Math 100, lecture 14, 29/2/2024

Last time: 10 Log diff: to compute derivative of y=f(x), can hit with log, diff both sides of log y = log f(x) with x.

(2) Inverse $\text{trig}: \Theta \circ \operatorname{arcsin} x$ if $\sin \Theta \circ x$, $-\frac{1}{2} \in \Theta \circ \frac{1}{2}$ def if $|x| \in 1$ $\Theta \circ \operatorname{arccox} x$ if $\cos \Theta \circ x$, $o \circ \Theta \circ \tau$ def for all $x \to \Theta \circ \operatorname{arccox} x$ if $\tan \Theta \circ x$, $-\frac{1}{2} \circ \Theta \circ \frac{1}{2}$

(to compute arcstn (sin o), arc cos (cose), arctan (ton 0) use periodicity, symmetry (Sin(I-0)=8ing, Co(-0)=CDO) to move & into correct interval.

(*) to compute sin (anccorr) etc (trig (in tright)) Create triangle , fill in two sides os 1, x compute 3rd side, rend off answer.

 $\frac{d}{dx} \operatorname{ancsin} x = \frac{1}{\sqrt{1-x^2}}; \frac{d}{dx} \operatorname{anccox} = -\frac{1}{\sqrt{1-x^2}}$ dr arcton x3 17 X2

Today: Differential equations

Motivation: Most natural Caus are differential equations

Cool: (1) what a DE is
(2) what is a solution to a DE
not included: how to solve DE:
modelling (how to create DE)
(3) qualitative study of solutions
Example:
$$F = ma$$
 unknown: position $x(t)$
Equation: $F(x) = m \cdot \frac{dx}{dt^2}$.
Example: $y' = ry$ solution $y(x) = G \cdot e^{rx}$
Cranople: $y' = ry$ solution $y(x) = G \cdot e^{rx}$

Math 100:V02 – WORKSHEET 12 DIFFERENTIAL EQUATIONS

1. DIFFERENTIAL EQUATIONS

(1) For each equation: Is y = 3 a solution? Is y = 2 a solution? What are *all* the solutions?

 $y^2 = 3y$ $u^2 = 4$ 3-9-3-3 1 32=944 x $2^{2} = 4 \sqrt{10}$ 22476=32 X 1 all solutions. 0.3 al solutions: ±2 Lesson; to check if y solves equation, plug it in ! (2) For each equation: Is $y(x) = x^2$ a solution? Is $y(x) = e^x$ a solution? $\left(\frac{dy}{dx}\right)^2 = 4y$ $\frac{dy}{dx} = y$ $\frac{d(x^2)}{dx} = \frac{\partial x}{\partial x} + \frac{x^2}{x}$ $\left(\frac{d(x^2)}{dx}\right)^2 = \beta x^2 = 4 \cdot x^2 \sqrt{2}$ $d(e^{x}) = e^{x} \sqrt{$ $\binom{d(e^{t})}{d(e^{t})}^{2} = e^{t} e^{2t} + 4e^{t} x$

Date: 29/2/2024, Worksheet by Lior Silberman. This instructional material is excluded from the terms of UBC Policy 81.

function

can plug in functions into DE.

intended equality is of

lesson:

(3) Which of the following (if any) is a solution of $\frac{dz}{dt} + t^2 - 1 = z$ (challenge: find more solutions): A. $z(t) = t^2$; B. $z(t) = t^2 + 2t + 1$ A: $2t + t^2 - 1 \neq t^2$ A: $2t + t^2 - 1 \neq t^2$ A: $z + t^2 - t^2 + t^2$ A: $z + t^2 + t^2 + t^2 + t^2$ A: $z + t^2 + t^2 + t^2 + t^2$ A: $z + t^2 + t^2 + t^2 + t^2$ A: $z + t^2 +$ (4) Which of the following (if any) is a solution of $\frac{dy}{dx} = \frac{x}{y}$ A. y = -x; B. y = x+5 C. $y = \sqrt{x^2+5}$ $d(-x) = -1 = \frac{x}{fx}$, $\int d(x+s) = 1 + \frac{x}{x+s}$, $\frac{dy}{dx} = \frac{1}{2} + \frac{1}{\sqrt{x+s}} \cdot 2x$ $dx = 1 + \frac{x}{\sqrt{x+s}}$, $\frac{dy}{dx} = \frac{1}{2} + \frac{1}{\sqrt{x+s}} \cdot 2x$

Sometrimes we know a family of solutions
Con ask for a particular solution from the family.
Example:
$$y = \sqrt{x^2 \cdot A}$$
 all solve $y' = \frac{x}{y}$
which one has $y(i) = 3$?
head $3 = \sqrt{1^2 \cdot A}$ so $A = 8$, solution is $\sqrt{x^2 \cdot 8}$

(5) The balance of a bank account satisfies the differential equation $\frac{dy}{dt} = 1.04y$ (this represents interest of 4% compounded continuously). Sketch the solutions to the differential equation. What is the solution for which y(0) = \$100?

(6) Suppose $\frac{dy}{dx} = ay$, $\frac{dz}{dx} = bz$. Can you find a differential equation satisfied by $w = \frac{y}{z}$? Hint: calculate $\frac{dw}{dx}$.

2. Solutions by massaging and ansatze (7) For which value of the constant ω is $y(t) = \sin(\omega t)$ a solution of the oscillation equation $\frac{d^2y}{dt^2} + 4y = 0$? y = w ce (ω+); y = - w sin (ω+) So want $-\omega^2 \sin(\omega t) + 4 \sin(\omega t) = 0$ $C=2(4-\omega^2)\sin(\omega t)=0$ 80 if $w^2 = 4$ ($w = \pm 2$) set zero. Get solutions y = 8in(2+7), y = 8in(-2+).(actually Asim (2+) works for all A; A=-1 is like w=-2 A=0 is like w=0) (General solution: Asim (21) + B cos(2+))