Math 100, lecture 15, 5/3/2024

Last time: Ordinary Differential Equations

D6: (i) equation; (e) unknown function; (3) involves derivatives of the unknown.

Solution: function that satisfies the equation formily of solutions: solution that depends on a parameter garticular solution: one member of family.

- can find a particular solution satisfying a condition

- Ansatz: (family) of guesses for solutions

Today: qualitetive questions.

concentrate on auto nomous equation: no explicit dependence
on independent variable.

Math 100:V02 – WORKSHEET 13 QUALITATIVE ASPECTS OF DIFFERENTIAL EQUATIONS

1. FIXED POINTS

(1) (Review)

(a) For which value of ω is $y = A \sin(\omega t) + B \cos(\omega t)$ a solution of $\ddot{y} = -9y$?

If y = Asin (wt) + B co (wt)

then y = Acos(wb)·w - Bstn (wt)·w

and $\dot{y} = -A \sin(\omega h) \cdot \omega^2 - \beta \cos(\omega h) \omega_{=}^2 - \omega^2 (A \sin(\omega h) + \beta \cos(\omega h))$ $= -\omega^2 y$

so y is a solution of w=9 so w=3, y=A sin(2+) + B cos(3+)

(what about w=-3? Asin (-3+) + B cos(-3+)=(-A)sin(3+)+B cos(3+))

(b) Can you find the general solution of $\ddot{y} = 9y$?

- (2) (Steady states = fixed points = equilibria)
 - (a) Consider the Malthusian growth equation $\dot{y} = ry$, r > 0. Can you find a value a so that $y(t) \equiv a$ is a solution?

Need
$$0 = ra$$
 $\left(\frac{d(a)}{ct}z^{2}\right)$ so $a=0$

(b) What about the logistic growth model $\dot{y} = ry(1$ y) with r > 0?

(c) What about $\dot{y} = y^3 - 5y + 6$?

Y=a is a fixed point if
$$a^3-5q^2+6a=0$$

$$a(a^2-5a+6)=a(a-2)(a-3)$$
Get 1: \(\text{Sixed points} \) at 0.23

so fixed points at 0, a, 3

- (3) (Phase line)
 - (a) In the model $\dot{y} = ry$ with r > 0, what is the sign of \dot{y} when y < 0? when y > 0? What would the solution look like if we started with y_0 in each range? Draw the phase line.

if 400, ry20 so 100, if 450, rys0, 450

- cocco de la companya de la company

note: here steady State is unstable

phase line.

Has (1) fixed pts
(2) Lehaviour Letween them

(b) What about the *logistic growth* model $\dot{y} = ry(1 - y)$?

Fixed points at 0,1.

ghase line,

(c) What about $\dot{y} = y^3 - 5y^2 + 6y^3$

if
$$y = (-)(-)(-)(-) < 0$$
if $x = (+)(-)(-) > 0$

Compare with $i_{3}-y(y-2)^{2}$ $\frac{1}{y^{2}}+\frac{1}{y^{2}}+\frac{1}{y^{2}}$ P(dr y(x)