Math 100, lecture 24. 9/4/2024
Last time: (1) Graph of $z=f(x, y), w=g(x, y, z), \ldots$
(2) Partial derivatives $\frac{\partial f}{\partial x}(x, y), \frac{\partial g}{\partial y}(x, y, z)$
(3) Directional change if $\frac{\partial f}{\partial x}<0, \frac{\partial f}{\partial x}>0$
\Rightarrow Critical points: paints where all partial derivatives vanish
Es for $f(x, y)$ need $\left\{\begin{array}{l}\frac{\partial f}{\partial x}(x, y)=0 \\ \frac{\partial f}{\partial y}(x, y)=0\end{array}\right.$.

1. CRITICAL POINTS; MULTIVARIABLE OPTIMIZATION

(1) \star How many critical points does $f(x, y)=x^{2}-x^{4}+y^{2}$ have?
$\frac{\partial f}{\partial x}=2 x-9 x^{3}=2 x\left(1-\partial x^{2}\right) ; \quad \frac{\partial f}{\partial y}=2 y$
so critical pts satisfy $\{$
$\Rightarrow \dot{x} \in\left\{0, \pm \frac{2}{\sqrt{2}}, y=0\right.$,
\Rightarrow g ts over ($0,0,\left(\frac{1}{8}, 0\right),\left(-\frac{1}{2}, 0\right)$

$$
\text { pts ane }(0,0,0), \quad\left(\pm \frac{1}{2}, 0, \frac{1}{4}\right)
$$

(2) \star Find the critical points of $f(x, y)=x^{2}-x^{4}+x y+$ y^{2}.

$$
\frac{\partial f}{\partial t}=2 x-4 x^{3}+y ; \quad \frac{\partial f}{\partial \eta}=x+2 y
$$

Need to solve $\left\{\begin{array}{l}2 x-4 x^{3}+y=0 \\ x+2 y=0\end{array}\right.$
Eliminate y (= solve one equation for y, sulstitute in other) Here $y=-\frac{1}{2} x$ so set $2 x-4 x^{3}-\frac{1}{2} x=0$
so $3 x-4 x^{3}=0$ so $4 x\left(\frac{3}{4}-x^{2}\right)=0$
so $x \in\left\{0, \frac{ \pm \sqrt{3}}{2}\right\} A$ critical pits $y=-\frac{1}{2} x$
so critical pts over $(0,0),\left(\frac{18}{2},-\frac{\sqrt{6}}{9}\right),\left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{4}\right)$
(3) (MATH 105 Final, 2013) * Find the critical points of $f(x, y)=x y e^{-2 x-y}$.

$$
\begin{aligned}
& f_{x}=y\left(e^{-2 x-y}+x e^{-2 x-y} \cdot(-2)\right)=y(1-2 x) e^{-2 x-y} \\
& f_{y}=x\left(e^{-2 x-y}+y e^{-2 x-y} \cdot(-1)\right)=x(1-y) e^{-2 x-y}
\end{aligned}
$$

critical pts over $\left\{\begin{array}{l}y(1-2 x) e^{-2 x-y}=0 \\ x(1-y) e^{-2 x-y}=0\end{array}\right.$
From $1^{s t}$ equation either $y=0$ or $x=\frac{1}{2}$.
If $y=0,2^{\text {nd d }}$ equation reads: $x \cdot(1-0)=0$ so $x=0$.
If $x=\frac{1}{2},{ }^{\prime}$, ", $\frac{1}{2}(1-y)=0$ so $y=1$
so critical pts over $(0,0),\left(\frac{1}{2}, 1\right)$.

Summary
$\frac{20}{20}$ find critical pts: (1) find f_{x}, f_{y}
(2) solve system $\left(\begin{array}{l}f_{x}, 0 \\ f_{y}, 0\end{array}\right.$
solutions are locations (x, y)
or points $(x, y, f(x, y)$ on graph

Optimization
Fact: If $f(x, y)$ is defined on closed, bounded domain R, then max/min occur at one of:
(1) critical pts
(2) singular pts
(3) boundery of R

As usual, if f is cts min \& max exist: If domain isnt closed, or isn't bod need to make special arguments
$(5) \star$ Find the critical points of $\left(7 x+3 y+2 y^{2}\right) e^{-x-y}$.
2. Optimization
(6) $\star \star$ Find the minimum of $f(x, y)=2 x^{2}+3 y^{2}-4 x-5$: y
(a) on the rectangle $0 \leq x \leq 2,-1 \leq y \leq 1$.
$\frac{\partial f}{\partial x}=4 x-4 ; \frac{\partial f}{\partial y}=6 y$ so crit pt $(1,0,-7)$
On bottom boundary segment have $f(x,-1)=2 x^{2}-4 x-2$ $\frac{d}{d x}\left(2 x^{2}-4 x-2\right)=4 x-4$ so crititaver $x=7 . f(1,-1]=-4, f(g-1)=-2$
on top, $f(x, 1)=2 x^{2}-4 x-2 \geq-4 \quad f(2,-1)=-2$.
(b) on the rectangle $2 \leq x \leq 3,-1 \leq y \leq 1$.
on left $f(0, y)=3 y^{2}-5 \geq-5$
on right $f(2,4)>3 y^{2}-5 \geqslant-5 \quad 80$ min is -7 attained at $(1,0)$
on rectangle $[2,3] \times[-1,1]$ no critical poss

