Math 100, lecture $17,12 / 3 / 2024$
Last time: Related Rates
Problem-solving: (0) read question, diagram (if possible)
(1) name variables
(2) relations between variables
\Rightarrow create objective function (wind domain)
(3) calculus
(4) endgame = answer question

Today: Optimization
same idea, different calculus steps
(i) optimization of functions
(ii) optimization problems.
let f he a function defined on some interval I.
Def: say f has a local maximum at some interior point $x_{0} \in L$ if for all $x \in \mathcal{I}$ close enough to $x_{0}, f\left(x_{0}\right) \geqslant f\left(x_{2}\right.$

San f has a global maximum at $x_{0} \in I$, if for al $x \in I$

$$
f(x) \geq f(x)
$$

(analogous defer for locellgblal minimum)

Example:

Optimization: Finding global extrema (values or points)
Calculus:" "closed interval methool"
Def: A point $\left(x_{0}, f\left(x_{0}\right)\right.$ on graph, x_{0} in interior 4 , is a: (1) critical point if $f^{\prime}\left(x_{0}\right)=0$
(2) singular point if $f^{\prime}\left(x_{0}\right)$ does not exit

Theorem: Suppose $T \cdot[a, 2]$ is closed and bourrted Then the global extrema \& f $f^{(3)}$ can only occur at:
(1) Critical points; (2) Singular points (3) end points
(iv) exist if f is cts and ...
$(a, f(f),(b, f(i))$
Remark: If f is discontinuous or I not cloves or not bounded, need extra arguments a boat existence \& max / min often use asymplotics

1. Optimization of functions
(1) Let $f(x)=x^{4}-4 x^{2}+4$.
(a) Find the absolute minimum and maximum of f on the interval $[-5,5]$.
f is continuous (defined $2 y$ formull), $[-5,5]$ is closed 80 closed interval method apglies. $f^{\prime}(x)=4 x^{3}-8 x=4 x\left(x^{2}-2\right) \quad 80$ critical points at $(0,4),(\pm \sqrt{2}, 0)$ (or over $6, \sqrt{2},-\sqrt{2})$ t ends $f(\pm 5)=529$.
\Rightarrow max $s 529, \min =0$.
(b) Find the absolute minimum and maximum of f on the interval $[-1,1]$.

$$
f(\pm 1)=1 \text { on }(-1,1) \text { only critical of is }(0,4)
$$

- $(\sqrt{2}>1)$. So max $=4, \min =1$.

Date: $12 / 3 / 2024$, Worksheet by Lior Silberman. This instructional material is excluded from the terms of UBC Policy 81.
(c) Find the absolute minimum and maximum of f (if they exist) on the interval $(-1,1)$.

$$
f(0)=4 \text { global max. }
$$

(d) Find the absolute minimum and maximum of f (if they exist) on the real line.
(2) Let $f(x)=|x|$. Find the absolute minimum and maximum of f on the interval $[-1,3]$.

> So mat $=3$ at $x \leq 3$ $\min =0$ at $x=0$
> $x=0$ is a singular point
(3) Find the global extrema (if any) of $f(x)=\frac{1}{x}$ on the intervals $(0,5)$ and $[1,4]$.

2. Optimization problems

(4) A standard model for the interaction between two neutral molecules is the Lennard-Jones Potential $V(r)=$ $\epsilon\left[\left(\frac{r}{R}\right)^{-12}-2\left(\frac{r}{R}\right)^{-6}\right]$. Here r is the distance between the molecules and $R, \epsilon>0$ are parameters.
(a) What is the range of r values that makes sense?

$$
\begin{array}{r}
\{r>0\}=(0, \infty) \text { since } V(0) \text { undefined, distances } \\
\text { are non-nesative. }
\end{array}
$$

(b) Physical systems tend to settle into a state of least energy. Find the minimum of this potential.
(c) Expand the potential to second order about the minimum.
(5) Suppose we have 100 m of fencing to enclose a rectangular area against a long, straight wall. What is the largest area we can enclose?

$$
\| / / / / / / / / N \text { enclosed area }=A \text {. }
$$

te \square Then:

Let l, w the the length \& width of the fence is metres

$$
\begin{aligned}
A^{\prime}(l) & =100-2 l-2 l \\
& =100-4 l
\end{aligned}
$$

so critical gt over $l_{0}=25$

$$
\begin{aligned}
& A(25)=25 \cdot 50=1250 \\
& A(0)=A(50)=0
\end{aligned}
$$

The Largest area possible is then $1250 \mathrm{~m}^{2}$.
(6) (Final 2012) The right-angled triangle $\triangle A B P$ has the vertex $A=(-1,0)$, a vertex P on the semicircle $y=\sqrt{1-x^{2}}$, and another vertex B on the x-axis with the right angle at B. What is the largest possidle area of such a triangle?

