Math 100, Lecture 15, 5/3/2024
Last time: Ordinary Differential Equations
D6: Cilequation: (2) unknown function: (3) involves derivatives of the unknown.
Solutions function that satisfies the equation foxily \& solutions: solution that depends on a parameter particular solution: one member of family.

- Con find a particular solution satisfying a condition
(find $y(t)=A+3 \cdot t^{2} \quad$ st. $\quad y(3)=5$)
- Ansate: (Parity) of guesses for solutions

Todays qualitative questions.
concentrate on auto nomous equation: no explicit dependence on independent variable.

1. FIXED POINTS

(1) (Review)
(a) For which value of ω is $y=A \sin (\omega t)+B \cos (\omega t)$ a solution of $\ddot{y}=-9 y$?
If $y=A \sin (\omega t)+B \cos (\omega t)$
then $\dot{y}=A \cos (\omega t) \cdot \omega-B \sin (\omega t) \cdot \omega$
and $\ddot{y}=-A \sin (\omega t) \cdot \omega^{2}-B \cos (\omega t) \omega^{2}=-\omega^{2}(A \sin (\omega t)+B \cos (\omega t))$

$$
=-\omega^{2} y
$$

so y is a solution if $\omega^{2}=9$ so $w=3, y=A \sin (3 t)+B \cos (3 t)$
(what about $\omega=-3$? $A \sin (-3 t)+B \cos (-3 t)=(-A) \sin (3 t)+B \cos (3 t)$)
(b) Can you find the general solution of $\ddot{y}=9 y$?
(2) (Steady states $=$ fixed points $=$ equilibrial)
(a) Consider the Malthusian growth equation $\dot{y}=r y$, $r>0$. Can you find a value a so that $y(t) \equiv a$ is a solution?
Need $0=r a \quad\left(\frac{d(\infty)}{d t^{2}} 0\right)$ so $a=0$
$\left[\begin{array}{c}\text { Aside r we know general solution } \\ \text { steady state has } C=0\end{array}\right]$
(b) What about the logistic growth model $\dot{y}=r y(1-$ y) with $r>0$?
reed $O=v \cdot a(1-a)$ so either $a=1$ or $a=0$

$$
y^{3}-5 y^{2} \rightarrow 6 y
$$

(c) What about $\dot{y}=y^{3}$
$y=a$ is a fixed point if $a^{3}-5 a^{2}+6 a=0$

$$
a\left(a^{\prime \prime}-5 a+6\right)=a(a-2)(a-3)
$$

so fixed points at $0,2,3$
(3) (Phase line)
(a) In the model $\dot{y}=r y$ with $r>0$, what is the sign of \dot{y} when $y<0$? when $y>0$? What would the solution look like if we started with y_{0} in each range? Draw the phase line.
if $y<0, r y<0$ so $\dot{y}<0$, if $y>0, r y s 0, y>0$

note: here steady
state is unstable
phase line.
Has (1) fixed pots
(2) behaviour between them
(b) What about the logistic growth model $\dot{y}=r y(1-$ $y)$?
Fixed points at 0,1.
if $y<0, \quad \mid-g>1>0,50 \dot{y}=\operatorname{ry}(1-9)<0$
if $0<y<1, \quad b y>0$, so $\dot{y}=r y(x, y)>0$
if $\quad 4>1>0,1-y<0$, so $\dot{y}=r y(1-4)<0$
phase line,

$$
4>1>0,1-y<0,80 \quad \dot{y}=r y(1-4)<0
$$

(c) What about $\dot{y}=y^{3}-5 y^{2}+6 y$

Have $\dot{y}=y(y-2)(y-3)$ fixed p ts $y=0,2,3$
If $y<0 \quad \dot{y}=(-)(-)(-)<0$
if $\alpha y<2 \quad \dot{y}=(+)(-)(-)>0$
if $2<4<3 \quad \dot{y}=(t)(+)(-)<0$
if $3<4 \quad \dot{y}=(t)(t)(z)>0$

Compare with $\dot{y}=-y(y-2)^{2}$

Plat $y(t)$

