Math 100:V02 - SOLUTIONS TO WORKSHEET 4 CALCULATING DERIVATIVES

1. Definition of the derivative

Definition. $f(a+h) \approx f(a) + f'(a)h$ (or $f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$)

(1) Find f'(a) if

(a) $f(x) = x^2$, a = 3.

Solution: $(3+h)^2 = 3 + 6h + h^2 \approx 3 + 6h$ to first order so f'(3) = 6.

Solution: $\lim_{h\to 0} \frac{(3+h)^2 - (3)^2}{h} = \lim_{h\to 0} \frac{9+6h+h^2-9}{h} = \lim_{h\to 0} \frac{6h+h^2}{h} = \lim_{h\to 0} (6+h) = 6.$

(b) $f(x) = \frac{1}{x}$, any a. Solution: $\frac{1}{a+h} - \frac{1}{a} = \frac{a}{a(a+h)} - \frac{a+h}{a(a+h)} = -\frac{h}{a(a+h)} \sim -\frac{h}{a^2}$ so $f'(a) = -\frac{1}{a^2}$. Solution: $\lim_{h\to 0} \frac{\frac{1}{a+h} - \frac{1}{a}}{h} = \lim_{h\to 0} \frac{1}{h} \left(\frac{a-(a+h)}{a(a+h)}\right) = \lim_{h\to 0} \frac{-h}{h \cdot a(a+h)} = -\lim_{h\to 0} \frac{1}{a(a+h)} =$

(a) $f(x) = x^3 - 2x$, any a (you may use $(a+h)^3 = a^3 + 3a^2h + 3ah^2 + h^3$).

$$(a+h)^3 - 2(a+h) = a^3 + 3a^2h + 3ah^2 + h^3 - 2a - 2h$$
$$= (a^3 - 2a) + (3a^2 - 2)h + 3ah^2 + h^3$$
$$\approx (a^3 - 2a) + (3a^2 - 2)h$$

to first order in h so the derivative is $3a^2 - 2$.

Solution: We have

$$\frac{(a+h)^3 - 2(a+h) - a^3 + 2a}{h} = \frac{a^3 + 3a^2h + 3ah^2 + h^3 - 2a - 2h - a^3 + 2a}{h}$$
$$= \frac{3a^2h + 3ah^2 + h^3 - 2h}{h}$$
$$= 3a^2 - 2 + 3ah + h^2 \xrightarrow[h \to 0]{} 3a^2 - 2.$$

(2) Express the limits as derivatives: $\lim_{h\to 0} \frac{\cos(5+h)-\cos 5}{h}$, $\lim_{x\to 0} \frac{\sin x}{x}$ Solution: These are the derivative of $f(x)=\cos x$ at the point a=5 and of $g(x)=\sin x$ at the point a=0.

(3) (Final, 2015, variant – gluing derivatives) Is the function

$$f(x) = \begin{cases} x^2 & x \le 0\\ x^2 \cos \frac{1}{x} & x > 0 \end{cases}$$

differentiable at x = 0?

Solution: We have f(0) = 0, so we'd have $f'(0) = \lim_{x\to 0} \frac{f(x)-f(0)}{x} = \lim_{x\to 0} \frac{f(x)}{x}$ provided the limit exists, and since we have different expressions for f(x) on both sides of 0 we compute the limit as two one-sided limits. On the left we have

$$\lim_{x \to 0^{-}} \frac{f(x)}{x} = \lim_{x \to 0^{-}} \frac{x^{2}}{x} = \lim_{x \to 0^{-}} x = 0.$$

Alternatively, we could recognize the limit as giving the derivative of $f(x) = x^2$ at x = 0. Using differentiation rules (to be covered later in the course) we know that $\left[\frac{d}{dx}x^2\right]_{x=0} = \left[2x\right]_{x=0} = 0$ and

it would again follow that $\lim_{x\to 0^-} \frac{f(x)}{x} = 0$. On the right we have

$$\lim_{x \to 0^+} \frac{f(x)}{x} = \lim_{x \to 0^+} \frac{x^2 \cos \frac{1}{x}}{x} = \lim_{x \to 0^+} x \cos \left(\frac{1}{x}\right) = 0$$

since $x \to 0$ while $\cos\left(\frac{1}{x}\right)$ is bounded. Thus the function is differentiable and its derivative is zero.

2. The tangent line

(4) (Final, 2015) Find the equation of the line tangent to the function $f(x) = \sqrt{x}$ at (4,2).

Solution: $f'(x) = \frac{1}{2\sqrt{x}}$, so the slope of the line is $f'(4) = \frac{1}{4}$, and the equation for the line line itself is $y - 2 = \frac{1}{4}(x - 4)$ or $y = \frac{1}{4}(x - 4) + 2$ or $y = \frac{1}{4}x + 1$.

(5) (Final 2015) The line y = 4x + 2 is tangent at x = 1 to which function: $x^3 + 2x^2 + 3x$, $x^2 + 3x + 2$, $2\sqrt{x+3} + 2$, $x^3 + x^2 - x$, $x^3 + x + 2$, none of the above?

Solution: The line has slope 4 and meets the curve at (1,6). The last two functions don't evaluate to 6 at 1. We differentiate the first three.

$$\frac{d}{dx}|_{x=1} (x^3 + 2x^2 + 3x) = (3x^2 + 4x + 3)|_{x=1} = 10$$

$$\frac{d}{dx}|_{x=1} (x^2 + 3x + 2) = (2x + 3)|_{x=1} = 5$$

$$\frac{d}{dx}|_{x=1} (2\sqrt{x+3} + 2) = \left(\frac{2}{2\sqrt{x+3}}\right)|_{x=1} = \frac{1}{2}.$$

The answer is "none of the above".

(6) Find the lines of slope 3 tangent to the curve $y = x^3 + 4x^2 - 8x + 3$.

Solution: $\frac{dy}{dx} = 3x^2 + 8x - 8$, so the line tangent at (x, y) has slope 3 iff $3x^2 + 8x - 8 = 3$, that is iff $3(x^2 - 1) + 8(x - 1) = 0$. We can factor this as (x - 1)(3x + 11) = 0 so the x-coordinates of the points of tangency are $1, -\frac{11}{3}$ and the lines are:

$$y = 3(x-1)$$
$$y = 3(x + \frac{11}{3}) + \left(\left(\frac{11}{3}\right)^3 + 4\left(\frac{11}{3}\right)^2 - 8\left(\frac{11}{3}\right) + 3\right).$$

(7) The line y = 5x + B is tangent to the curve $y = x^3 + 2x$. What is B?

Solution: At the point (x, y) the curve has slope $\frac{dy}{dx} = 3x^2 + 2$, so the curve has slope 5 at the points where $x = \pm 1$, that is the points (-1, -3) and (1, 3). The line needs to meet the curve at the point, so there are two solutions:

$$y = 5x + 2$$
 (tangent at $(-1, -3)$)
 $y = 5x - 2$ (tangent at $(1, 3)$)

3. Linear approximation

Definition. $f(a+h) \approx f(a) + f'(a)h$

- (8) Estimate
 - (a) $\star \sqrt{1.2}$

Solution: Let $f(x) = \sqrt{x}$ so that $f'(x) = \frac{1}{2\sqrt{x}}$. Then f(1) = 1 and $f'(1) = \frac{1}{2}$ so $f(1.2) \approx f(1) + f'(1) \cdot 0.2 = 1 + \frac{1}{2} \cdot 0.2 = 1.1$.

Better: f(1.21) = 1.1 and $f'(1.21) = \frac{1}{2.2}$ so $f(1.2) = f(1.21 - 0.01) \approx 1.1 - 0.01 \cdot \frac{1}{2.2} \approx 1.09545$.

(b) \star (Final, 2015) $\sqrt{8}$

Solution: Using the same f we have $f(9-1) \approx f(9) + f'(9) \cdot (-1) = 3 - \frac{1}{6} = 2\frac{5}{6}$.

(c) \star (Final, 2016) $(26)^{1/3}$

Solution: Let $f(x) = x^{1/3}$ so that $f'(x) = \frac{1}{3}x^{-2/3}$. Then f(27) = 3 and $f'(27) = \frac{1}{3 \cdot 27^{2/3}} = \frac{1}{27}$

$$f(26) = f(27 - 1) \approx f(27) + (-1) \cdot f'(27) = 3 - \frac{1}{27} = 2\frac{26}{27}.$$

4. Arithmetic of derivatives

(2) Differentiate

(a) $\star f(x) = 6x^{\pi} + 2x^{e} - x^{7/2}$

Solution: This is a linear combination of power laws so $f'(x) = 6\pi x^{\pi-1} + 2ex^{e-1} - \frac{7}{2}x^{5/2}$.

(b) \star (Final, 2016) $g(x) = x^2 e^x$ (and then also $x^a e^x$)

Solution: Applying the product rule we get $\frac{dg}{dx} = \frac{d(x^2)}{dx} \cdot e^x + x^2 \cdot \frac{d(e^x)}{dx} = (2x + x^2)e^x = x(x+2)e^x$, and in general

$$\frac{d}{dx}(x^a e^x) = ax^{a-1}e^x + x^a e^x = x^{a-1}(x+a)e^x.$$

(c) \star (Final, 2016) $h(x) = \frac{x^2+3}{2x-1}$

Solution: Applying the quotient rule the derivative is $\frac{2x \cdot (2x-1) - (x^2+3) \cdot 2}{(2x-1)^2} = \frac{4x^2 - 2x - 2x^2 - 6}{(2x-1)^2} = 2\frac{x^2 - x - 3}{(2x-1)^2}$.

 $2\frac{x^2-x-3}{(2x-1)^2}$. (d) $\star \frac{x^2+A}{\sqrt{x}}$

Solution: We write the function as $x^{3/2} + Ax^{-1/2}$ so its derivative is $\frac{3}{2}x^{1/2} - \frac{A}{2}x^{-3/2}$.

(3) \star Let $f(x) = \frac{x}{\sqrt{x}+A}$. Given that $f'(4) = \frac{3}{16}$, give a quadratic equation for A.

Solution: $f'(x) = \frac{1 \cdot (\sqrt{x} + A) - x(\frac{1}{2}x^{-1/2})}{(\sqrt{x} + A)^2} = \frac{\sqrt{x} + A - \frac{1}{2}\sqrt{x}}{(\sqrt{x} + A)^2} = \frac{\frac{1}{2}\sqrt{x} + A}{(\sqrt{x} + A)^2}$. Plugging in x = 4 we have

$$\frac{3}{16} = f'(4) = \frac{1+A}{(2+A)^2}$$

so we have

$$3(2+A)^2 = 16(1+A)$$

that is

$$3A^2 + 12A + 12 = 16 + 16A$$

that is

$$3A^2 - 4A - 4 = 0.$$

In fact this gives $A = -\frac{2}{3}, 2$.

- (4) Suppose that f(1) = 1, g(1) = 2, f'(1) = 3, g'(1) = 4.
 - (a) \star What are the linear approximations to f and g at x=1? Use them to find the linear approximation to fg at x=1.

Solution: We have

$$f(x) \approx f(1) + f'(1)(x-1) = 1 + 3(x-1)$$

$$g(x) \approx g(1) + g'(1)(x - 1) = 2 + 4(x - 1)$$

multiplying them we have

$$(fg)(x) \approx (1+3(x-1))(2+4(x-1))$$

= $2+1\cdot 4(x-1)+2\cdot 3(x-1)+12(x-1)^2$
 $\approx 2+10(x-1)$

to first order.

(b)
$$\star$$
 Find $(fg)'(1)$ and $\left(\frac{f}{g}\right)'(1)$.

(b)
$$\star$$
 Find $(fg)'(1)$ and $(\frac{f}{g})'(1)$.
Solution: $(fg)'(1) = f'(1)g(1) + f(1)g'(1) = 3 \cdot 2 + 1 \cdot 4 = 10$.

$$\left(\frac{f}{g}\right)'(1) = \frac{f'(1)g(1) - f(1)g'(1)}{(g(1))^2} = \frac{3 \cdot 2 - 1 \cdot 4}{2^2} = \frac{1}{2}.$$

(5) Evaluate

(a)
$$\star (x \cdot x)'$$
 and $(x') \cdot (x')$. What did we learn?

(a)
$$\star (x \cdot x)'$$
 and $(x') \cdot (x')$. What did we learn?
Solution: $(x \cdot x)' = (x^2)' = 2x$ while $(x') \cdot (x') = 1 \cdot 1 = 1$ – the "rule" $(fg)' = f'g'$ is wrong.

(b)
$$\star \left(\frac{x}{x}\right)'$$
 and $\frac{\left(x'\right)}{\left(x'\right)}$. What did we learn?

Solution:
$$\left(\frac{x}{x}\right)' = (1)' = 0$$
 while $\frac{(x')}{(x')} = \frac{1}{1} = 1$ - the "rule" $\left(\frac{f}{g}\right)' = \frac{f'}{g'}$ is wrong.