Math 100 , lecture 18, 10/212024
Last time: Optimization
(1) Closed interval method:
(a) If f is defined, cts on $[a, b], f$ has a global min, global max there. (e.j. f defined by formula)
(b) max \& min occur at one of:
(i) critical points $\left(f^{\prime}\left(x_{0}\right)=0\right)$
(2) singnlen pts $\left(f^{\prime}(x) D(X \in)\right.$
(3) endpoints a, b.
(c) on open /unbounded intervals can argue using asymptotics.
(2) To solve optimization problem:
(o) read question, draw diagram.
(1) name variables, determine domains = ranges.
(2) find relations between variables, eliminate vars to create objective function.
(3) Calculus (see above)
(4) endgame: interpret results, answer question
2. Optimization problems
(4) A standard model for the interaction between two neutral molecules is the Lennard-Jones Potential $V(r)=$ $\epsilon\left[\left(\frac{r}{R}\right)^{-12}-2\left(\frac{r}{R}\right)^{-6}\right]$. Here r is the distance between the molecules and $R, \epsilon>0$ are parameters.
must have (a) What is the range of r values that makes sense?
$r \geqslant 0$ since r is a distance, and V is under at r so (blowupl) so domain is $(0, \infty)$
(b) Physical systems tend to settle into a state of least energy. Find the minimum of this potential.

$$
\begin{aligned}
& V^{\prime}(r)=\varepsilon R^{12}(-12) r^{-13}-2 \varepsilon R^{6}(-6) r^{-7} \\
& \left.=12 \varepsilon R^{6} r^{-7}\left[-\frac{R^{6}}{r^{6}}+1\right] \quad \right\rvert\, V^{\prime}(r)=\varepsilon\left[-12\left(\frac{r}{R}\right)^{-13}\right. \\
&\left.+12\left(\frac{r}{k}\right)^{-7}\right] \frac{1}{R}
\end{aligned}
$$

So $V^{\prime}(r)=0$ if $l=\frac{R^{6}}{r^{6}}$ if $r=R$.
if ocr $<R$ then $\left(\frac{R}{r}\right)^{6}>1, v^{\prime}(r)<0$
of $r>R$ then $\left(\frac{R}{r}\right)^{6} c 1, V^{\prime}(r)>0$
so $r_{0}=R$ is the location of the global \min
Or: as $r \rightarrow 0, V(r) \backsim \varepsilon\left(\frac{R}{r}\right)^{12} \rightarrow \infty$ a $r \rightarrow \infty, V(r) n-2\left(\frac{R}{r}\right)^{6} \rightarrow 0$

$$
V(R)=-\varepsilon<0
$$

so \min at $r=R$
(c) Expand the potential to second order about the

Expand $V(r)=\varepsilon\left[\left(\frac{r}{R}\right)^{-12}-2\left(\frac{r}{R}\right)^{-6}\right]$ to $2^{\text {nd }}$ order about R
know:

$$
\begin{aligned}
& V^{\prime}(r)=\frac{\varepsilon}{R}\left[-12\left(\frac{r}{R}\right)^{-13}+12\left(\frac{r}{R}\right)^{-7}\right] \\
& V^{\prime \prime}(r)=\frac{\varepsilon}{R^{2}}\left[156\left(\frac{r}{R}\right)^{-14}-84\left(\frac{r}{R}\right)^{-8}\right]
\end{aligned}
$$

So $V(R)=-\varepsilon, V^{\prime}(R)=0, V^{\prime \prime}(R)=72 \frac{\varepsilon}{R^{2}}$
So as $r \rightarrow R, V(r) s-\varepsilon+\frac{1}{2} 72 \frac{\varepsilon}{R^{2}}(r-R)^{2}$

$$
\begin{aligned}
& \Perp-\varepsilon+36 \frac{\varepsilon}{R^{2}}(r-R)^{2}= \\
& \approx-\varepsilon+36 \varepsilon\left(\frac{r}{R}-1\right)^{2}
\end{aligned}
$$

(or: write $r=R+h$ then

$$
\begin{aligned}
& r=R+h \\
&\left(\frac{r}{R}\right)^{-6}=\left(\frac{R+h}{R}\right)^{-6}=\left(1+\frac{r}{h}\right)^{-6}=\left(\frac{1}{1+h / R}\right)^{6} \\
& \approx\left(1-\frac{h}{R}+\frac{h^{2}}{R^{2}}\right)^{6} \approx 1-\frac{6 h}{R}+? \frac{h^{2}}{R^{2}} \\
& \frac{1}{1-h^{2}} \times 1+h+h^{2}+
\end{aligned}
$$

(6) (Final 2012) The right-angled triangle $\triangle A B P$ has the vertex $A=(-1,0)$, a vertex P on the semicircle $y=\sqrt{1-x^{2}}$, and another vertex B on the x-axis with the right angle at B. What is the largest possidle area of such a triangle?

$A=$ area of triangle
them

$$
A=\frac{1}{2}(1+x) \sqrt{1-x^{2}}
$$

defines on $[-1, T]$.
Then $A^{\prime}(x)=\frac{1}{2} \sqrt{1-x^{2}}+\frac{1}{2}(1+x) \cdot\left(1-x^{2}\right)^{-\frac{1}{2}} \cdot(-2 x)$

$$
\begin{aligned}
& =\frac{\sqrt{1-x^{2}} \cdot \sqrt{1 x^{2}}-2(1+x) x}{2 \sqrt{1-x^{2}}}=\frac{1-x^{2}-2 x-2 x^{2}}{2 \sqrt{1-x^{2}}} \\
& =\frac{1-2 x-3 x^{2}}{2 \sqrt{1-x^{2}}}
\end{aligned}
$$

zeroes of A^{\prime} are when $3 x^{2}+2 x-1=0$

$$
\begin{array}{ll}
\text { So } x=\frac{-2 \pm \sqrt{4^{2}+12}}{6}=-\frac{1}{3} \pm \frac{1}{6} \sqrt{16}=-\frac{1}{3} \pm \frac{4}{6} \\
& E\left\{\frac{1}{3},-1\right\} \\
A(-1)=0 \\
A\left(+\frac{1}{3}\right)=\frac{1}{2} \cdot \frac{4}{3} \sqrt{\frac{8}{3}}=\frac{4 \cdot 2 \cdot \sqrt{2}}{2 \cdot 3 \cdot 3}=\frac{4 \sqrt{2}}{9}
\end{array}
$$

$A(1)=0$
so maximum is at $x_{3} \frac{1}{3}$, largest area is $9 \sqrt{2} / 9$
(7) A ferry operator is trying to optimize profits. Before each ferry trip workers spend some time loading cars after which the trip takes 1 hour. The ferry can carry up to 100 cars, each paying $\$ 50$ for the trip. Worker salaries total $\$ 500 /$ hour and the fuel for the trip costs $\$ 250$. The workers can load $N(t)=100 \frac{t}{t+1}$ cars in t hours.
(a) How much time should be devoted to loading to maximize profits per trip.
Profit if we load for t hours
$P(t)=50 \cdot 100 \cdot \frac{t}{t+1}-500 t-250$ for \quad est $<\infty$

$$
P^{\prime}(t)=5000 \frac{(t+1)-t}{(t+1)^{2}}-500=5000\left[\frac{1}{(t+1)^{2}}-\frac{1}{10}\right]
$$

Crit h pt when $\frac{1}{(t+1)^{2}}=\frac{1}{10}$ so $t+1=\sqrt{10}$
See: if $t+1<\sqrt{10}, p^{\prime}>0$
so $t=\sqrt{10}-1$ hours
if $t+1>\sqrt{16}, p^{\prime}<0$ so $\sqrt{10-1}$ is global max,
load for $\sqrt{10}-1$ hours.
or: $P(0)=-250$, f, $t \rightarrow a \quad P(t) \sim$-500t

$$
P(1)=2500-500-250=175020
$$

80 max in interior \Rightarrow at critical pt.

