim _{x \rightarrow 0^{-}} \frac{x^{2}}{x}=\lim _{x \rightarrow 0^{-}} x=0
$$

Alternatively, we could recognize the limit as giving the derivative of $f(x)=x^{2}$ at $x=0$. Using differentiation rules (to be covered later in the course) we know that $\left[\frac{d}{d x} x^{2}\right]_{x=0}=[2 x]_{x=0}=0$ and
it would again follow that $\lim _{x \rightarrow 0^{-}} \frac{f(x)}{x}=0$.
On the right we have

$$
\lim _{x \rightarrow 0^{+}} \frac{f(x)}{x}=\lim _{x \rightarrow 0^{+}} \frac{x^{2} \cos \frac{1}{x}}{x}=\lim _{x \rightarrow 0^{+}} x \cos \left(\frac{1}{x}\right)=0
$$

since $x \rightarrow 0$ while $\cos \left(\frac{1}{x}\right)$ is bounded. Thus the function is differentiable and its derivative is zero.

2. The tangent line

(4) (Final, 2015) Find the equation of the line tangent to the function $f(x)=\sqrt{x}$ at $(4,2)$.

Solution: $f^{\prime}(x)=\frac{1}{2 \sqrt{x}}$, so the slope of the line is $f^{\prime}(4)=\frac{1}{4}$, and the equation for the line line itself is $y-2=\frac{1}{4}(x-4)$ or $y=\frac{1}{4}(x-4)+2$ or $y=\frac{1}{4} x+1$.
(5) (Final 2015) The line $y=4 x+2$ is tangent at $x=1$ to which function: $x^{3}+2 x^{2}+3 x, x^{2}+3 x+2$, $2 \sqrt{x+3}+2, x^{3}+x^{2}-x, x^{3}+x+2$, none of the above?

Solution: The line has slope 4 and meets the curve at $(1,6)$. The last two functions don't evaluate to 6 at 1. We differentiate the first three.

$$
\begin{aligned}
\left.\frac{d}{d x}\right|_{x=1}\left(x^{3}+2 x^{2}+3 x\right) & =\left.\left(3 x^{2}+4 x+3\right)\right|_{x=1}=10 \\
\left.\frac{d}{d x}\right|_{x=1}\left(x^{2}+3 x+2\right) & =\left.(2 x+3)\right|_{x=1}=5 \\
\left.\frac{d}{d x}\right|_{x=1}(2 \sqrt{x+3}+2) & =\left.\left(\frac{2}{2 \sqrt{x+3}}\right)\right|_{x=1}=\frac{1}{2} .
\end{aligned}
$$

The answer is "none of the above".
(6) Find the lines of slope 3 tangent to the curve $y=x^{3}+4 x^{2}-8 x+3$.

Solution: $\frac{d y}{d x}=3 x^{2}+8 x-8$, so the line tangent at (x, y) has slope 3 iff $3 x^{2}+8 x-8=3$, that is iff $3\left(x^{2}-1\right)+8(x-1)=0$. We can factor this as $(x-1)(3 x+11)=0$ so the x-coordinates of the points of tangency are $1,-\frac{11}{3}$ and the lines are:

$$
\begin{aligned}
& y=3(x-1) \\
& y=3\left(x+\frac{11}{3}\right)+\left(\left(\frac{11}{3}\right)^{3}+4\left(\frac{11}{3}\right)^{2}-8\left(\frac{11}{3}\right)+3\right)
\end{aligned}
$$

(7) The line $y=5 x+B$ is tangent to the curve $y=x^{3}+2 x$. What is B ?

Solution: At the point (x, y) the curve has slope $\frac{d y}{d x}=3 x^{2}+2$, so the curve has slope 5 at the points where $x= \pm 1$, that is the points $(-1,-3)$ and $(1,3)$. The line needs to meet the curve at the point, so there are two solutions:

$$
\begin{array}{ll}
y=5 x+2 & (\text { tangent at }(-1,-3)) \\
y=5 x-2 & (\text { tangent at }(1,3))
\end{array}
$$

3. Linear approximation

Definition. $f(a+h) \approx f(a)+f^{\prime}(a) h$
(8) Estimate
(a) $\star \sqrt{1.2}$

Solution: Let $f(x)=\sqrt{x}$ so that $f^{\prime}(x)=\frac{1}{2 \sqrt{x}}$. Then $f(1)=1$ and $f^{\prime}(1)=\frac{1}{2}$ so $f(1.2) \approx$ $f(1)+f^{\prime}(1) \cdot 0.2=1+\frac{1}{2} \cdot 0.2=1.1$.
Better: $f(1.21)=1.1$ and $f^{\prime}(1.21)=\frac{1}{2.2}$ so $f(1.2)=f(1.21-0.01) \approx 1.1-0.01 \cdot \frac{1}{2.2} \approx 1.09545$.
(b) $\star($ Final, 2015) $\sqrt{8}$

Solution: Using the same f we have $f(9-1) \approx f(9)+f^{\prime}(9) \cdot(-1)=3-\frac{1}{6}=2 \frac{5}{6}$.
(c) $\star\left(\right.$ Final, 2016) $(26)^{1 / 3}$

Solution: Let $f(x)=x^{1 / 3}$ so that $f^{\prime}(x)=\frac{1}{3} x^{-2 / 3}$. Then $f(27)=3$ and $f^{\prime}(27)=\frac{1}{3 \cdot 27^{2 / 3}}=\frac{1}{27}$ so

$$
f(26)=f(27-1) \approx f(27)+(-1) \cdot f^{\prime}(27)=3-\frac{1}{27}=2 \frac{26}{27}
$$

4. Arithmetic of derivatives

(2) Differentiate
(a) $\star f(x)=6 x^{\pi}+2 x^{e}-x^{7 / 2}$

Solution: This is a linear combination of power laws so $f^{\prime}(x)=6 \pi x^{\pi-1}+2 e x^{e-1}-\frac{7}{2} x^{5 / 2}$.
(b) $\star\left(\right.$ Final, 2016) $g(x)=x^{2} e^{x}$ (and then also $\left.x^{a} e^{x}\right)$

Solution: Applying the product rule we get $\frac{d g}{d x}=\frac{d\left(x^{2}\right)}{d x} \cdot e^{x}+x^{2} \cdot \frac{d\left(e^{x}\right)}{d x}=\left(2 x+x^{2}\right) e^{x}=$ $x(x+2) e^{x}$, and in general

$$
\frac{d}{d x}\left(x^{a} e^{x}\right)=a x^{a-1} e^{x}+x^{a} e^{x}=x^{a-1}(x+a) e^{x}
$$

(c) $\star($ Final 2016$) h(x)=\frac{x^{2}+3}{2 x-1}$

Solution: Applying the quotient rule the derivative is $\frac{2 x \cdot(2 x-1)-\left(x^{2}+3\right) \cdot 2}{(2 x-1)^{2}}=\frac{4 x^{2}-2 x-2 x^{2}-6}{(2 x-1)^{2}}=$ $2 \frac{x^{2}-x-3}{(2 x-1)^{2}}$.
(d) $\star \frac{x^{2}+A}{\sqrt{x}}$

Solution: We write the function as $x^{3 / 2}+A x^{-1 / 2}$ so its derivative is $\frac{3}{2} x^{1 / 2}-\frac{A}{2} x^{-3 / 2}$.
(3) \star Let $f(x)=\frac{x}{\sqrt{x}+A}$. Given that $f^{\prime}(4)=\frac{3}{16}$, give a quadratic equation for A.

Solution: $\quad f^{\prime}(x)=\frac{1 \cdot(\sqrt{x}+A)-x\left(\frac{1}{2} x^{-1 / 2}\right)}{(\sqrt{x}+A)^{2}}=\frac{\sqrt{x}+A-\frac{1}{2} \sqrt{x}}{(\sqrt{x}+A)^{2}}=\frac{\frac{1}{2} \sqrt{x}+A}{(\sqrt{x}+A)^{2}}$. Plugging in $x=4$ we have

$$
\frac{3}{16}=f^{\prime}(4)=\frac{1+A}{(2+A)^{2}}
$$

so we have

$$
3(2+A)^{2}=16(1+A)
$$

that is

$$
3 A^{2}+12 A+12=16+16 A
$$

that is

$$
3 A^{2}-4 A-4=0
$$

In fact this gives $A=-\frac{2}{3}, 2$.
(4) Suppose that $f(1)=1, g(1)=2, f^{\prime}(1)=3, g^{\prime}(1)=4$.
(a) \star What are the linear approximations to f and g at $x=1$? Use them to find the linear approximation to $f g$ at $x=1$.
Solution: We have

$$
\begin{aligned}
& f(x) \approx f(1)+f^{\prime}(1)(x-1)=1+3(x-1) \\
& g(x) \approx g(1)+g^{\prime}(1)(x-1)=2+4(x-1)
\end{aligned}
$$

multiplying them we have

$$
\begin{aligned}
(f g)(x) & \approx(1+3(x-1))(2+4(x-1)) \\
& =2+1 \cdot 4(x-1)+2 \cdot 3(x-1)+12(x-1)^{2} \\
& \approx 2+10(x-1)
\end{aligned}
$$

to first order.
(b) \star Find $(f g)^{\prime}(1)$ and $\left(\frac{f}{g}\right)^{\prime}(1)$.

Solution: $\quad(f g)^{\prime}(1)=f^{\prime}(1) g(1)+f(1) g^{\prime}(1)=3 \cdot 2+1 \cdot 4=10$.

$$
\left(\frac{f}{g}\right)^{\prime}(1)=\frac{f^{\prime}(1) g(1)-f(1) g^{\prime}(1)}{(g(1))^{2}}=\frac{3 \cdot 2-1 \cdot 4}{2^{2}}=\frac{1}{2}
$$

(5) Evaluate
(a) $\star(x \cdot x)^{\prime}$ and $\left(x^{\prime}\right) \cdot\left(x^{\prime}\right)$. What did we learn?

Solution: $(x \cdot x)^{\prime}=\left(x^{2}\right)^{\prime}=2 x$ while $\left(x^{\prime}\right) \cdot\left(x^{\prime}\right)=1 \cdot 1=1-$ the "rule" $(f g)^{\prime}=f^{\prime} g^{\prime}$ is wrong.
(b) $\star\left(\frac{x}{x}\right)^{\prime}$ and $\frac{\left(x^{\prime}\right)}{\left(x^{\prime}\right)}$. What did we learn?

Solution: $\left(\frac{x}{x}\right)^{\prime}=(1)^{\prime}=0$ while $\frac{\left(x^{\prime}\right)}{\left(x^{\prime}\right)}=\frac{1}{1}=1-$ the "rule" $\left(\frac{f}{g}\right)^{\prime}=\frac{f^{\prime}}{g^{\prime}}$ is wrong.

