Math 100 , lecture $13,27 / 2 / 2024$
Last time:

Today: (1) Logarithmic diff
(2) inverse trig'

Log. diff: if $y=f(x)$ then $\operatorname{los} y=\operatorname{los} f(n)$

$$
\begin{aligned}
& \text { so } \frac{y^{\prime}}{y}=(\log f(x))^{\prime} \\
& \Rightarrow y^{\prime}=f(x) \cdot(\log f(x))^{\prime} \\
& y^{\prime}=y \cdot(\log y)^{\prime}
\end{aligned}
$$

1. LOGARITHMIC DIFFERENTIATION

(1) Differentiate
(a) $\frac{\mathrm{d}(\log (a x))}{\mathrm{d} x}=$
$\frac{d(\log (a x x))}{d x}=a \cdot \frac{1}{a_{x}}=\frac{1}{x}$
$\frac{d\left(\operatorname{los}^{\prime \prime} x+\operatorname{los} a\right)}{d x}=\frac{1}{x}+0=\frac{1}{x}$
(b) $\frac{\mathrm{d}}{\mathrm{d} x} x^{2} \log \left(1+x^{2}\right)=$
$\frac{\mathrm{d}}{\mathrm{d} r} \frac{1}{\log (2+\sin r)}=$
(2) (Logarithmic differentiation) differentiate

$$
\begin{aligned}
& \quad y=\left(x^{2}+1\right) \cdot \sin x \cdot \frac{1}{\sqrt{x^{3}+3}} \cdot e^{\cos x} \\
& \log y=\operatorname{los}\left(x^{2}+1\right)+\log \sin x+\left(-\frac{1}{2}\right) \log \left(x^{3}+3\right)+\cos x \\
& \frac{1}{y} y^{\prime}=\frac{2 x}{x^{2}+1}+\frac{\cos x}{\sin x}-\frac{3 x^{2}}{2\left(x^{3}+3\right)}-\log \left(x^{2}+3\right)^{-\frac{1}{2}}=-\frac{1}{2} \operatorname{los}\left(x^{3}+3\right) \\
& \Rightarrow y^{\prime}=\left(x^{2}+1\right) \cdot \sin x \cdot \frac{1}{\sqrt{x^{3}+3}} \cdot e^{\cos x} \cdot\left[\frac{2 x}{x^{2}+1}+\frac{\cos x}{\sin x}-\frac{3 x^{2}}{2\left(x^{3}+3\right)}-\sin x\right]
\end{aligned}
$$

(3) Differentiate using $f^{\prime}=f \times(\log f)^{\prime}$
(a) $x^{n} \quad$ if $y=x^{n} \quad \log y=\log \left(x^{n}\right)=n \cdot \log x$

$$
\Rightarrow\left(\begin{array}{c}
\text { diff both } \\
\text { Sides) }
\end{array} \quad \frac{1}{y} y^{\prime}=n \cdot \frac{1}{x}\right.
$$

Sides)

$$
\Rightarrow y^{\prime}=x^{n} \cdot n \cdot \frac{1}{x}=n \cdot x^{n-1} \downarrow
$$

(b) x^{x} if $y=x^{x} \quad \log y=x \log x$

$$
\begin{aligned}
& \Rightarrow \frac{1}{y} y^{\prime}=\log x+x \cdot \frac{1}{x} \\
& \Rightarrow y^{\prime}=(\log x+1) \cdot x^{x}
\end{aligned}
$$

(c) $(\log x)^{\cos x}$
(d) (Final, 2014) Let $y=x^{\log x}$. Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of take log x only.

$$
\log y=\operatorname{los}\left(x^{\log x}\right)=(\operatorname{Cog} x)(\operatorname{Cos} x)=(\operatorname{los} x)^{2}
$$

duff lath sides: $\frac{1}{y} y^{\prime}=2 \log x \cdot \frac{1}{x}$ solve for y : $\quad y^{\prime}=2 \log x \cdot \frac{1}{x} \cdot x^{\log x}=2 \log x \cdot x^{\log x-1}$.
(4) Let $f(x)=g(x)^{h(x)}$. Find a formula for f^{\prime} in terms of g^{\prime} and h^{\prime}.
2. Inverse trig
(5) (evaluation)
(a) (Final 2014) Evaluate $\arcsin \left(-\frac{1}{2}\right)$; Find $\arcsin \left(\sin \left(\frac{31 \pi}{11}\right)\right)$.
want θ sot. $\sin \theta$
Know: $\sin \frac{\pi}{6}=\frac{1}{2}$ So $\sin \left(-\frac{\pi}{6}\right)=-\frac{1}{2}$ $\left(-\frac{\pi}{6} \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\right.$ so $)$ $\arcsin \left(-\frac{1}{2}\right)=-\frac{\pi}{6}$
(b) (Final 2015) Simplify $\sin (\arctan 4)$

Let $\theta=\arctan 4 ., 80 \tan \theta=4$ draw triangle: (fill lengths)
 want $\sin \theta$
need to solve $\sin \theta=\sin \frac{318}{11}$ but:

$$
\sin \frac{31 \pi}{1 \pi}=\sin \left(\frac{31}{11} \pi-2 \pi\right)
$$

$$
=\sin \left(\frac{9}{11} \pi\right)
$$

$$
=\sin \left(\pi-\frac{2}{11} \pi\right)=\sin \left(\frac{2}{\pi} \pi\right)
$$

$$
\begin{gathered}
\text { so } \begin{array}{c}
\arcsin \left(\sin \left(\frac{311}{11} \pi 1\right)\right. \\
=\frac{a}{11} \pi
\end{array}
\end{gathered}
$$

Pythagoras
to fill third side
(c) Find $\tan (\arccos (0.4))$
(6) Let $f(\theta)=\sin ^{2} \theta+\cos ^{2} \theta$. Find $\frac{d f}{d \theta}$ without using trigonometric identities. Evaluate $f(0)$ and conclude that $\sin ^{2} \theta+\cos ^{2} \theta=1$ for all θ.
(7) (Inverse functions)
(a) Suppose $g(x)=e^{x}, f(y)=\log y$. Show that $f(g(x))=x$ and conclude that $(\log y)^{\prime}=\frac{1}{y}$.
(b) Let $\theta=\arcsin x$. Find $\frac{d \theta}{d x}$. Hint: solve for x first.
$\arcsin x \neq \frac{1}{\sin x}$ if $\theta=\arcsin x$ then sin $\theta=x$ So $\cos \theta \cdot \frac{d \theta}{d x}=1$
so $\frac{d \theta}{d x}=\frac{1}{\cos \theta}=\frac{1}{\sqrt{1-x^{2}}}$
need to find case interns of x

$$
\frac{1}{\theta} \times \text { si } \cos \theta=\sqrt{1-x^{2}}
$$

(8) Differentiation

$$
\frac{d(\arccos x)}{d x}=-\frac{1}{\sqrt{1-x^{2}}}
$$

(a) Find $\frac{\mathrm{d}}{\mathrm{d} x}(\arcsin (2 x))$
$\frac{d(\arctan x)}{d x}=\frac{1}{1+x^{2}}$
(b) Find the line tangent to $y=\sqrt{1+(\arctan (x))^{2}}$ at the point where $x=1$.
(c) Find y^{\prime} if $y=\arcsin \left(e^{5 x}\right)$. What is the domain of the functions y, y^{\prime} ?

