Math 100:V02 - SOLUTIONS TO WORKSHEET 2 LIMITS

1. Asymptotics

- (1) How does the each expression behave when x is large? small? what is x is large but negative? Sketch a plot
 - (a) $ax^3 bx^5$ (a, b > 0)

Solution: When x is very large, x^5 dominates x^3 so $ax^3 - bx^5 \sim -ax^5$ (which is negative for x positive, positive for x negative!). When x is very small (close to zero), x^3 dominates (is bigger than x^5 though both are very small) and $ax^3 - bx^5 \sim ax^3$.

(b) $e^x - x^4$

Solution: When $x \to \infty$ is very large, $e^x \gg x^4$ so $e^x - x^4 \sim e^x$. Near we have $e^x \sim 1 \gg x^4$, so $e^x - x^4 \sim 1$. Finally when x is large but negative $(x \to -\infty)$ we have that e^x decays while x^4 grows, so $e^x \ll x^4$ and $e^x - x^4 \sim -x^4$.

- (2) Say each expression in words, and then determine its asymptotics near 0 and near ∞ .
 - (a) $e^{|x-5|^3}$

Solution: This is the exponential, of the cube, of the absolute value, of x - 5.

For x close to 0, $x - 5 \sim -5$ so $|x - 5| \sim 5$ so $|x - 5|^3 \sim 125$ so $e^{|x - 5|^3} \sim e^{125}$. For x very large $x - 5 \sim x$ and since x is positive $|x - 5| \sim |x| = x$ so $|x - 5|^3 \sim x^3$. $e^{|x - 5|^3}$ therefore grows roughly like e^{x^3} (in truth e^{x^3} is actually much bigger than $e^{(x - 5)^3}$ – the ratio is on the scale of e^{15x^2} - but our expression captures the gist of the growth pattern).

(b) $\frac{1+x}{1+2x-x^2}$

Solution: This is the ratio of (the sum of 1 and x) and (the sum of 1, 2x, and $-x^2$).

As $x \to 0$ x, x^2 are negligible next to the 1 so $\frac{1+x}{1+2x-x^2} \sim \frac{1}{1} = 1$. As $x \to \infty x$ dominates 1 so $x + 1 \sim x$ and x^2 dominates x, 1 so $1 + 2x - x^2 \sim -x^2$. Thus $\frac{1+x}{1+2x-x^2} \sim \frac{x}{-x^2} = -\frac{1}{x}$ - in other words the whole expression decays roughly like $\frac{1}{r}$.

(c) $\frac{e^x + A \sin x}{e^x - x^2}$

This is the ratio of (the sum of e^x and the product of A and $\sin x$) and (the Solution: difference of e^x and x^2).

For x near 0 we have $e^x \sim e^0 = 1$ and $\sin x \to 0$ (we'll later learn that $\sin x \sim x$ near 0) so $e^x + A\sin x \sim 1$ near 0. Similarly $x^2 \sim 0$ so $e^x - x^2 \sim 1$ and we have $\frac{e^x + A\sin x}{e^x - x^2} \sim \frac{1}{1} = 1$. For large x we have $|\sin x| \leq 1$ so $A \sin x$ is much smaller than e^x and $e^x + A \sin x \sim e^x$. Similarly e^x dominates any polynomial including x^2 and we have $e^x - x^2 \sim e^x$. Thus at infinity $\frac{e^x + A\sin x}{e^x - x^2} \sim \frac{e^x}{e^x} = 1.$

(d) $\underbrace{Ae^{rt}+Be^{-st}}_{t+t^2}$ where r, s > 0 and $A, B \neq 0$.

Solution: This is the sum of A times the exponential of r times t and B times the exponential of -s times t, all divided by the sum of t and t^2 .

As $t \to 0$ we have $t^2 \ll t$ so $t + t^2 \sim t$. $e^{rt} \sim e^0 \sim e^{-st}$ so

$$\frac{Ae^{rt} + Be^{-st}}{t+t^2} \sim \frac{A+B}{t} \,.$$

As $t \to \infty$, $t^2 \gg t$ while $e^{rt} \gg e^{-st}$ (growing exponential dominates the decaying one!). Thus

$$\frac{Ae^{rt} + Be^{-st}}{t+t^2} \sim \frac{Ae^{rt}}{t^2} \,.$$

Date: 16/1/2024, Worksheet by Lior Silberman. This instructional material is excluded from the terms of UBC Policy 81.

Conversely as $t \to -\infty$ we have $e^{-st} \gg e^{rt}$ so

$$\frac{Ae^{rt} + Be^{-st}}{t+t^2} \sim \frac{Be^{-st}}{t^2}$$

- (3) Find the asymptotics of the indicated expression at the given point.
 - (a) $\frac{x^5 + Ax^3 + x}{Bx^4 x^2}$ as $x \to 0$. Solution: As $x \to 0$ we have $\frac{x^5 + Ax^3 + x}{Bx^4 - x^2} \sim \frac{x}{-x^2} \sim -\frac{1}{x}$.
 - (b) $\frac{x^2+1}{x-4}$ as $x \to 3$. Solution: This is easy: $f(x) \sim \frac{3^2+1}{3-4} = -10$.
 - (c) $f(x) = \frac{x^2+1}{x-4}$ as $x \to 4$. **Solution:** $f(x) \sim \frac{17}{x-4}$. (d) $f(x) = x^2 - 1$ as $x \to 1$.
 - (d) $f(x) = x^2 1$ as $x \to 1$. Solution: $x^2 - 1 = (1 + (x - 1))^2 - 1 = 1 + 2(x - 1) + (x - 1)^2 - 1 = 2(x - 1) + (x - 1)^2 \sim 2(x - 1)$ as $x \to 1$.

2. Limits

(4) Either evaluate the limit or explain why it does not exist. Sketching a graph might be helpful.
(a) lim_{x→5} (x³ - x)

Solution: When the function is defined by expression the limit can be obtained by plugging in. $\lim_{x\to 5} (x^3 - x) = 125 - 5 = 120.$

(b)
$$\lim_{x \to 1} f(x)$$
 where $f(x) = \begin{cases} \sqrt{x} & 0 \le x < 1 \\ 3 & x = 1 \\ 2 - x^2 & x > 1 \end{cases}$
Solution: $\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (2 - x^2) = 2 - 1^2 = 1$ and $\lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} \sqrt{x} = \sqrt{1} = 1$ so
 $\lim_{x \to 1^+} f(x) = 1$.

(c)
$$\lim_{x \to 1} f(x)$$
 where $f(x) = \begin{cases} \sqrt{x} & 0 \le x < 1\\ 1 & x = 1\\ 4 - x^2 & x > 1 \end{cases}$

Solution: $\lim_{x\to 1^+} f(x) = \lim_{x\to 1^+} (4-x^2) = 4-1^2 = 3$ and $\lim_{x\to 1^-} f(x) = \lim_{x\to 1^-} \sqrt{x} = \sqrt{1} = 1$ so the limit does not exist (but the one-sided limits do).

(5) Let $f(x) = \frac{x-3}{x^2+x-12}$. (a) (Final 2014) What is $\lim_{x\to 3} f(x)$?

Solution:
$$f(x) = \frac{x-3}{(x-3)(x+4)} = \frac{1}{x+4}$$
 so $\lim_{x \to 3} f(x) = \frac{1}{3+4} = \boxed{\frac{1}{7}}$

(b) What about $\lim_{x\to -4} f(x)$? **Solution:** The limit does not exist: if x is very close to -4 then x + 4 is very small and $\frac{1}{x+4}$ is very large. That said, when x > -4 we have $\frac{1}{x+4} > 0$ and when x < -4 we have $\frac{1}{x+4} < 0$ so (in the extended sense)

$$\lim_{x \to -4^+} \frac{1}{x+4} = +\infty$$
$$\lim_{x \to -4^-} \frac{1}{x+4} = -\infty.$$

More on this in the next lecture.

- (6) Evaluate
 - (a) $\lim_{x\to\infty} \frac{e^x + A\sin x}{e^x x^2}$ Solution: By problem 2(c) this is 1.

(b) $\lim_{x\to 0} \frac{e^x + A \sin x}{e^x - x^2}$

Solution: By problem 2(c) this is 1 also.

(c) $\lim_{x \to -\infty} \frac{e^x + A \sin x}{e^x - x^2}$

Solution: By problem 2(c) the numerator is bounded while the denominator grows like x^2 , so the whole expression tends to 0.

(7) Evaluate

(a) $\lim_{x\to 2} \frac{x+1}{4x^2-1}$

Solution: The expression is well-behaved at x = 2 so $\lim_{x \to 2} \frac{x+1}{4x^2-1} = \frac{2+1}{4\cdot 2^2-1} = \frac{3}{15} = \frac{1}{5}$.

(b) (Final, 2014) $\lim_{x\to -3^+} \frac{x+2}{x+3}$. **Solution:** As $x \to -3$ the numerator is close to -1 and while the denominator goes to 0 so the whole expression blows up: we have $\frac{x+2}{x+3} \sim \frac{-1}{x+3}$. Now when x > -3 we have x + 3 > 0 so the whole expression is negative and $\lim_{x\to -3^+} \frac{x+2}{x+3} = \lim_{x\to -3^+} -\frac{1}{x+3} = -\infty$.

- (c) $\lim_{x \to 1} \frac{e^x(x-1)}{x^2+x-2}$ Solution: $\lim_{x \to 1} \frac{e^x(x-1)}{x^2+x-2} = \lim_{x \to 1} \frac{e^x(x-1)}{(x-1)(x+2)} = \lim_{x \to 1} \frac{e^x}{x+2} = \frac{e^1}{1+2} = \frac{e}{3}.$

(d) $\lim_{x \to -2^-} \frac{e^x(x-1)}{x^2+x-2}$ **Solution:** As $x \to -2$ we have $\frac{e^x(x-1)}{x^2+x-2} = \frac{e^x(x-1)}{(x-1)(x+2)} = \frac{e^x}{x+2} \sim \frac{e^{-2}}{x+2}$ and the expression blows up (we have a vertical asymptote). If x < -2 then x + 2 < 0 and thus

$$\lim_{x \to -2^{-}} \frac{e^x(x-1)}{x^2 + x - 2} = -\infty$$

(e) $\lim_{x \to 1} \frac{1}{(x-1)^2}$

Solution: The function blows up at both sides, and remains positive on both sides. Therefore

$$\lim_{x \to 1} \frac{1}{(x-1)^2} = \infty \,.$$

(f) $\lim_{x \to 4} \frac{\sin x}{|x-4|}$ Solution: $|x-4| \to 0$ as $x \to 4$ while $\sin x \xrightarrow[x \to 4]{} \sin 4 \neq 0$, so the function blows up there. Since |x-2| is positive and $\sin 4$ is negative $(\pi < 4 < 2\pi)$ we have

$$\lim_{x \to 4} \frac{\sin x}{|x-4|} = -\infty$$

(g) $\lim_{x\to\frac{\pi}{2}^+} \tan x$, $\lim_{x\to\frac{\pi}{2}^-} \tan x$.

Solution: We have $\tan x = \frac{\sin x}{\cos x}$. Now for x close to $\frac{\pi}{2}$, $\sin x$ is close to $\sin \frac{\pi}{2} = 1$, so $\sin x$ is positive. On the other hand $\lim_{x \to \frac{\pi}{2}} \cos x = \cos \frac{\pi}{2} = 0$ so $\tan x$ blows up there. Since $\cos x$ is decreasing on $[0,\pi]$ it is positive if $x < \frac{\pi}{2}$ and negative if $x > \frac{\pi}{2}$, so:

$$\lim_{x \to \frac{\pi}{2}^+} \tan x = -\infty$$
$$\lim_{x \to \frac{\pi}{2}^-} \tan x = +\infty$$

3. Limits at infinity

- (6) Evaluate
 - (a) $\lim_{x\to\infty} \frac{x^2+1}{x-3}$ **Solution:** As $x \to \infty$ we have $\frac{x^2+1}{x-3} \sim \frac{x^2}{x} \sim x$ so $\lim_{x\to\infty} \frac{x^2+1}{x-3} = \infty$. (b) (Final, 2015) $\lim_{x \to -\infty} \frac{x+1}{x^2+2x-8}$ **Solution:** As $x \to -\infty$ we have $\frac{x+1}{x^2+2x-8} \sim \frac{x}{x^2} \sim \frac{1}{x}$ so $\lim_{x \to -\infty} \frac{x+1}{x^2+2x-8} = 0$. (c) (Quiz, 2015) $\lim_{x \to -\infty} \frac{3x}{\sqrt{4x^2+x-2x}}$

Solution: As $x \to -\infty$ since $\sqrt{x^2} = |x| = -x$ we have

$$\frac{3x}{\sqrt{4x^2 + x} - 2x} \sim \frac{3x}{\sqrt{4x^2 - 2x}} \sim \frac{3x}{2|x| - 2x}$$
$$\sim \frac{3x}{2(-x) - 2x} \sim \frac{3x}{-4x} = \boxed{-\frac{3}{4}}.$$

and hence $\lim_{x\to-\infty} \frac{3x}{\sqrt{4x^2+x-2x}} = -\frac{3}{4}$. Solution: Change variables via x = -y with $y \to \infty$. We are then looking at

$$\frac{-3y}{\sqrt{4y^2 - y} + 2y} \sim -\frac{3y}{\sqrt{4y^2 + 2y}} \sim -\frac{3y}{2y + 2y}$$
$$\sim -\frac{3y}{4y} \sim \boxed{-\frac{3}{4}}.$$

and hence $\lim_{x\to-\infty} \frac{3x}{\sqrt{4x^2+x-2x}} = -\frac{3}{4}$.