Math 100, Lecture 16, 7/5/2024
Last time: Autonomous ODE: $\dot{y}=F(y)$
(1) steady stater/fined points/equillibria are values y_{0} st. $F\left(y_{0}\right)=0$. so that $y(t)=y_{0}$ is a solution
(2) By determining sign of $F(y)$ between steady states can determine flow on phase line.

Today: Related Rates
(next time: optimization)
Situations Problem specifies "setup". To solve it need bo (a) define variable; (b) find function /relation connective then ; (c) do calculuss (d) interpret result.

1. Related Rates
(1) (Final 2018)
(a) Particle A travels with a constant speed of 2 units per minute on the x-axis starting at the point $(4,0)$ and moving away from the origin, while particle B travels with a constant speed of 1 unit per minute on the y-axis starting at the point $(0,8)$ and moving towards the origin. Find the rate of change of the distance between the two particles when the distance between the two particles is ex-
1) picture \rightarrow

$$
\text { is et }\left(x_{A}(t), 0\right)
$$

$$
B \text { at }\left(0, y_{13}(t)\right)
$$

distance between them is d t = time in minutes $t \geqslant 0$
(z) relations:

$$
x_{A}(t)=4 \rightarrow 2 t
$$

$$
y_{s}(t)=8-t
$$

$$
d^{2}=x_{A}^{2}+y_{B}^{2}
$$

$$
\begin{aligned}
\Rightarrow d^{2} & =(4+2 t)^{2}+(8-t)^{2} \\
& =80+5 t^{2}
\end{aligned}
$$

at the time t where dslo, have $80+5 x^{2}=100$, so $t=2$
(3) calsalas: $2 d d=10 t$

Date: $7 / 3 / 2024$, Worksheet by Lior Silberman. This instructional material is excluded from the terms of UBC Police 81. when $d=10$, when $d=10, t=2, d=1$
(4) endgame; the distance is increasing at the rate of $1 \frac{a \operatorname{anit}}{\min }$
(b) Same question, but swap the velocities of the partickles (particle A moves along the y axis, particle B moves along the x-axis).
(2) A closed rectangular box has sides of lengths $4,5,6 \mathrm{~cm}$. Suppose that the first and second sides are lengthening by $2 \frac{\mathrm{~cm}}{\mathrm{sec}}$ while the third side is shortening by $3 \frac{\mathrm{~cm}}{\mathrm{sec}}$.
(a) How fast is the volume changing?

Call sides x, y, z. Then the volume is $V=x y z$. then $\dot{V}=\dot{x} y z+x \dot{y} z+x y \dot{z}$ at given time $\dot{V}=48 \frac{\mathrm{~cm}^{3}}{\mathrm{sec}}$
(or: $V=(x y) \cdot 7$ so $\frac{d V}{d t}=\frac{d(x y)}{d t} \cdot 7+x y \cdot \frac{d z}{d t}$

$$
\left.\begin{array}{rl}
& \frac{d x}{d t} y z+x \frac{d y}{d t} z+x y \frac{d t}{d t}
\end{array}\right)
$$

or: to $1^{\text {st }}$ order, $x=4+2 t, y \approx 5+2 t, 7 \simeq 6.37$
so $\quad V=(4+2 t)(5+2 t)(6-37)=4.5 \cdot 6+(4 \cdot 5 \cdot(-3)+4 \cdot 6 \cdot 2+2.5 \cdot 6 t$
(b) How fast is the surface area changing? $=120 \rightarrow 984$

$$
\begin{aligned}
& A=2 x y+2 x z+2 y z \quad \text { (G faces, each rectangle } \\
& \text { bounded by two sides) }
\end{aligned}
$$

(c) How fast is the main diagonal changing?

$$
d^{2}=x^{2}+y^{2}+z^{3}
$$

(4) (CLP notes problem 3.2.2.14) The minute hand of a clock is 10 cm long; the hour hand of the clock is 5 cm long. How fast is the distance between the tips of the hands decreasing at 4 o'clock?

$\theta=$ angle of minute hand
$\phi=$ " hours "
$\alpha=\phi-\theta$
$d=\operatorname{distance}$
By Law cosines: $\quad d^{2}=10^{2}+5^{2}-2 \cdot 10 \cdot 5 \cdot \cos (\alpha)$

At 4 o. lock $\alpha=\frac{1}{3} \cdot 2 \pi, d^{2}=125-100 \cos \left(\frac{2 \pi}{3}\right)$

$$
\begin{aligned}
&=175=25.7 \\
& \alpha=\phi-\theta \text { so } \dot{\alpha}=\dot{\phi}-\dot{\theta}=\frac{2 \pi}{12} \frac{1}{\text { hoar }}-\frac{2 \pi}{\text { hour }}=-\frac{11}{12} \cdot \frac{2 \pi}{\text { hr }}
\end{aligned}
$$

$$
=-\frac{4 \pi}{6} \frac{1}{\text { hour. }}
$$

$$
\begin{aligned}
& \text { Phis in } \cdot \\
& 2 \cdot 5 \cdot \sqrt{7} \cdot d=100 \cdot \sin \left(\frac{2 \pi}{3}\right) \cdot\left(-\frac{11 \pi}{6}\right) \cdot \frac{1}{\frac{\sqrt{3}}{2}}=-\frac{11}{6} \text { hour } \\
& \text { so } \quad d^{\prime}=\frac{100 \cdot \sqrt{3} \cdot 11 \pi}{2 \cdot 5 \cdot \sqrt{7} \cdot 2 \cdot 6} \frac{1}{\text { hour }}=-\frac{55 \pi \sqrt{3}}{6 \sqrt{7}} \frac{\mathrm{~cm}}{\text { hr. }}
\end{aligned}
$$

