Math 100, lecture 14, 29/2/2024
Last time: (1) \log diff : to compute derivative of $y=f(x)$, can hit with \log, diff both sides of $\log y=\log f(x)$ wit x.
(2) Inverse trig: $\theta=\arcsin x$ if $\sin \theta=x,-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$ def if $|x| \leq 1 \quad\{\theta=\arccos x$ if $\cos \theta=x, \quad 0 \leq \theta \leq \pi$ def for all $x \rightarrow \theta=\arctan x$ if $\tan \theta=x,-\frac{\pi}{2}<\theta<\frac{\pi}{2}$
(8) to Compute $\arcsin (\sin \theta), \arccos (\cos \theta), \arctan (\tan \theta)$ use periodicity, syminetry $(\sin (\pi-\theta)=\sin \theta \cos (-\theta)=\cos \theta)$ to move θ into correct interval.
(2) to compute $\sin (\arccos x)$ etc (trig $($ in w trig (0) $)$) create triande rod, fill in two sides os $1, x$ compute $3^{\text {rd }}$ side, reid of answer.

$$
\begin{aligned}
& \text { (2) } \frac{d}{d x} \arcsin x=\frac{1}{\sqrt{1-x^{2}}} ; \frac{d}{d x} \arccos x=-\frac{1}{\sqrt{1-x^{2}}} \\
& \frac{d}{d x} \arctan x^{3} \frac{1}{1+x^{2}}
\end{aligned}
$$

Today: Differential equations
Motivation: Mast natural laws are differential equations

Goal; (1) what a $D E$ is
(2) what is a solution to a $D E$ not includes how to solve DF. modelling (how to create D_{f})
(3) qualitative study of solutions

Example: $F=$ ma unknown: position $x(t)$
Equation: $F(x)=m \cdot \frac{d^{2} x}{d t^{2}}$.
Exarople: $y^{\prime}=r y$ solution $y(x)=C_{1}^{\prime} e^{r x}$ C constant.

1. Differential equations
(1) For each equation: Is $y=3$ a solution? Is $y=2$ a solution? What are all the solutions?

$$
\begin{array}{ll}
y^{2}=4 & y^{2}=3 y \\
3^{2}=9 \neq 4 \times & 3^{2}=9=3-3 \quad \sqrt{ } \\
2^{2}=4 \sqrt{ } & 2^{2}=4 \neq 6=3.2 \times
\end{array}
$$

all solutions: $\pm 2 \quad \mid$ all solutions: 0,3
Lesson: to check it y solves equation, plug it in!
(2) For each equation: Is $y(x)=x^{2}$ a solution? Is $y(x)=e^{x}$ a solution?

$$
\begin{array}{cc}
\frac{d y}{d x}=y & \left(\frac{d y}{d x}\right)^{2}=4 y \\
\frac{d\left(x^{2}\right)}{d x}=2 x \neq x^{2} \times & \left(\frac{d\left(x^{2}\right)}{d x}\right)^{2}=(2 x)^{2}=4-x^{2} \quad \sqrt{ } \\
\frac{d\left(e^{2}\right)}{d x}=e^{x} \quad \sqrt{d\left(e^{x}\right)} \\
&)^{2}=\left(e^{x}\right)^{2}=e^{2 x} \neq 4 e^{x} x
\end{array}
$$

lesson: Cen plug in functions into $D E$.
intended equality is of functions
(3) Which of the following (if any) is a solution of $\frac{d z}{d t}+$ $t^{2}-1=z$ (challenge: find more solutions):
A. $z(t)=t^{2}$;
B. $z(t)=t^{2}+2 t+1$

$$
\text { A: } \quad 2 t+t^{2}-1 \neq t^{2}
$$

nt a solution

$$
2 t+2+t^{2}-1=t^{2}+2 t+1
$$

is a solution
(4) Which of the following (if any) is a solution of $\frac{d y}{d x}=\frac{x}{y}$
A. $y=-x$;
B. $y=x+5$
C. $y=\sqrt{x^{2}+5}$

$$
\frac{d(-x)}{d x}=-1=\frac{x}{(-x)} \sqrt{ }
$$

Sometimes we know a family of solutions
Con ask for a particular solution from tho family.
Examples $y=\sqrt{x^{2}+A}$ al solve $y^{\prime}=\frac{x}{y}$
which one has $y(1)=3$?
need $3=\sqrt{1^{2}+A}$ so $A=8$. solution is $\sqrt{x^{2}+8}$
(5) The balance of a bank account satisfies the differentaal equation $\frac{d y}{d t}=1.04 y$ (this represents interest of 4% compounded continuously). Sketch the solutions to the differential equation. What is the solution for which $y(0)=\$ 100$?
General solution $y(t)=C e^{1.04 t}$.
Particular solution. $\quad y(0)=C e^{\circ}=C$

so need $C=100$ then $y(t)=100 e^{1.00 t t}$.
(6) Suppose $\frac{d y}{d x}=a y, \frac{d z}{d x}=b z$. Can you find a differential equation satisfied by $w=\frac{y}{z}$? Hint: calculate $\frac{d w}{d x}$.
2. Solutions By massaging And Ansatze
(7) For which value of the constant ω is $y(t)=\sin (\omega t)$ a solution of the oscillation equation $\frac{d^{2} y}{d t^{2}}+4 y=0$?

$$
\dot{y}=\omega \cos (\omega t) ; \quad \ddot{y}=-\omega^{2} \sin (\omega t)
$$

so ω ant $-\omega^{2} \sin (\omega t)+4 \sin (\omega t)=0$

$$
\Leftrightarrow\left(4-\omega^{2}\right) \sin (\omega t)=0
$$

So if $w^{2}=4 \quad(w= \pm 2)$ set zero.
Get solutions $y=\sin (2 t), \quad y=\sin (-2 t)$.
Cactually $A \sin (2 t)$ works for all A;

$$
A=-1 \text { is like } w=-2
$$

$A=0$ is like $\omega=0$)
(General solution: $A \sin (2 t)+B \cos (2 t)$)

