Math 100:V02 – WORKSHEET 2 LIMITS

1. Asymptotics

(1) How does the each expression behave when x is large? small? what is x is large but negative? Sketch a plot
(a) ax³ - bx⁵ (a, b > 0)

(b) $e^x - x^4$

(2) Say each expression in words, and then determine its asymptotics near 0 and near ∞ . (a) $e^{|x-5|^3}$

(b) $\frac{1+x}{1+2x-x^2}$

(c) $\frac{e^x + A \sin x}{e^x - x^2}$

(d) $\frac{Ae^{rt}+Be^{-st}}{t+t^2}$ where r, s > 0 and $A, B \neq 0$.

Date: 16/1/2024, Worksheet by Lior Silberman. This instructional material is excluded from the terms of UBC Policy 81.

- (3) Find the asymptotics of the indicated expression at the given point. (a) $\frac{x^5 + Ax^3 + x}{Bx^4 - x^2}$ as $x \to 0$.
 - (b) $\frac{x^2+1}{x-4}$ as $x \to 3$.

(c)
$$f(x) = \frac{x^2+1}{x-4}$$
 as $x \to 4$.

(d) $f(x) = x^2 - 1$ as $x \to 1$.

2. Limits

(4) Either evaluate the limit or explain why it does not exist. Sketching a graph might be helpful.
(a) lim_{x→5} (x³ - x)

(b)
$$\lim_{x \to 1} f(x)$$
 where $f(x) = \begin{cases} \sqrt{x} & 0 \le x < 1\\ 3 & x = 1\\ 2 - x^2 & x > 1 \end{cases}$.

(c)
$$\lim_{x \to 1} f(x)$$
 where $f(x) = \begin{cases} \sqrt{x} & 0 \le x < 1\\ 1 & x = 1\\ 4 - x^2 & x > 1 \end{cases}$.

(5) Let
$$f(x) = \frac{x-3}{x^2+x-12}$$
.
(a) (Final 2014) What is $\lim_{x\to 3} f(x)$?

(b) What about $\lim_{x\to -4} f(x)$?

(6) Evaluate (a) $\lim_{x\to\infty} \frac{e^x + A \sin x}{e^x - x^2}$

(b)
$$\lim_{x \to 0} \frac{e^x + A \sin x}{e^x - x^2}$$

(c)
$$\lim_{x \to -\infty} \frac{e^x + A \sin x}{e^x - x^2}$$

- (7) Evaluate (a) $\lim_{x \to 2} \frac{x+1}{4x^2-1}$
 - (b) (Final, 2014) $\lim_{x \to -3^+} \frac{x+2}{x+3}$.

(c)
$$\lim_{x \to 1} \frac{e^x(x-1)}{x^2+x-2}$$

(d)
$$\lim_{x \to -2^-} \frac{e^x(x-1)}{x^2 + x - 2}$$

(e) $\lim_{x \to 1} \frac{1}{(x-1)^2}$

(f) $\lim_{x \to 4} \frac{\sin x}{|x-4|}$

(g) $\lim_{x\to\frac{\pi}{2}^+} \tan x$, $\lim_{x\to\frac{\pi}{2}^-} \tan x$.

3. Limits at infinity

(6) Evaluate
(a)
$$\lim_{x\to\infty} \frac{x^2+1}{x-3}$$

(b) (Final, 2015) $\lim_{x \to -\infty} \frac{x+1}{x^2+2x-8}$

(c) (Quiz, 2015)
$$\lim_{x \to -\infty} \frac{3x}{\sqrt{4x^2 + x} - 2x}$$